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A combinatorial property and power graphs of semigroups

A.V. Kelarev1, S.J. Quinn

Abstract. Research on combinatorial properties of sequences in groups and semigroups
originates from Bernhard Neumann’s theorem answering a question of Paul Erdös. For
results on related combinatorial properties of sequences in semigroups we refer to the
book [3]. In 2000 the authors introduced a new combinatorial property and described
all groups satisfying it. The present paper extends this result to all semigroups.
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1. Introduction

Combinatorial properties of groups and semigroups with all infinite sequences
or subsets having certain unavoidable regularities have been actively investigated
by many authors. This research originates from the well-known theorem due to
Bernhard Neumann [15], who answered a question of Paul Erdös by proving that
a group is centre-by-finite if and only if every infinite sequence contains a pair of
elements that commute. For earlier results concerning combinatorial properties
of this sort we refer to [3], [4], [6], [7], [9], and [14].
A new combinatorial property was introduced in [10] using power graphs. It

is closely related to conditions considered earlier and leads to nontrivial interac-
tion between graph, group and semigroup methods. All groups satisfying this
property have been described in [10]. The present paper extends this result to all
semigroups using known facts on the structure of epigroups, see [18].
Throughout, the word ‘graph’ means a directed graph without multiple edges

and loops. The power graph Pow(S) of a semigroup S has all elements of S as
vertices, and has edges (u, v) for all u, v ∈ S, u 6= v, such that v is a power of
u. Let D be a finite graph. A semigroup S is said to be power D-saturated if
and only if, for each infinite subset T of S, the power graph of S has a subgraph
isomorphic to D with all vertices in T . Note that if a group is power D-saturated
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for a graph D with edges, then it satisfies the Bernhard Neumann’s property too,
because every element commutes with its powers.
In [10] the authors described all groups G and graphs D such that G is power

D-saturated. A natural question that arises concerns the structure of semigroups
that satisfy this property. This question was answered in [12] and [13] for the
cases of commutative and linear semigroups, respectively. In the present paper
we extend these results using a characterization of epigroups to obtain a complete
description of all pairs (D, S), where D is a graph and S is a semigroup, such
that S is power D-saturated. Semigroups have various valuable applications in
combinatorics and computer science. To mention only one example, they occur
as syntactic monoids of languages (see, for example, [4], [9] and [16]). Similar
questions concerning divisibility graphs were considered in [12].

2. Main theorem

A graph is said to be acyclic if it has no directed cycles. It is null if it has no
edges. Let S be a semigroup. The semigroup S with zero 0 adjoined is denoted
by S0 = S ∪ {0}. If I ⊇ J 6= ∅ are ideals of S, then the factor I/J of S is the
semigroup on the set (I \ J) ∪ 0 with multiplication defined by

xy =

{

xy if xy /∈ J

0 otherwise.

LetH be a group, Λ, I two nonempty sets, and letQ = [qλi] be a (Λ× I)-matrix
with entries in H0 such that no row or column consists entirely of zeros. Then the
Rees matrix semigroup M0(H ; I,Λ;Q) over H0 with sandwich-matrix Q consists
of zero 0 and all triples (h; i, λ), for i ∈ I, λ ∈ Λ, and h ∈ H0, where all triples
(0, i, λ) are identified with 0, and multiplication is defined by the rule

(h1; i1, λ1)(h2; i2, λ2) = (h1qλ1i2h2; i1, λ2).

Let G be a group and p a prime such that p divides |G|. Then the elements
with order of some power of p form a subgroup of G called a primary component
of G. The quasicyclic p-group is the infinite group with generators g1, g2, . . . such
that gp

1 = e and gp
i = gi−1, for all i > 1, where e is the identity of the group.

A group is torsion is all elements have finite order. A group G is centre-by-finite
if the quotient group |G/C(G)| is finite.
Obviously, finite semigroups are power D-saturated for all graphs D, and all

semigroups are power D-saturated for null graphs. Therefore the following theo-
rem describes all nontrivial pairs (D, S) such that S is power D-saturated.

Theorem 1. Let D be a finite directed graph that is not null, and let S be an
infinite semigroup. Then the following conditions are equivalent:

(i) the power graph of S is D-saturated;
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(ii) D is acyclic and S0 has a finite ideal series

(1) 0 = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S0

where every infinite factor Sj/Sj−1 is a Rees matrix semigroup that has

a finite sandwich matrix with entries in a centre-by-finite torsion group

Hj such that each primary component of the center of Hj is finite or

quasicyclic, the center of Hj has only a finite number of primary compo-

nents, and the index of the center is not divisible by p for each quasicyclic
p-subgroup of Hj .

