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Perfect sets and collapsing continuum

Miroslav Repický

Abstract. Under Martin’s axiom, collapsing of the continuum by Sacks forcing S is cha-
racterized by the additivity of Marczewski’s ideal (see [4]). We show that the same
characterization holds true if d = c proving that under this hypothesis there are no small
uncountable maximal antichains in S. We also construct a partition of ω2 into c perfect
sets which is a maximal antichain in S and show that s0-sets are exactly (subsets of)
selectors of maximal antichains of perfect sets.

Keywords: Sacks forcing, Marczewski’s ideal, cardinal invariants

Classification: Primary 03E40; Secondary 03E17

1. General remarks

Let (P,≤) be a partial order. We say that elements (conditions) p, q ∈ P are
compatible and write p ∧ q 6= 0 if there is r ∈ P such that r ≤ p and r ≤ q.
Otherwise p and q are incompatible and we write p ∧ q = 0. A family of pairwise
incompatible elements is called an antichain. For p ∈ P, P↾p = {q ∈ P : q ≤ p}.
Let us recall some cardinal invariants for P:

π(P) = min{|X | : X is a dense subset of P},

sat(P) = min{κ : every antichain has size < κ},

a(κ, P) = min({π(P)} ∪ {|A| : A ⊆ P is a maximal antichain with |A| ≥ κ}),

cfπ(P) = min{κ : 
P cf(πV (P)) ≤ κ}.

The hereditary version of a cardinal invariant κ(·) for partial orders is defined by
hκ(P) = min{κ(P↾p) : p ∈ P}. The symbols hπ(P), hsat(P), ha(κ, P) denote the
hereditary versions of the cardinals π(P), sat(P), a(κ, P), respectively.

A matrix on P is a sequence of antichains in P (the antichains may be maximal).
Let A be a matrix on P. A matrix A is shattering if for every p ∈ P there exists
an antichain A ∈ A such that |{q ∈ A : p∧ q 6= 0}| ≥ π(P). A matrix A is weakly
shattering if

∑
A∈A |{q ∈ A : p ∧ q 6= 0}| ≥ π(P) for every p ∈ P. A matrix is a

base matrix if
⋃
A is a dense subset of P. The following two theorems contain

some well known basic facts about all these notions.

The work has been supported by grant of Slovak Grant Agency VEGA 2/7555/20.
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Theorem 1.1. (1) A shattering matrix is weakly shattering.
(2) There exists a base matrix on P of size π(P).
(3) If hπ(P) = π(P), then every base matrix on P is weakly shattering.

(4) There exists a shattering matrix on P if and only if hsat(P) = π(P)+.

(5) If there is a weakly shattering matrix on P of size < π(P), then hsat(P) =
π(P)+.

(6) For every weakly shattering matrix there exists a weakly shattering base
matrix of the same size.

(7) If hsat(P) = π(P)+, then for every base matrix on P there exists a shat-

tering base matrix on P of the same size.

(8) If hsat(P) = π(P)+, then there exists a shattering matrix on P of size

cf(π(P)).

Proof: The assertions (1)–(5) are easy to see. For the rest of the proof let us fix
a dense set D ⊆ P with |D| = π(P).

(6) Let A = {Aα : α < κ} be a weakly shattering matrix on P. There exists a
one-to-one mapping ϕ : D →

⋃
α<κ{α}×Aα, ϕ = (ϕ1, ϕ2), such that p∧ϕ2(p) 6= 0

for every p ∈ D. For every p ∈ D let us fix an element r(p) ∈ P below p and ϕ2(p)
and let A′

α = {r(p) : ϕ1(p) = α}. The matrix A = {A′
α : α < κ} is a weakly

shattering base matrix on P.
(7) For p ∈ P let Bp be an antichain below p of size π(P). If A is a base matrix

on P, then the matrix A′ = {
⋃

p∈A Bp : A ∈ A} is a shattering base matrix on P.

