
Commentationes Mathematicae Universitatis Carolinae

Octavian Agratini; Ioan A. Rus
Iterates of a class of discrete linear operators via contraction principle

Commentationes Mathematicae Universitatis Carolinae, Vol. 44 (2003), No. 3, 555--563

Persistent URL: http://dml.cz/dmlcz/119408

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2003

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119408
http://project.dml.cz


Comment.Math.Univ.Carolin. 44,3 (2003)555–563 555

Iterates of a class of discrete linear

operators via contraction principle

Octavian Agratini, Ioan A. Rus

Abstract. In this paper we are concerned with a general class of positive linear operators
of discrete type. Based on the results of the weakly Picard operators theory our aim is to
study the convergence of the iterates of the defined operators and some approximation
properties of our class as well. Some special cases in connection with binomial type
operators are also revealed.

Keywords: linear positive operators, contraction principle, weakly Picard operators,
delta operators, operators of binomial type

Classification: 41A36, 47H10

1. Introduction

In the late decades the second author developed the theory of weakly Picard
operators, see e.g. [9], [10], [11]. For the convenience of the reader, the basic
features of the theory will be presented in the next section. Here we also com-
prised elements about delta operators and their basic polynomials. Further on,
in Section 3 we construct a general class of linear positive operators acting on the
space C([a, b]) and we study the convergence of their iterates. Simultaneously,
approximation properties of our family of operators are investigated.
The focus of Section 4 is to present concrete examples of our approach. They

are in connection with approximation operators of binomial type. This way, re-
sults regarding the iterates of Bernstein, Stancu and respectively Cheney-Sharma
operators are obtained and a “bridge” between the contraction principle and ap-
proximation of functions by binomial polynomials is built up.

2. Notation and preliminaries

Definition 1 ([9]). Let (X, d) be a metric space. The operator A : X → X is a
weakly Picard operator (WPO) if the sequence of iterates (Am(x))m≥1 converges
for all x ∈ X and the limit is a fixed point of A.

If the operator A is WPO and FA = {x∗} then A is called a Picard opera-
tor (PO).
Here FA := {x ∈ X | A(x) = x} stands for the fixed point set of A and, as

usually, we put A0 = IX , A
m+1 = A ◦Am, m ∈ N.

Moreover we have the following characterization of the WPOs.
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Theorem 1 ([9]). Let (X, d) be a metric space. The operator A : X → X is
WPO if and only if a partition of X exists, X =

⋃
λ∈ΛXλ, such that for every

λ ∈ Λ one has

(i) Xλ ∈ I(A),
(ii) A|Xλ

: Xλ → Xλ is a Picard operator,

where I(A) := {Y ⊂ X | A(Y ) ⊂ Y } represents the family of all non-empty
invariant subsets of A.

Further on, if A is WPO we consider A∞ ∈ XX defined by

(1) A∞(x) := lim
m→∞

Am(x), x ∈ X.

Clearly, we have A∞(X) = FA. Also, if A is WPO, then ([11]) the identities
FAm = FA 6= ∅, m ∈ N, hold true.
In what follows, some elements regarding the delta operators are presented.

For any n ∈ N0 = N ∪ {0} we denote by Πn the linear space of polynomials of
degree less or equal to n and by Π∗n the set of polynomials of degree n. We set
Π :=

⋃
n≥0Πn. A sequence b = (bn)n≥0, bn ∈ Π∗n for every n ∈ N0, is called of

binomial type if for any (x, y) ∈ R × R the following identities are satisfied

(2) bn(x + y) =

n∑

k=0

(
n

k

)
bk(x)bn−k(y), n ∈ N.

An operator T ∈ L := {L : Π → Π| L linear} which commutes with all shift
operators Ea, a ∈ R, is called a shift-invariant operator and the set of these
polynomials will be denoted by Ls. We recall: (E

ap)(x) = p(x + a), p ∈ Π.
Throughout the paper en stands for monomials, e0 = 1 and en(x) = x

n, n ∈ N.

Definition 2. An operator Q is called a delta operator if Q ∈ Ls and Qe1 is a
non-zero constant. Lδ denotes the set of all delta operators.

A polynomial sequence p = (pn)n≥0 is called the sequence of basic polynomials
associated to Q if one has p0 = e0, pn(0) = 0 and Qpn = npn−1, for every x ∈ R

and n ∈ N.
It was proved [8, Proposition 3] that every delta operator has a unique sequence

of basic polynomials. We point out that the first rigorous version of the so-called
umbral calculus belongs to Gian-Carlo Rota and his collaborators, see, e.g., [8].
Among the most recent survey papers dedicated to this subject we quote [1], [5]
and in what follows we gather some classical results and formulas concerning this
symbolic calculus.