3. Preliminaries

For notation and terminology of graph, group and semigroup theories not men-
tioned in this paper the reader is referred to [1], [5], [8], [9] and [17].

Let S be a semigroup. An element s of S is said to be periodic if there exist
positive integers m, n such that sm+n = sm. The semigroup S is periodic if all
elements of S are periodic. If a, b ∈ S, then we write aHb if S1a = S1b and
aS1 = bS1, where S1 = S ∪ {1} stands for the semigroup S with identity 1
adjoined. The relation H is an equivalence relation (see [5, §2.1]).
A semigroup is said to be completely simple if it has no proper ideals and has

a minimal idempotent. Similarly, a semigroup with zero is completely 0-simple
if it has no proper nonzero ideals and has a minimal nonzero idempotent. It
is well known that every completely simple semigroup is isomorphic to a Rees
matrix semigroup M(H ; I,Λ;P ) over a group H (see [5, Theorem 3.3.1]), and
every completely 0-simple semigroup is isomorphic to a Rees matrix semigroup
M0(H ; I,Λ;P ) over a group H with zero adjoined. Conversely, every semigroup
M(H ; I,Λ;P ) is completely simple, and a semigroupM0(H ; I,Λ;P ) is completely
0-simple if and only if each row and column of P contains at least one nonzero
entry (see [5, Theorem 3.2.3]).

Let H be a group, G =M(H ; I,Λ;P ), and let i ∈ I, λ ∈ Λ. Then we put Giλ =
{(h; i, λ) | h ∈ H}. The set Giλ is an H-class of G. When G = M0(H ; I,Λ;P )
we include zero in all of these sets, that is, we put Giλ = {0} ∪ {(h; i, λ) | h ∈ H}.
In this case the set Giλ \ {0} is an H-class of G. If an entry pλi in the sandwich
matrix P is zero, then the set G2iλ = 0 by [5, Lemma 2.2.5]. If pλi 6= 0, then Giλ

is a maximal subgroup of G isomorphic to H , by [5, Lemma 2.2.5].

An epigroup is a semigroup such that a power of each element belongs to a
subgroup (see [18]). We use the following technical lemma.

Lemma 2 ([18, Proposition 11.1]).

An epigroup with finitely many idempotents has a finite ideal series in which

each factor is either completely simple, completely 0-simple or a nilsemigroup and,
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in the first two of these cases, the Rees matrix semigroups have finite sandwich

matrices.

A complete symmetric graph K∞ is a graph with edges (u, v) and (v, u) for
all distinct u, v ∈ K∞. An infinite ascending (resp., descending) chain A∞

(resp., D∞) is the graph with the set Z
+ of all positive integers as vertices and

with edges (i, j) such that i < j (resp., i > j).
The following lemma found in [11] is needed for the proof of the main theorem.

Lemma 3 ([11, Lemma 4.3]). Every infinite graph contains an infinite set of
vertices which induces a null subgraph, an infinite ascending chain, an infinite

descending chain or an infinite complete symmetric graph.

We also need the following result obtained in [10].

Proposition 4 ([10]). Let D = (V, E) be a graph that is not null and let H be an
infinite group. Then H is power D-saturated if and only if H is a centre-by-finite
torsion group, the center C(H) has a finite number of primary components, each
primary component of C(H) is finite or quasicyclic, the index of the center C(H)
is not divisible by p for each quasicyclic p-subgroup of H , and D is acyclic.

4. Proofs

Lemma 5. If D is a graph and S is a power D-saturated semigroup, then all
subsemigroups and all quotient semigroups of S are power D-saturated, too.

Proof: is straightforward and we omit it. �

Lemma 6. If S is an infinite nil semigroup, then S has an infinite subset that
induces a null subgraph in the power graph of S.