(8) Let D =
⋃
{Dα : α < cf(π(P))} with |Dα| < π(P). By the Balcar-

Vojtáš’s Theorem (see [1] or [6]) for each α there is a disjoint refinement Aα

of Dα. Therefore {Aα : α < cf(π(P))} is a base matrix on P and by assertion (7)
there exists a shattering matrix on P of the same size. �

From now on we assume that hπ(P) = π(P) and we define:

sh(P) = min{|A| : A is a weakly shattering matrix on P},

shλ(P) = min({π(P)} ∪ {κ : r. o.(P) is (κ, π(P), λ)-nowhere distributive}).

We use the definition of the three-parameter distributivity from [2]. Clearly,
sh(P) = min{|A| : A is a base matrix on P} = min({π(P)} ∪ {|A| : A is a
shattering matrix on P}) = shπ(P)(P). Again, hsh(P) denotes the hereditary

version of the cardinal sh(P).

Theorem 1.2. Let us assume that hπ(P) = π(P).

(1) If r. o.(P) is (κ, λ, λ)-nowhere distributive, then r. o.(P) is (κ, cf λ, cf λ)-
nowhere distributive.

(2) If r. o.(P) is (κ, cf λ, cf λ)-nowhere distributive, then r. o.(P) is (κ, λ, cf λ)-
nowhere distributive.

(3) If κ < cf λ, then r. o.(P) is (κ, cf λ, cf λ)-nowhere distributive if and only
if 
P cf λ ≤ κ.
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(4) If hsh(P) = sh(P), then 
P |πV (P)| = shV (P).

(5) 
P π(P) = |πV (P)|.
(6) min{shcf π(P)(P), cf(π(P))} ≤ cfπ(P) ≤ min{sh(P), cf(π(P))} and there are

two possibilities: Either hsat(P) = π(P)+ and shcf π(P)(P) ≤ cfπ(P) ≤

sh(P) ≤ cf(π(P)), or hsat(P) ≤ π(P) and sh(P) = π(P).
(7) If shcf π(P)(P) = sh(P) (e.g., if π(P) is regular, or if a(cf(π(P)), P) =

π(P)), then cfπ(P) = min{sh(P), cf(π(P))}.
(8) If hsat(P) ≥ λ+, then shλ(P) ≤ (cf λ) · supκ<λ shκ(P) and shcf λ(P) ≤

cf shλ(P).

Proof: The assertions (1) and (2) are easy.

(3) Let {λξ : ξ < cf λ} be an increasing cofinal sequence in λ and let κ <
cf λ. Let ḟ be a P-name of an unbounded function from κ to λ. For α < κ let
Aα = {‖ḟ(α) ∈ [λξ , λξ+1)‖ : ξ < cf λ} \ {0}. The matrix {Aα : α < κ} witnesses
the (κ, cf λ, cf λ)-nowhere distributivity of r. o.(P). Conversely, if {Aα : α < κ}
is a matrix on r. o.(P) with Aα = {aα,ξ : ξ < cf λ} witnessing the (κ, cf λ, cf λ)-
nowhere distributivity of r. o.(P), then the formula ‖ḟ(α) = λξ‖ = aα,ξ defines a
P-name of an unbounded function from κ to λ.

(4) Let us assume that p and µ are such that p 
P |πV (P)| = µ. Let ḟ be a P↾p-
name of a function from µ onto π(P) and for α < µ let Aα be a maximal antichain
in P↾p consisting of q ∈ P↾p deciding ḟ(α). Since every q ∈ P↾p forces that ḟ is onto
π(P) = π(P↾p), easily, it can be verified that {Aα : α < µ} is a weakly shattering

matrix on P↾p. Therefore sh(P) = sh(P↾p) ≤ µ and p 
P shV (P) ≤ |πV (P)|.