Theorem 2. (a) If p = (pn)n≥0 is a basic sequence for some delta operator Q,
then it is a sequence of binomial type. Reciprocally, if p is a sequence of binomial
type, then it is a basic sequence for some delta operator.
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(b) Let T ∈ Ls and Q ∈ Lδ with its basic sequence p = (pn)n≥0. One has

(3) T =
∑

k≥0

(Tpk)(0)

k!
Qk.

(c) An isomorphism Ψ exists from (F ,+, ·), the ring of the formal power series
over R field, onto (Ls,+, ·) such that

Ψ(φ(t)) = T, where φ(t) =
∑

k≥0

ak

k!
tk and T =

∑

k≥0

ak

k!
Qk.

(d) An operator P ∈ Ls is a delta operator if and only if it corresponds under the

isomorphism defined by (3), to a formal power series φ(t) such that φ(0) = 0 and
φ′(0) 6= 0.

(e) Let Q ∈ Lδ with p = (pn)n≥0 its sequence of basic polynomials. Let φ(D) =
Q and ϕ(t) be the inverse formal power series of φ(t), where D represents the
derivative operator. Then one has

(4) exp(xϕ(t)) =
∑

n≥0

pn(x)

n!
tn,

where ϕ(t) has the form c1t+ c2t
2 + . . . (c1 6= 0).

We accompany this brief exposition with the following

Examples. The symbol I stands for the identity operator on the space Π.

1. The derivative operator D has its basic sequence given by (en)n≥0.

2. The forward difference operator ∆h := E
h−I has its basic sequence (x[n,h])n≥0

where x[0,h] := 1 and x[n,h] := x(x− h) . . . (x− n− 1h) represent the generalized

factorial power with the step h. Analogously, ((x + n− 1h)[n,h])n≥0 is the se-

quence of basic polynomials associated to ∇h := I−E
−h, the backward difference

operator . It is evident that ∇h = ∆hE
−h.

3. Abel operator Aa := DEa, a 6= 0, is also a delta operator. For every p ∈ Π,

(Aap)(x) =
dp

dx
(x+a) or, symbolically, we also can write Aa = D(e

aD). The Abel

sequence of polynomials ã = (a
〈a〉
n )n≥0, where a

〈a〉
0 := 1, a

〈a〉
n (x) := x(x−na)n−1,

n ∈ N, forms the sequence of basic polynomials associated to Aa.

It is not complicate to prove that all the above polynomial sequences verify
relation (2).
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3. A sequence of operators in study

At first we construct an approximation process of discrete type acting on the
space C([a, b]) endowed with the Chebyshev norm ‖ · ‖∞. For each integer n ≥ 1
we consider the following.

(i) A net on [a, b] named ∆n is fixed (a = xn,0 < xn,1 < · · · < xn,n = b).
(ii) A system (ψn,k)k=0,n is given, where every ψn,k belongs to C([a, b]). We

assume that it is a blending system with a certain connection with ∆n, more
precisely the following conditions hold:

(5) ψn,k ≥ 0 (k = 0, n),
n∑

k=0

ψn,k = e0,

n∑

k=0

xn,kψn,k = e1.

Now we define the operators

(6) Ln : C([a, b])→ C([a, b]), (Lnf)(x) =
n∑

k=0

ψn,k(x)f(xn,k).

Remark 1. Ln, n ∈ N, are positive linear operators and consequently they be-
come monotone. Taking into account (5) we have Lne0 = e0, Lne1 = e1. More-
over ‖Ln‖ := sup‖f‖∞≤1 ‖Lnf‖∞ = 1, for every n ∈ N. We indicate the necessary

and sufficient condition which offers to (Ln)n≥1 the attribute of approximation
process.

Theorem 3. Let Ln, n ∈ N, be defined by (6).

(i) If limn→∞
∑n

k=1 x
2
n,kψn,k = e2 uniformly on [a, b] then for every

f ∈ C([a, b]) one has limn→∞ Lnf = f uniformly on [a, b].
(ii) For every f ∈ C([a, b]), x ∈ [a, b] and δ > 0, one has

|(Lnf)(x) − f(x)| ≤
(
1 + δ−1

( n∑

k=0

x2n,kψn,k(x)− x2
)1/2)

ω1(f, δ),

where ω1(f, ·) represents the modulus of continuity of f .