Proof: Let 0 be the zero of S. Suppose to the contrary that Pow(S) has no infi-
nite subsets which induce null subgraphs. Evidently, all elements of every infinite
ascending chain or complete symmetric graph of a power graph of a semigroup
are not nil. Therefore Pow(S) does not contain infinite ascending chains or com-
plete symmetric graphs. It follows from Lemma 3 that Pow(S) has an infinite
descending chain, say, x1, x2, . . . with edges (xj , xi) for all 1 ≤ i < j. We may
assume that x1 6= 0, since otherwise we can start the path with x2.
Consider two elements x2xi and x2xj in S, where 2 < i < j. Since x1, x2, xi

and xj are vertices of our chain, we know that there exist positive integers
k1, k2, k3, k4 > 1 such that

xk1
2 = x1(2)

xk2
i = xk3

j = x2(3)

xk4
j = xi.(4)
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Then x1 = x2xi(x
k2−1
i xk1−2

2 ) and x2xj(x
k4−1
j ) = x2xi and so x2xi and x2xj are

non-zero elements in S.
Suppose that x2xi and x2xj are adjacent in the power graph Pow(S). If

(x2xj)
k = x2xi,

for some positive integer k, then by combining equations (3) and (4) and equating
indices we get

k(k3 + 1) = k3 + k4.

If k = 1 then k4 = 1, which is a contradiction. If k > 1, then

k(k3 + 1) > 2(k3) > k3 + k4 = k(k3 + 1)

and again we have a contradiction.
On the other hand, if

(x2xi)
k = x2xj ,

for some k > 1 we get
k(k3 + k4) = k3 + 1.

Then
k(k3 + k4) > k3 + k4 > k3 + 1 = k(k3 + k4),

and another contradiction arises.
These contradictions show that all elements x2x3, x2x4, x2x5, . . . are not ad-

jacent in Pow(S), which completes the proof.
�

Proof of Theorem 1: (i)⇒(ii): If S has an element s that is not periodic, then
the vertices s2, s3, s5, . . . are not adjacent in Pow(S). Obviously, if an infinite
sequence of vertices induces a null subgraph of Pow(S), then S is not power
D-saturated. This contradiction shows that S is periodic, and so it is an epigroup.
If S contains infinitely many idempotents, then the idempotents are not adja-

cent in Pow(S), a contradiction. Therefore S contains a finite number of idem-
potents.
By Lemma 2, S has a finite ideal series

∅ = S0 ⊆ S1 ⊆ · · · ⊆ Sn = S,

where each factor Sj/Sj−1 is nil, completely simple or completely 0-simple with

finite sandwich matrix. Hence S0 has a finite ideal series (1) where each factor
Sj/Sj−1 is nil or completely 0-simple with finite sandwich matrix.
Consider an infinite factor Sj/Sj−1. If Sj/Sj−1 is nil, then Lemma 6 tells

us that Sj/Sj−1 contains an infinite subset that induces a null subgraph in
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Pow(Sj/Sj−1). Hence S has a quotient semigroup which is not D-saturated,
and it follows by Lemma 5 that S is not D-saturated. Thus we see that every
infinite factor of the ideal series is completely 0-simple.

Suppose that the sandwich matrix of an infinite Sj/Sj−1 =M0(H ; I,Λ;P ) has

a zero entry pλi. By Lemma 2, P is finite, and so H is infinite. Then G2iλ = 0.

Hence sℓ ∈ Sj−1 for all s ∈ Giλ and ℓ > 1. This means that the elements
of Giλ induce an infinite null subgraph in Pow(S) and S is not D-saturated.
This contradiction shows that all entries of P are nonzero. Therefore all subsets
Giλ ∈ Sj/Sj−1 are maximal subgroups of Sj/Sj−1 isomorphic to H .

All subsemigroups of S are power D-saturated by Lemma 5. Thus we know
by Proposition 4 that, if Sj/Sj−1 is infinite, then every H-class of Sj/Sj−1 is an
isomorphic copy of a centre-by-finite torsion group H , such that the center C(H)
has a finite number of primary components, each primary component of C(H)
is finite or quasicyclic and the order of H/C(H) is not divisible by p for each
quasicyclic p-subgroup of H .

Take any infiniteH-class. It contains a quasicyclic subgroupC∞. Let p1, p2, . . .
be generators of C∞, such that pp

1 = e and pp
i = pi−1. Then it is routine to verify

that the set {p1, p2, . . . } induces a subgraph that is isomorphic to D∞, which is
of course acyclic. By the power D-saturation of S, we see that D embeds in this
subgraph, and so D is acyclic too.