Let sh(P) = κ. If sh(P) = π(P), then clearly, 
P |πV (P)| ≤ shV (P). Let us
assume that sh(P) < π(P). Then by Theorem 1.1(5), hsat(P) = π(P)+. For every
q ∈ P let us fix a maximal antichain {(q)ξ : ξ < π(P)} below q. As sh(P) = κ,
there is a base matrix A = {Aα : α < κ} (with all antichains maximal). We define

a P-name ḟ of a function from κ onto πV (P) by ‖ḟ(α) = ξ‖ =
∨
{(q)ξ : q ∈ Aα}.

Therefore 
P |πV (P)| ≤ shV (P).

(5) Clearly, 
P π(P) ≤ |πV (P)|. Let p and κ be such that p 
P π(P) = κ and
hsh(P↾p) = sh(P↾p). Let ḟ be a P-name of a function from κ into P such that
p 
P (∀q ∈ P)(∃α < κ) ḟ(α) ≤ q. Let Aα, α < κ, be a maximal antichain of
conditions below p deciding ḟ(α). For q ≤ p let Bα,q = {r ∈ Aα : q ∧ r 6= 0}
and B′

α,q = {s ∈ P : (∃r ∈ Bα,q) r 
P ḟ(α) = s}. The set
⋃

α<κ B′
α,q is a dense

subset of P for every q ≤ p and |Bα,q| ≥ |B′
α,q|. Therefore

∑
α<κ |Bα,q| ≥ π(P) =

π(P↾p) and hence the matrix {Aα : α < κ} is weakly shattering on P↾p. Hence

sh(P↾p) ≤ κ and by (4) we have p 
P |πV (P)| ≤ π(P). A density argument proves

that 
P |πV (P)| ≤ π(P).

(6) By (1)–(3) we easily obtain the inequalities min{shcf π(P)(P), cf(π(P))} ≤

cfπ(P) ≤ min{sh(P), cf(π(P))}. If hsat(P) = π(P)+, then, by Theorem 1.1(8),
sh(P) ≤ cf(π(P)). Since shcf π(P)(P) ≤ sh(P), by (5), shcf π(P)(P) ≤ cfπ(P). If
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hsat(P) ≤ π(P), then sh(P) = π(P) by Theorem T1.1(5)

(7) immediately follows by (6), and (8) can be obtained by an easy computation.
�

In the case hsat(P) = π(P)+, in some special cases (e.g., if π(P) is regular,
or a(cf(π(P)), P) = π(P), etc., see Theorem 1.2(7) or (8)), sh(P) is regular (even

in V r.o.(P)). But in general it is not clear whether sh(P) is a regular cardinal.

We use the standard terminology. By M and N we denote the ideal of meager
sets and the ideal of null sets, respectively, b is the least cardinality of an un-
bounded family and d is the least cardinality of a dominating family of functions
in the ordering ≤∗ on ωω defined for f, g ∈ ωω by f ≤∗ g if and only if f(n) ≤ g(n)
for all but finitely many n ∈ ω. add(I) is the additivity of an ideal I, cov(I) is
the least size of a set I0 ⊂ I such that

⋃
I0 =

⋃
I, non(I) is the least size of

a subset of
⋃

I not belonging to I, and cof(I) is the least size of a set I0 ⊂ I
which is cofinal in (I,⊆). Sacks forcing S is the set of perfect trees p ⊆ <ω2
where p is stronger than q, p ≤ q, if p ⊆ q. For p ∈ S and s ∈ <ω2 we denote
ps = {t ∈ p : s ⊆ t or t ⊆ s}, [p] = {x ∈ ω2 : ∀n x↾n ∈ p}, [s] = {x ∈ ω2 : s ⊆ x}.
Every perfect set in ω2 is of the form [p] for some p ∈ S.

2. Maximal antichains in S

Important is the question what the possible sizes of small maximal antichains
in Sacks forcing are. By the next well-known theorem, a(ω1, S) ≥ cov(M) and we
prove in Theorem 2.5 below that a(ω1, S) ≥ d.

