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Perimeter preservers of nonnegative integer matrices

Seok-Zun Song, Kyung-Tae Kang, Sucheol Yi

Abstract. We investigate the perimeter of nonnegative integer matrices. We also charac-
terize the linear operators which preserve the rank and perimeter of nonnegative integer
matrices. That is, a linear operator T preserves the rank and perimeter of rank-1 ma-
trices if and only if it has the form T (A) = P (A ◦ B)Q, or T (A) = P (At

◦ B)Q with
appropriate permutation matrices P and Q and positive integer matrix B, where ◦

denotes Hadamard product.
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1. Introduction and preliminaries

Nonnegative integer matrices are combinatorially interesting matrices. So it has
been a subject of many research works (see [5]). In [1], Beasley and Pullman
defined the perimeter of a Boolean rank-1 matrix in order to characterize the
linear operators that preserve Boolean rank. In this paper, we consider the non-
negative integer matrices of rank-1 and their perimeters. We also characterize the
linear operators that preserve the rank and perimeter of the rank-1 matrices over
nonnegative integers.
Let Z+ be a semiring of nonnegative integers and let Mm,n(Z+) denote the

set of all m×n matrices with entries in Z+. The rank or factor rank [2], r(A), of
a nonzero matrix A ∈ Mm,n(Z+) is defined as the least integer k for which there
exist m×k and k×n matrices B and C with A = BC. The rank of a zero matrix
is zero. If A ∈ Mm,n(Z+) has rank 1, there exist nonzero vectors u ∈ Mm,1(Z+)

and v ∈ Mn,1(Z+) such that A = uvt. The perimeter [1] of this rank 1 matrix

A, p(A) is defined as |u| + |v| for arbitrary factorization A = uvt, where |u|
denotes the number of nonzero entries in u. It is clear that the perimeter of a
rank 1 matrix is uniquely determined by the given matrix. Let A ◦ B denote the
Hadamard (or Schur) product, the (i, j) entry of A ◦ B is aijbij .
A matrix inMm,n(Z+) is called a cell [3] if it has exactly one nonzero entry,

that being a 1. We denote the cell whose nonzero entry is in the (i, j)th position
by Eij . Let Em,n = {Eij | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. For A = [aij ] in Mm,n(Z+),
we define A∗ = [aij

∗] to be the m×n (0, 1)-matrix whose (i, j)th entry is 1 if and
only if aij > 0.
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It follows from the definition that p(A) = p(A∗) and (AB)∗ = A∗B∗, (B +
C)∗ = B∗+B C∗, where 1+B 1 = 1 is Boolean arithmetic, for all A ∈ Mm,n(Z+)
and all B, C ∈ Mn,r(Z+).
If A and B are inMm,n(Z+), we say that A dominates B (written B ≤ A or

A ≥ B) if aij = 0 implies bij = 0 for all i, j ([4]). Then we can obtain the fact
that A ≥ B if and only if (A+B)∗ = A∗ for any m × n matrices A and B.

2. Perimeter preservers

A mapping T :Mm,n(Z+)→ Mm,n(Z+) is called a linear operator if T satisfies

T (αA+ βB) = αT (A) + βT (B)

for all A, B ∈ Mm,n(Z+) and for all α, β ∈ Z+.
In this section, we will characterize the linear operators that preserve both the

rank and the perimeter of every rank-1 matrix inMm,n(Z+).
Suppose T is a linear operator onMm,n(Z+). Then

(1) T is a (P, Q, B)-operator if there exist permutation matrices P ∈Mm,m(Z+),
Q ∈ Mn,n(Z+) and a positive matrix B ∈ Mm,n(Z+) with r(B) = 1 such
that T (A) = P (A ◦ B)Q for all A in Mm,n(Z+), or m = n and T (A) =

P (At ◦ B)Q for all A inMm,n(Z+);
(2) T preserves rank 1 if r(T (A)) = 1 whenever r(A) = 1 for all A ∈ Mm,n(Z+);
(3) T preserves perimeter k of rank-1 matrices if p(T (A)) = k whenever p(A) = k

for all A ∈ Mm,n(Z+) with r(A) = 1.

