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An inequality in Orlicz function spaces with Orlicz norm

JINCcAI WANG

Abstract. We use Simonenko quantitative indices of an A/-function ® to estimate two
parameters g3 and Qg in Orlicz function spaces L®[0,00) with Orlicz norm, and get

the following inequality: 13551 <gp < Qs < Aﬁfl’ where Ag and Bg are Simonenko

indices. A similar inequality is obtained in L®[0, 1] with Orlicz norm.
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1. Introduction

Definition 1.1. A function M : R — R is called an N-function, if

(i) M is continuous, convex and even;

(if) M(u) > 0 for u# 0, M(0) =0
(i) lim M(u)/u=0, lim M(u)/u=oo
et i o
D(u) = A o(t)dt and ¥(v) = A P(s)ds

be a pair of complementary N -functions. The Orlicz function space is defined
as follows: L2[0,1] = {z(¢) : (t) is measurable on [0,1] and pg(Ax(t))dt < oo
for some A > 0}, where pg(x f[O 1 ) dt; L2[0,00) = {z(t) : x(t)
is measurable on [0, o), pq>()\x( )) dt < oo for some A > 0}, and pg(z(t)) =
f[o’oo) ®(z(t)) dt. We define the Orlicz norm on the Orlicz space as

1
= inf -1 k).
llle = Inf {1+ po (k)]

An N-function ®(u) is said to satisfy the Ag-condition for small u (in symbol
& € N9(0)), if there exists ug > 0 and C' > 0, such that ®(2u) < C®(u) for
0 < wu < ug. P(u) is said to satisfy the Ag-condition for large w (in symbol
O € Ag(c0)), if there exists ug > 0 and C' > 0 such that ®(2u) < CP(u)
for u > wg. ®(u) is said to satisfy the Ag-condition for all u > 0 (in symbol
u € Ag), if there exist C' > 0 such that ®(2u) < C®(u) for u > 0. An N-function
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®(u) is said to satisfy the Va-condition for small u (for large u, for all u > 0),
in symbol ® € V3(0) (® € Va(o0), ® € Va), if its complementary N -function
T e Ng2(0) (T € Ag(0), T € Ay).

The basic results on Orlicz spaces can be found in Krasnosel’skii and Rutickii
[2], Lindenstrauss and Tzafriri [3], Rao and Ren [6], Chen [1].

The Simonenko indices of an AV/-function ® are defined as

) ()

o Ao =il PeTi0an)

Simonenko introduced these indices in [9] and [8], and we can find a detailed
description in Maligranda [4].
Clearly, 1 < Ag < Bp < .

Proposition 1.1. Let ® be an N-function. Then
beVy<—= 1< Ap; P€ Ny <= By < .

The proof of the proposition can be found in Krasnosel’skii and Rutickii [2,
p. 24-26].

Lemma 1.2. Let ® and ¥ be a pair of complementary N -functions. Then

1 1

I
s By

(2)

The proof of Lemma 1.2 can be found in Simonenko [9] or Rao & Ren [6].

The next lemma can be found in [1], [10] or [5].

Lemma 1.3. Let ®(u) = fOM ¢(t)dt and ¥(v) = f0|v| ¥(s)ds be a pair of com-
plementary N -functions. We denote

ke = inf{k > 0: pylo(kla)] > 1}, k5" = sup{k > 0: pylo(kla])] < 1}.

Then k € [k}, k3] if and only if

lzlle = - [1+ po (k)]

> =

2. Main results

Y. Yan estimated the two parameters Q¢ and ¢ in the Orlicz sequence
space [®, and got the following result (see [11], [7] or [13]).
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Proposition 2.1. Let ® and ¥ be a pair of complementary N -functions. Then

b a¥
(3) 2 <gp < Qp < 2,
bq> -1 ag —1
where
* . t¢(t) -1
aé—lnf{w 0<t<y[¥ 1)y,

bl —sup{% 0<t< w[\p—l(m}.

The upper estimate in (3) can also be found in [12]. Now we establish a similar
inequality in the Orlicz function space with Orlicz norm. Firstly, we have

Theorem 2.1. Let ®, ¥ be a pair of complementary N -functions. For Lq)[O, 00),
we denote

1
Qo= swp k= sup {i>0:lollp = 10+ palia) |

lzlle=1 llzlle=1
1
g = 1 k¥ = inf {k>0: |:c||q>——(1—|—pq>(k:1:))}.

lzle=1 " |lzfle=1 k

Then
By Agp

4 Ay = < gp < < =B
(4) v Bq;—l_qq)—Qq’_Aq)—l v

where Ag, Bg, Ay and By are defined by (1).

PrOOF: The left and right equations in (4) follow from Lemma 1.2. Now we
prove

(5) 99 >

By —1°

For ® ¢ Ag, by Proposition 1.1, we have By = 0o or Ay = 1. The result is
obvious.

For ® € /g, we only prove that for every = € L®[0, 00) which satisfies ||z ¢ =
1, we have £} > quil' Firstly, we have pg(¢(kk|z(t)])) > 1. In fact, if & € Ay,
then pg[(ky + 1)z] < co. So

pu(O((KE + DIz®)) < pu(@((k: + Dlz®)) + pal(k: + 1)]z(0))
- /G (K + D)Ja(t)] - S((KS + Dle()) dt
< Bapa((k; + ]z(t)]) < co.