Theorem 2.1. For a cardinal κ the following conditions are equivalent:

(1) κ < cov(M) ;
(2) for every family B of perfect sets such that |B| ≤ κ and ω2 \

⋃
C is

uncountable for every C ∈ [B]≤ω , ω2 \
⋃

B 6= ∅ ;
(3) for every family B of perfect sets such that |B| ≤ κ and ω2 \

⋃
C is

uncountable for every C ∈ [B]≤ω , ω2 \
⋃

B contains a perfect set.

Proof: The implications (3) → (2) → (1) are obvious. We prove (1) → (3).

Let κ < cov(M) and let B be a family of perfect sets such that |B| ≤ κ and
ω2 \

⋃
C is uncountable for every C ∈ [B]≤ω . Let q be the set of all s ∈ <ω2

such that [s] \
⋃

C is uncountable for every C ∈ [B]≤ω . By the assumption, ∅ ∈ q
and it follows that q is a perfect tree and for every perfect set [p] ∈ B, [p] ∩ [q] is
nowhere dense in [q]. As κ < cov(M), MAκ(countable) implies the existence of a
perfect tree r ≤ q such that [r] ∩ [p] = ∅ for all [p] ∈ B (using a countable forcing
for adding a perfect set of Cohen reals). �
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We need the following special case of Exercise 7.13 in [5]:

Lemma 2.2. If G is a dense Gδ subset of
ω2 such that ω2 \ G is dense in ω2,

then there exists a homeomorphism f from G onto ωω.

Proof: By the assumptions no relatively clopen subset of G is compact. Let Un,
n ∈ ω, be open sets in ω2 such that G =

⋂
n∈ω Un and Un+1 ⊆ Un for all n. For

s ∈ <ωω let us define ts ∈ <ω2 by induction on |s| so that s ⊆ s′ if and only if
ts ⊆ ts′ , t∅ = ∅, and [ts] ∩ Un+1 =

⋃
i∈ω[ts⌢〈i〉] for |s| = n. Then for x ∈ G we

let f(x) be the unique element y ∈ ωω such that ty↾n ⊆ x for all n ∈ ω. �

Theorem 2.3. If B is a family of perfect sets in ω2 and |B| < d, then the set
ω2 \

⋃
B is either at most countable or contains a perfect set.

Proof: Let us assume that |B| < d and the set X = ω2 \
⋃

B is uncountable.
Let Y be a countable subset of X without isolated points. Let q ∈ S be such that
[q] = Y . By Lemma 2.2 there is a homeomorphism f from G = [q] \ Y onto ωω.
For F ∈ B, F ∩ Y = ∅ and hence F ∩ G = F ∩ [q]. It follows that f“(F ∩ G) is
compact and hence bounded in ωω. As |B| < d, there is an y ∈ ωω not dominated
by any member of the set

⋃
F∈B f“(F ∩G). Then the set E = f−1({x ∈ ωω : ∀n

x(n) ≥ y(n)}) is an uncountable relatively closed subset of G disjoint from
⋃

B.
�

If d = c, then using Theorem 2.3 one can construct a partition of ω2 into c

perfect sets. In the next theorem we prove that partitions of ω2 into c perfect sets
exist in ZFC. We shall use the following notation:

Let p ∈ S and x ∈ [p]. Let {kn : n ∈ ω} be the increasing enumeration of
the set {k ∈ ω : (x↾k)⌢〈0〉 ∈ p and (x↾k)⌢〈1〉 ∈ p} and let x̄ ∈ ω2 be such
that x̄(n) 6= x(n) for all n ∈ ω. Let us define τ(p, x, n) = p(x↾kn)⌢〈x̄(kn)〉 = {s ∈

p : s ⊆ (x↾kn)⌢〈x̄(kn)〉 or (x↾kn)⌢〈x̄(kn)〉 ⊆ s}. Then the system [τ(p, x, n)],
n ∈ ω, is a partition of [p] \ {x}. In particular, [τ(<ω2, x, n)], n ∈ ω, is a partition
of ω2 \ {x} into clopen sets.

For A ⊆ S let BA = {[p] : p ∈ A} and let
∨

A denote the Boolean sum of A
in r. o.(S). In the Boolean sums we will consider only those A ⊆ S for which∨

A ∈ S. Notice that
∨

n τ(p, x, n) =
⋃

n τ(p, x, n) = p.