(ii)⇒(i): Pick any infinite subset T of S. Clearly, T =
⋃

{T ∩ (Sj \Sj−1) | 1 ≤
j ≤ n}, and so at least one of T ∩ (Sj \ Sj−1) is infinite. Since all entries of the

sandwich matrix of the Rees matrix semigroup Sj \ Sj−1 = M0(H ; I,Λ;P ) are
nonzero, we see that Sj \Sj−1 is the union of 0 and a finite number of subgroups
isomorphic to H . All of these subgroups are power D-saturated by Proposition 4.
Hence at least one of these subgroups has an infinite intersection X with T . It
follows that D embeds in the subgraph induced by the vertices of X . Therefore
S is power D-saturated. �

Acknowledgments. The authors are grateful to the referee for comments that
have helped to improve the presentation of the paper.

References

[1] Chartland G., Lesniak L., Graphs and Digraphs, Chapman & Hall, London, 1996.

[2] Graham R.L., Rudiments of Ramsey Theory, Amer. Math. Soc., Providence, R.I., 1981.

[3] de Luca A., Varricchio S., Regularity and finiteness conditions, Handbook of Formal Lan-
guages, Vol. 1, Eds. G. Rosenberg, A. Salomaa, Springer-Verlag, Berlin, 1997, 747–810.

[4] de Luca A., Varricchio S., Finiteness and Regularity in Semigroups and Formal Languages,
Monographs in Theoretical Computer Science, Springer, Berlin, 1998.

[5] Howie J.M., Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.

[6] Justin J., Pirillo G., On some questions and conjectures in combinatorial semigroup theory,
Southeast Asian Bull. Math. 18 (1994), 91–104.



A combinatorial property and power graphs of semigroups 7

[7] Kelarev A.V., Combinatorial properties of sequences in groups and semigroups, Combi-
natorics, Complexity and Logic, Eds. D.S. Bridge, C.S. Calude, J. Gibbons, S. Reeves,
I.H. Witten, (Springer Ser. Discrete Math. Theor. Comput. Soc.), Springer-Verlag, Singa-
pore, 1997, pp 289–2983.

[8] Kelarev A.V., Ring Constructions and Applications, World Scientific, 2002.
[9] Kelarev A.V., Graph Algebras and Automata, Marcel Dekker, 2003.
[10] Kelarev A.V., Quinn S.J., A combinatorial property and power graphs of groups, Contrib.

General Algebra 12, 58. Arbeitstagung Allgemeine Algebra (Vienna University of Tech-
nology, June 3–6, 1999) Eds. D. Dorninger, G. Eigenthaler, M. Goldstern, H.K. Kaiser,
W. More, W.B. Mueller, Springer-Verlag, 2000, pp. 229–235.

[11] Kelarev A.V., Quinn S.J., A combinatorial property of Cayley graphs and semigroups,
Semigroup Forum 66 (2003), 89–96.

[12] Kelarev A.V., Quinn S.J., Directed graphs and combinatorial properties of semigroups,
J. Algebra 251 (2002), no. 1, 16–26.

[13] Kelarev A.V., Quinn S.J., Power graphs and semigroups of matrices, Bull. Austral. Math.
Soc. 63 (2001), 341–344.

[14] Lothair M., Combinatorics on Words, Addison-Wesley, Tokyo, 1982.
[15] Neumann B.H., A problem of Paul Erdös on groups, J. Austral. Math. Soc. 21 (1976),

467–472.
[16] Pin J.-E., Syntactic semigroups, Handbook of Formal Languages. Vol. 1. Word, Language,

Grammar. Eds. G. Rozenberg, A. Salomaa, Springer-Verlag, Berlin, 1997, pp. 679–746.
[17] Robinson D.J.S., A Course in the Theory of Groups, Springer, New-York, Berlin, 1982.

[18] Shevrin L.N., Ovsyannikov A.J., Semigroups and their Subsemigroup Lattices, Kluwer,
Dordrecht, 1996.

Computing, University of Tasmania, Private Bag 100, Hobart, Tasmania 7001,

Australia

E-mail : Andrei.Kelarev@utas.edu.au

Computing, University of Tasmania, P.O. Box 731, Hobart, Tasmania 7001,

Australia

E-mail : Stephen.Quinn@utas.edu.au

(Received April 22, 2003, revised November 3, 2003)


		webmaster@dml.cz
	2012-04-30T22:08:38+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