509



510 J. Wang

Choose k) < kpn < kJ + 1 such that k, \, k). By the right continuity of ¢ and
Lebesgue dominated convergence theorem, we have

pu(GUIa(®)) = Tm_py(6(hala(®))) = 1.
For every = € L®[0, 00) which satisfies ||z| ¢ = 1, we have
1+ po (k) < pu(¢(kz|2(t)]) + po (kzlz(t)])

- / W {p[(K: (1) )]} di + / el

0, 0,00

_ /[ el i

)

< By /[0 @URIe(0]) dt = Bapo(kie)

This implies

1

(©) palkin) > 5.

By Lemma 1.3, we get

1
1= lllle = {1+ pa(kza)}.

xT
So pa(kja) = k% — 1. By (6)

Bg

kx> .
I_BQ—].

Next, we prove

Agp

(7 Q@SAé_l-

If ® ¢ Vg, then Ag = 1 or By = oo. The result is obvious.
If & € Vs, then Ag > 1. For every z € L®[0, 00) which satisfies ||z[ ¢ = 1, and
for any k € [k}, k3], we have

1= |lzlle = 7[1 + pg(kz)].

> =

For any 0 < e < 1 < k, we have

1
k—e¢

(8) 1= flelle = nf 511+ pa(ta)] < 1+ pa((k — <)2)].
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By the definition of £3* and k£ — ¢ < k¥, we have
1+ po[(k —€)z] = pu{d[(k — €)z]} + po(k — £)2]
) = [ (k= 2)a(0ol(k - ya(o) e
[0,00)
> Agpa((k —e)x(t)).
Therefore by (8) and (9), we have

1> (Ap — 1)pa((k —e)z(t)) > (Ae —1)(k —c — 1))

or
A
k—e< e
Ag — 1

Since € is arbitrary, we have

pe e

T Ap —1

This implies (7) since x and k are arbitrary. O

Corollary 2.1. (i) If ® € Vo, then Qg < oo; (ii) If ® € Ay, then qp > 1.
For 0 # = € L®[0, 1], we still denote

Ky = inf{k > 0 pglo(ka)] = 1},
<

ky" = sup{k > 0: py[¢(kz)] < 1},
1
Qo= swp K= sup {k >0 Jalla = +(1 +p¢<kx>>} ,
llz|le=1 lz]le=1
1
qp = inf kj= inf {k >0:|zlle = E(l +P<I>(k;v))} .
llz|le=1 lz]le=1

Let gg = min{ﬁ(l), 1}. Denote

Obviously, egp(gg) < ;’éa((i; <
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Theorem 2.2. If ®, ¥ is a pair of complementary N -functions, then

B} — AL + AP
Bs —c0d(e0) 4o < Qp < 22T L2710 o).
By -1 Ar -1

ProOF: Firstly, we prove qp > ngiiojﬁl(a)). If & ¢ Ag(c0), then By = oo, and
3

the result is clear. If ® € Ag(c0), then By < oo. By the proof of Theorem 2.1,

for x € L2[0,1] with ||z||e = 1, we have py(é(kiz)) > 1. So

1+ po(kyx) < pu(o(kz)) + po(kpx)

_ / k2 le ()| ok |2(2)]) dt
[0,1]

)

< / cod(e0) di + / K ()] Sk (1)) dt
Glz{t:k;|x(t)‘<60} G\Gl

< e0¢(€0) + Bypo (k).
Therefore
1 —co¢(e0) < (Bg — 1)po (kz).
Noting that pg(kiz) = ki — 1, we have
1 —codleo) _
By -1 —

*
{E_la

i.e. .
Bq> - 50¢(50)

ke 2 By —1

Since x is arbitrary,
B} — e0¢(c0)

>
="pr 1

AL (14+P(e
Next we prove Qg < w

=T If @ ¢ Va(c0), the result is obvious. If
® € Va(o0), then Vo € S(L2[0,1)), Vk € [k%, k2*] and 0 < € < 1, we get

1+ po(k — €)a] = pe{d[(k — e)|z[]} + pa[(k — €)]

= [, (b= Ne@lollh ~ o)

)

>

/ (1 = D061k - ol di
{te[0,1]:(k—e)lz(t)[ >0}

> A3 / B((k — &)[(t)]) dt
{(k—¢e)|z(t)|>e0}

= Ap{pal(k —e)z(t)] —/ B((k —e)x(t)) dt}

{t€[0,1):(k—e) |z (t)| <eo}
> Agp{pal(k —e)z(t)] — @(c0)}-
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So
1+ A0 (e0) = (A — (k- )a(t) = (A3 — )k — = — 1),
ie. .
< Sall s o)
P
Therefore,

Agll + ®(eo)]

e

Since 2 € S(L®[0,1]) is arbitrary,

A (1 + @(e0)) '

Qo < -
Ar 1

Corollary 2.2 (S.T. Chen [1, p.21]).

(i) If ® € Ay(o0), then gp > 1.
(ii) If ® € Va(o0), then Qg < co.

From the proof of Theorem 2.2, we know Theorem 2.2 is true for any 0 < € < g¢.
Letting ¢ to tend to 0, we get

Corollary 2.3. Let ®, ¥ be a pair of complementary N -functions. Then

B A
(10) Ay = <Q<1>§Q<1>§A ¢1=B\1u
o —

where Ag, B, Ay and By are defined by (1).

Example 1. For the N-function ®(u) = |u|P, which generates LP[0, c0), we have

Ag = By = p. By Theorem 2.1 and Corollary 2.3, we have qp = Q¢ = pfl.

Example 2. For the N-function ®(u) = el — |u| — 1, we have
(11) 1<qp < Qo <2
t(ef—1
Tndeed, Fy(t) = He=U)
and Bg = tli_rgl Fg(t) = oo. Therefore (11) follows from Theorem 2.1 and
— T 00
Corollary 2.3.

is increasing in (0,+00). So Ag = lim+ Fp(t) = 2
t—0
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