Proof: The first statement results directly from the theorem of Bohman-Korov-
kin and relations (5) as well. The second statement holds true by virtue of the
classical results regarding the rate of convergence, see e.g. the monograph [2,
Theorem 5.1.2]. �

Our main objective is to study the convergence of the iterates of our operators.
We state and prove
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Theorem 4. Let Ln, n ∈ N, be defined by (6) such that ψn,0(a) = ψn,n(b) = 1.
Let us denote un := minx∈[a,b](φn,0(x) + φn,n(x)).

If un > 0 then the iterates sequence (L
m
n )m≥1 verifies

(7) lim
m→∞

(Lm
n f)(x) = f(a) +

f(b)− f(a)

b− a
(x− a), f ∈ C([a, b]),

uniformly on [a, b].

Proof: At first we define

Xα,β := {f ∈ C([a, b])| f(a) = α, f(b) = β}, (α, β) ∈ R × R.

Clearly, every Xα,β is a closed subset of C([a, b]) and the system Xα,β , (α, β) ∈
R × R, makes up a partition of this space.

Since ψn,0(a) = 1 and ψn,n(b) = 1, the relations (5) imply (Lnf)(a) = f(a)
and (Lnf)(b) = f(b), in other words for all (α, β) ∈ R×R and n ∈ N, Xα,β is an
invariant subset of Ln.

Further on, we prove that Ln|Xα,β
: Xα,β → Xα,β is a contraction for every

(α, β) ∈ R × R and n ∈ N. Indeed, if f and g belong to Xα,β then, for every
x ∈ [a, b], we can write

|(Lnf)(x)− (Lng)(x)| =

∣∣∣∣∣

n−1∑

k=1

ψn,k(x)(f − g)(xn,k)

∣∣∣∣∣

≤
n−1∑

k=1

ψn,k(x)‖f − g‖∞

= (1− φn,0(x) − φn,n(x))‖f − g‖∞

≤ (1− un)‖f − g‖∞,

and consequently, ‖Lnf − Lng‖∞ ≤ (1 − un)‖f − g‖∞. The assumption un > 0
guarantees our statement.

On the other hand, the function p∗α,β := α+ ((β − α)/(b− a))(e1 − a) belongs

to Xα,β and since Ln reproduces the affine functions, p
∗
α,β is a fixed point of Ln.

For any f ∈ C([a, b]) one has f ∈ Xf(a),f(b) and, by using the contraction

principle, we get limm→∞ Lm
n f = p

∗
f(a),f(b).

We obtained the desired result (7). �
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Remark 2. Following the lines of the familiar Bohman-Korovkin arguments
we indicate a necessary and sufficient condition for the iterates of our sequence
(Ln)n≥1 to converge to the identity operator. Considering (kn)n≥1 an increasing
sequence of positive integer numbers tending to infinity, we enunciate:

limn→∞ ‖Lkn
n f − f‖∞ = 0 for each f ∈ C([a, b]) if and only if the same limit

relation holds for f = e2.

Taking the advantage of Definition 1, Theorem 1 and relation (1) as well, for
X = C([a, b]) we obtain

Corollary. Under the hypothesis of Theorem 4, the operator Ln is WPO for

every n ∈ N and

L∞
n f = c1(f)e1 + c2(f), f ∈ C([a, b]),

where c1(f) := (f(b)− f(a))/(b− a) and c2(f) := (bf(a)− af(b))/(b− a).

Actually, (Ln)n≥1 is a wide class of discrete operators and in the next section
we show that it includes the so-called binomial operators.

4. Application

Keeping in mind the datum of Section 2, let Q be a delta operator and p =
(pn)n≥0 be its sequence of basic polynomials under the additional assumption
that pn(1) 6= 0 for every n ∈ N. Also, according to Theorem 2 we shall keep the
same meaning of the functions φ and ϕ. For every n ≥ 1 we consider the operator

L
Q
n : C([0, 1])→ C([0, 1]) defined as follows:

(8) (LQ
n f)(x) =

1

pn(1)

n∑

k=0

(
n

k

)
pk(x)pn−k(1− x)f

(
k

n

)
, n ∈ N.

They are called (cf. e.g., P. Sablonniere [12]) Bernstein-Sheffer operators , but
as D.D. Stancu andM.R. Occorsio motivated in [14], these operators can be named
Popoviciu operators . In 1931 Tiberiu Popoviciu [7] indicated the construction (8),
in front of the sum appearing the factor d−1n from the identities

(1 + d1t+ d2t
2 + . . . )x = exp(xϕ(t)) =

∞∑

n=0

pn(x)t
n/n!,

see (4). If we choose x = 1 it becomes obvious that dn = pn(1)/n!. In what follows

we prove that the operators L
Q
n , n ∈ N, are particular cases of the operators

defined by (6). Firstly, in (6) we choose a = 0, b = 1, and

(9) xn,k =
k

n
, ψn,k(x) =

(
n

k

)
pk(x)pn−k(1− x)/pn(1), k = 0, n.
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Choosing in (2) y := 1− x, from (8) we obtain L
Q
n e0 = e0.