Theorem 2.4. Let D be a dense subset of S.

(1) There exists a maximal antichain A ⊆ D such that the family BA is

disjoint and for every p ∈ S with [p] ⊆
⋃

BA there exists C ∈ [BA]<c such

that [p] ⊆
⋃

C.
(2) There exist maximal antichains A ⊆ D and Ā ⊆ S, both of size c, such
that BA is a disjoint family , BĀ is a partition of

ω2, and the following
conditions are satisfied:

(a) for every q ∈ Ā \ A the set Aq = {p ∈ A : p ≤ q} is countable,
q =

∨
Aq , and |[q] \

⋃
BAq

| = 1;
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(b) For every q ∈ S, if |[q] \
⋃

BA| < c, then |{p ∈ A : [q]∩ [p] 6= ∅}| < c;
(c) for every q ∈ S, |{p ∈ A : q ∧ p 6= 0}| < c if and only if |{p ∈ A :

[q] ∩ [p] 6= ∅}| < c.

In particular, by (b), |ω2 \
⋃

BA| = c.

Proof: The assertion (1) is Lemma 1.1 in [4] and it clearly follows from (2). The
following proof of (2) is a modification of the proof in [4].

Let {qα : α < c} be an enumeration of S such that for each q ∈ S, q = qα for
c many α’s, and let {yα : α < c} be an enumeration of ω2 without repetitions.

Let A′ be a maximal antichain in S such that the set {[p] ∩ [s] : p ∈ A′} has
size c for every s ∈ <ω2 (for example, find pairwise disjoint perfect sets [ps] ⊆ [s],
s ∈ <ω2 and split each [ps] into c many disjoint perfect sets). Without loss of
generality we can assume that D ⊆ {p : ∃q ∈ A′ p ≤ q}. By induction on α < c

we construct pα ∈ D, countable A′
α ⊆ D, and xα ∈ ω2. Let us assume that pβ ,

A′
β , xβ for β < α have been constructed and that the set A′′

α =
⋃

β<α A′
β ∪ {pβ}

is an antichain.
If the set [qα]\ ({xβ : β < α}∪

⋃
BA′′

α
) is nonempty, then let xα be its element;

otherwise let xα = x0.
If qα is compatible with some p ∈ A′′

α, then we set pα = p0. Otherwise the set

Xα = {xβ : β ≤ α} ∪ {yβ : β < α} ∪ ([qα] ∩
⋃

BA′′

α
)

∪
⋃
{[qβ ] ∩ [qα] : β < α and qβ ∧ qα = 0}

has size < c and let pα ∈ D, pα ≤ qα, be such that [pα] ∩ Xα = ∅. Notice that if
pα 6= p0, then xα 6= xβ for all β < α.

If yα ∈
⋃

BA′′

α∪{pα}, then we set A′
α = {p0}. Assume that yα /∈

⋃
BA′′

α∪{pα}.

By the assumption put on D the antichain A′′
α ∪{pα} is nowhere locally maximal

and for every n ∈ ω there is r′α,n such that p ∧ r′α,n = 0 for p ∈ A′′
α ∪ {pα}. The

set

Xα,n = {xβ : β ≤ α} ∪ {yβ : β ≤ α} ∪ ([r′α,n] ∩
⋃

BA′′

α∪{pα})

∪
⋃
{[qβ ] ∩ [r′α,n] : β < α and qβ ∧ r′α,n = 0}

has size < c. Let rα,n ∈ D, rα,n ≤ r′α,n be such that [rα,n]∩Xα,n = ∅ and let A′
α =

{rα,n : n ∈ ω}. Then rα,n = τ(
∨

A′
α, yα, n) and [

∨
A′

α] = {yα} ∪
⋃

n∈ω[rα,n].
By the construction it is clear that A =

⋃
A is a maximal antichain in S refining

the antichain A′. It follows that its size is c. Let {Aα : α < c} be an enumeration
of the family A without repetitions and let Ā = {