Theorem 2.1. If T is a (P, Q, B)-operator onMm,n(Z+), then T preserves both
rank and perimeter of every rank-1 matrix.

Proof: Since the operators Hadamard product, transpose and permutational
equivalence preserve the rank and perimeter of every rank-1 matrix, the theorem
follows. �

We note that an m × n matrix has perimeter 2 if and only if it is a positive
integer multiple of a cell. We say that A is a row (column) matrix if A has nonzero
entries only in one row (column, respectively). Thus we have the following lemma:

Lemma 2.2. Let T be a linear operator on Mm,n(Z+). If T preserves rank 1
and perimeter 2 of every rank-1 matrix, then the following statements hold:

(1) there exist positive integers uij , i = 1, . . . , m, j = 1, . . . , n, and a mapping
f : Em,n → Em,n such that for A = [aij ], T (A) =

∑m
i=1

∑n
j=1 aijuijf(Eij) ;

(2) T maps a row (column) matrix to a row (column) matrix or if m = n, a row
(column) matrix to a column (row) matrix.
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Proof: (1) Since T preserves perimeter 2, T maps a cell into a positive integer
multiple of a cell.

(2) If not, then there exist two distinct cells Eij , Eih in some ith row such
that T (Eij) and T (Eih) lie in two different rows and different columns. Then the

rank of Eij+Eih is 1 but that of T
(

Eij + Eih

)

= T (Eij)+T (Eih) is 2. Therefore
T does not preserve rank 1, a contradiction. �

An example follows of a linear operator that preserves rank 1 and perimeter 2
of a rank-1 matrix, but the operator does not preserve perimeter 3 and is not a
(P, Q, B)-operator.

Example 2.3. Let T :M2,2(Z+)→ M2,2(Z+) be defined by

T

([

a b

c d

])

= (a+ b+ c+ d)

[

0 0
1 0

]

.

It is easy to verify that T is a linear operator which preserves rank 1 and perime-
ter 2. But T does not preserve perimeter 3 and hence it is not a (P, Q, B)-operator.

�

Let Ri = {Eij | 1 ≤ j ≤ n}, Cj = {Eij | 1 ≤ i ≤ m}, R = {Ri | 1 ≤ i ≤ m} and
C = {Cj | 1 ≤ j ≤ n}. For a linear operator T on Mm,n(Z+), define T ∗(A) =
[T (A)]∗ for all A in Mm,n(Z+). Let T ∗(Ri) = {T ∗(Eij) | 1 ≤ j ≤ n} for all
i = 1, . . . , m and T ∗(Cj) = {T ∗(Eij) | 1 ≤ i ≤ m} for all j = 1, . . . , n.

Lemma 2.4. Let T be a linear operator onMm,n(Z+). Suppose that T preserves
rank 1 and perimeters 2 and p (≥ 3) of every rank-1 matrix. Then

(1) T maps two distinct cells in a row (or column) into positive multiples of two
distinct cells in a row or in a column ;

(2) for the case m = n, if T maps some Ri into a row (column) matrix then
T maps every row matrix into a row (column) matrix, and if T maps some
Cj into a row (column) matrix then T maps every column matrix into a row
(column) matrix.

Proof: (1) Suppose T (Eij) = αErl and T (Eih) = βErl for some cells Eij 6= Eih

and some positive integers α, β ∈ Z+. Then T maps the ith row of a matrix A into
rth row or lth column by Lemma 2.2. Without loss of generality, we assume the
former. Thus for any rank-1 matrix A with perimeter p (≥ 3) which dominates
Eij + Eih, we can show that T (A) has perimeter at most p − 1, a contradiction.
Thus T maps two distinct cells in a row into two distinct cells in a row or in
a column.
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(2) If not, then there exist rows Ri and Rj such that T ∗(Ri) ⊆ Rr and
T ∗(Rj) ⊆ Cs for some r, s. Consider a rank-1 matrix D = Eip +Eiq +Ejp +Ejq

with p 6= q. Then we have

T (D) = T (Eip +Eiq) + T (Ejp + Ejq) = (α1Erp′ + α2Erq′) + (β1Ep′′s + β2Eq′′s)

for some p′ 6= q′ and p′′ 6= q′′ and some positive integers αi, βi ∈ Z+ by (1).
Therefore r (T (D)) 6= 1 and T does not preserve rank 1, a contradiction. Hence
T maps each row of A into a row (or a column) of T (A). Similarly, T maps each
column of A into a column (or a row) of T (A). �

Now we have an interesting example:

Example 2.5. Consider a linear operator T on Mm,n(Z+) with m ≥ 3 and
n ≥ 4 such that

T (A) = B = [bij ]

where A = [aij ] in Mm,n(Z+), bij = 0 if i ≥ 2 and b1j =
∑m

i=1 air with r ≡
i + (j − 1) (mod n) and 1 ≤ r ≤ n. Then T maps each row and each column
into the first row with some positive integer multiplication. And T preserves both
rank and perimeters 2, 3 and n+ 1 of rank-1 matrices. But T does not preserve
perimeters k (k ≥ 4 and k 6= n+1) of rank-1 matrices: For if 4 ≤ k ≤ n, then we
can choose a 2×(k−2) submatrix with perimeter k which is mapped to distinct k

positions in the first row of B under T . Then this 1× k submatrix has perimeter
k + 1. Therefore T does not preserve perimeter k of rank-1 matrices. �

Lemma 2.6. Let T be a linear operator defined by

T (A) =

m
∑

i=1

n
∑

j=1

aijuijf(Eij)

for some function f : Em,n → Em,n and for some positive integers uij , i =
1, . . . , m, j = 1, . . . , n. If T preserves both rank and perimeters 2 and k (k ≥
4, k 6= n + 1) of rank-1 matrices, then the corresponding map f is a bijection
on Em,n.

Proof: By Lemma 2.2, T (Eij) = bijErl for some Erl ∈ Em,n and some positive
integer bij ∈ Z+. Without loss of generality, we may assume that T maps the ith
row of a matrix into the rth row with positive integer multiplication. Suppose
f(Eij) = f(Epq) for some distinct pairs Eij , Epq ∈ Em,n. Then we have T (Eij) =
bijErl and T (Epq) = cpqErl for some positive integers bij , cpq ∈ Z+. If i = p or
j = q, then we have contradictions by Lemma 2.4. So let i 6= p and j 6= q.
If 4 ≤ k ≤ n, we will show that we can choose a 2 × (k − 2) submatrix from

the ith and pth row whose image under T has a 1 × k submatrix in the rth row
as follows: Since T (Eij) = bijErl and T (Epq) = cpqErl, T maps the ith row and



Perimeter preservers of nonnegative integer matrices 13

the pth row into the rth row. But T maps distinct cells in each row (or column)
to distinct cells by Lemma 2.4. Now, choose Eij , Epj but do not choose Eiq , Epq.
Since there is a cell Eph (h 6= j, q) in the pth row such that f(Eph) = f(Eiq) but
f(Eih) 6= f(Epj), we choose the 2 × 2 submatrix Eij + Eih + Epj + Eph whose
image under T is a 1× 4 submatrix in the rth row. And we can choose a cell Eps

(s 6= q, j, h) such that f(Eis) 6= f(Epj), f(Epq), f(Eph). Then we have a 2 × 3
submatrix Eij + Eih + Eis + Epj + Eph + Eps whose image under T is a 1 × 5
submatrix in the rth row. Similarly, we can choose a 2× (k− 2) submatrix whose
image under T is a 1× k submatrix in the rth row. This shows that T does not
preserve the perimeter k of a rank-1 matrix, a contradiction.
If k = n+ k′ ≥ n+ 2, consider the matrix

D =

n
∑

s=1

Eis +

n
∑

t=1

Ep t +

k′
−2

∑

h=1

n
∑

g=1

Ehg

with rank 1 and perimeter n + k′ = k. Then T maps the ith and pth row of D

into the rth row with positive integer multiplication by Lemma 2.4. Thus the
perimeter of T (D) is less than n+ k′ = k, a contradiction.
Hence f(Eij) 6= f(Epq) for any two distinct cells Eij , Epq ∈ Em,n. Therefore

f is a bijection. �

We obtain the following characterization theorem for linear operators preserv-
ing the rank and the perimeter of rank-1 matrices over nonnegative integers.