The positivity of these operators are given by the sign of the coefficients of the
series ϕ(t) = c1 + c2t + . . . (c1 6= 0). More precisely, T. Popoviciu [7] and later
P. Sablonniere [12, Theorem 1] have established that

Lemma 1. LQ
n is a positive operator on C([0, 1]) for every n ≥ 1 if and only if

c1 > 0 and cn ≥ 0 for all n ≥ 2.

Among the most significant results concerning L
Q
n operators (under the as-

sumptions of Lemma 1) we recall:

(i)

(10) LQ
n e1 = e1, n ≥ 1, and LQ

n e2 = e2 + an(e1 − e2), n ≥ 2,

where nan = 1+ (n− 1)rn−2(1)/pn(1), the sequence (rn(x))n≥0 being generated
by

ϕ′′(t) exp(xϕ(t)) =
∑

n≥0

rn(x)t
n/n!;

(ii) LQ
n f converges uniformly to f ∈ C([0, 1]) if and only if the condition

lim
n→∞

(rn−2(1)/pn(1)) = 0

holds.

These results allow us to state

Lemma 2. Let LQ
n , n ∈ N, be defined by (8). Under the hypothesis of Lemma 1

these operators satisfy the requirements (5) and consequently they are particular
cases of Ln defined on the space C([0, 1]) by formula (6).

Since the basic polynomial p0 satisfies p0 = e0, from (9) we get ψn,0(0) =
ψn,n(1) = 1. Examining Theorem 4 we easily deduce

Theorem 5. Let L
Q
n , n ∈ N, be defined by (8) such that the assumptions of

Lemma 1 are fulfilled. Let us consider the polynomials qn, n ∈ N, where qn(x) :=
pn(1 − x) + pn(x). If the polynomials qn, n ∈ N, have no zeros on [0, 1] then the

iterates sequence ((L
Q
n )

m)m≥1 verifies

(11) lim
m→∞

(LQ
n )

mf = f(0) + (f(1)− f(0))e1,

uniformly on [0, 1].

At the end, choosing concrete delta operators Q we reobtain some classical
linear positive operators. Practically we come back to Examples given in Section 2
and we apply Theorem 5.
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1. If Q := D, then LD
n becomes the Bernstein operator Bn,

(12) (LD
n f)(x) ≡ (Bnf)(x) =

n∑

k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
, x ∈ [0, 1].

We have qn(x) = (1 − x)n + xn ≥ 1/2n−1, x ∈ [0, 1], and the identity (11)
holds true, in accordance with a result due to R.P. Kelisky and T.J. Rivlin [4,
Equation (2.4)].

2. If Q :=
1

α
∇α, α > 0, then L

α−1∇α
n becomes the Stancu operator [13] P

[α]
n ,

(Lα−1∇α
n f)(x) ≡ (P

[α]
n f)(x) =

n∑

k=0

wn,k(x;α)f

(
k

n

)
, x ∈ [0, 1],

where wn,k(x;α) =
(n
k

)
x[k,−α](1 − x)[n−k,−α]/1[n,−α], α being a positive para-

meter which may depend only on the natural number n. For the above Q the

basic polynomials are given by pn(x) = (x + (n − 1)α)[n,α] and consequently,
qn(x) ≥ (1 − x)n + xn ≥ 1/2n−1, x ∈ [0, 1]. Once more, our identity (11) har-
monizes with a result established in 1978 by G. Mastroianni and Mario Rosario
Occorsio [6].

3. We choose Q := Aa (Abel operator) with its basic sequence ã. Assuming
that the parameter a is non positive and depends on n, a := −tn, one obtains
the Cheney-Sharma operator named G∗

n, see [3] or the monograph [2, Equa-
tion (5.3.16)]. It is known: if the sequence (ntn)n≥1 converges to zero then
limn→∞ ‖G∗

nf − f‖∞ = 0 for every f ∈ C([0, 1]). This time we have p0(x) = 1
and pn(x) = x(x + ntn)

n−1, n ∈ N. Thus, the polynomials qn, n ∈ N0, have no
zeros on [0, 1] and (11) holds true.
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[5] Lupaş A., Approximation operators of binomial type, New developments in approxima-
tion theory (Dortmund, 1998), pp. 175–198, International Series of Numerical Mathematics,
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