Theorem 2.7. Let T be a linear operator on Mm,n(Z+). Then the following
are equivalent :

(1) T is a (P, Q, B)-operator ;
(2) T preserves both rank and perimeter of rank-1 matrices ;
(3) T preserves both rank and perimeters 2 and k (k ≥ 4, k 6= n+ 1) of rank-1
matrices.

Proof: (1) implies (2) by Theorem 2.1. It is obvious that (2) implies (3). We
now show that (3) implies (1). Assume (3). Then T induces a bijection f :
Em,n → Em,n by Lemma 2.6. By Lemma 2.4, there are two cases ; (a) T ∗ maps
R onto R and maps C onto C or (b) T ∗ maps R onto C and C onto R.
Case (a). We note that T ∗(Ri) = Rσ(i) and T ∗(Cj) = Cτ(j) for all i, j, where

σ and τ are permutations of {1, . . . , m} and {1, . . . , n}, respectively. Let P and
Q be the permutation matrices corresponding to σ and τ , respectively. Then for
any Eij ∈ Em,n, we can write T (Eij) = bijEσ(i)τ(j) for some positive integer

bij ∈ Z+. Now we claim that B = (bij) has rank 1. For, consider an m × n

matrix J , all of whose entries are 1’s. Then we have

T (J) = T





m
∑

i=1

n
∑

j=1

Eij



 =
m

∑

i=1

n
∑

j=1

T (Eij) =
m

∑

i=1

n
∑

j=1

bijEσ(i)τ(j) = PBQ.
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Since J has rank 1, it follows that r(T (J)) = 1 and hence r(B) = 1 since permu-
tational equivalences preserve rank. Therefore for any A = [aij ] in Mm,n(Z+),
we have

T (A) = T





m
∑

i=1

n
∑

j=1

aijEij



 =

m
∑

i=1

n
∑

j=1

aijT (Eij)

=
m

∑

i=1

n
∑

j=1

aijbijEσ(i)τ(j) = P (A ◦ B)Q.

Thus T is a (P, Q, B)-operator.

Case (b). We note that m = n, T ∗(Ri) = Cσ(i) and T ∗(Cj) = Rτ(j) for all

i, j, where σ and τ are permutations of {1, . . . , m}. By an argument similar to
case (a), we obtain that T (A) is of the form T (A) = P (At ◦ B)Q. Thus T is a
(P, Q, B)-operator. �

We say that a linear operator T onMm,n(Z+) strongly preserves perimeter k

of rank-1 matrices if p (T (A)) = k if and only if p(A) = k.

Consider a linear operator T onM2,2(Z+) defined by

T

([

a b

c d

])

= (a+ b+ c+ d)

[

0 1
0 0

]

.

Then T preserves both rank and perimeter 2 of rank-1 matrices but does not
strongly preserve perimeter 2.

Theorem 2.8. Let T be a linear operator onMm,n(Z+). Then T preserves both
rank and perimeter of rank-1 matrices if and only if it preserves perimeter 3 and
strongly preserves perimeter 2 of rank-1 matrices.

Proof: Suppose T preserves perimeter 3 and strongly preserves perimeter 2
of rank-1 matrices. Then T maps each row of a matrix into a row or a column
(ifm = n) with positive integer multiplication. Since T strongly preserves perime-
ter 2, T maps each cell onto a positive integer multiple of a cell. This means that
T induces a bijection f on Em,n. Thus T preserves both rank and perimeter of
rank-1 matrices by a method similar to that in the proof of Theorem 2.7.

The converse is immediate. �

Thus we have characterizations of the linear operators that preserve both rank
and perimeter of rank-1 matrices over nonnegative integers.
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