∨
Aα : α < c}. Then Ā is a

maximal antichain in S. BA is a disjoint family and as A′
α 6= {p0} if and only

if yα /∈
⋃

BA, [
∨

A′
α] = {yα} ∪

⋃
BA′

α
whenever A′

α 6= {p0}. Therefore BĀ is a

partition of ω2 and condition (a) is satisfied. We prove conditions (b) and (c).
Let q ∈ S be arbitrary.
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(b) If the set {p ∈ A : [p] ∩ [q] 6= ∅} has size c, then, for every α such that
qα = q, the set [qα]\

⋃
BA′′

α
has size c and hence xα 6= xβ for all β < α. Therefore

the set {xα : qα = q} has size c and is a subset of [q] \
⋃

BA.

(c) There is β < c such that q = qβ . Let us assume that the set B = {p ∈ A :

q ∧ p 6= 0} has size < c. Let γ > β be such that B ⊆ A′′
γ . We prove that the set

{p ∈ A : [q] ∩ [p] 6= ∅} is a subset of A′′
γ and hence it has size < c.

For every α ≥ γ, if pα /∈ A′′
γ , then pα 6= p0 and qβ ∧ qα = 0. Therefore pα ≤ qα

is such that [qβ ] ∩ [pα] = ∅.

For every α ≥ γ, if A′
α \ A′′

γ 6= ∅, then A′
α 6= {p0} and A′

α = {rα,n : n ∈ ω}

where rα,n ≤ r′α,n and p ∧ r′α,n = 0 for all p ∈ A′′
α ⊇ A′′

γ , n ∈ ω. It follows that

qβ ∧ r′α,n = 0 and hence rα,n ≤ r′α,n is such that [rα,n] is disjoint from [qβ ]. So,

if A′
α 6= {p0}, then [qβ ] ∩ [p] = ∅ for all p ∈ A′

α. �

Let us consider the following families:

A1 = {A : A is a maximal antichain in S and BA is a disjoint family},

A2 = {B : B is a partition of ω2 into closed sets},

A3 = {A : A is a maximal antichain in S, BA is a disjoint family, and the
set ω2 \

⋃
BA has size c},

A4 = {A : A is a maximal antichain in S, BA is a disjoint family, and the
set ω2 \

⋃
BA is uncountable}.

By Theorem 2.4 all these families are nonempty and by Theorem 2.3 the families
A3 and A4 do not contain countable antichains. Let us define the cardinals:

ai = min{|A| : X ∈ Ai and |A| ≥ ω1}, i = 1, 2, 3, 4,

ãi = sup{|A|+ : A ∈ Ai and |A| < c} ∪ {ω1}, i = 1, 2, 3, 4.

cov1 = min{|B| : B is a family of perfect sets such that the set ω2\
⋃

B
is uncountable and does not contain a perfect set},

cov2 = min{|B| : B is a family of perfect sets such that the set ω2\
⋃

B
has size c and does not contain a perfect set}.

Theorem 2.5. (1) d = cov1 ≤ a(ω1, S) ≤ a1 = a4 ≤ min{a2, a3}; ã1 = ã4.

(2) cov1 ≤ cov2 ≤ a3.

(3) For every i, ãi ≤ ai if and only if ãi = ω1 if and only if ai = c.

(4) For every i, ã1 ≤ ai if and only if ai = c.

(5) If a1 = c, then, for all i, ai = c and ãi = ω1.

(6) If a2 = c, then a1 = a3 and ã1 = ã3.

(7) If a3 = c, then a1 = c if and only if a2 = c.

(8) ã1 = max{ã2, ã3}.
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Proof: (1) The inequality d ≤ cov1 is Theorem 2.3. To prove cov1 ≤ d, without
loss of generality let us assume that c > d. Let X = {xα, yα : α < ω1} ⊆ ω2
be a Hausdorff gap (see [3]), i.e., xα ≤∗ xβ ≤∗ yβ ≤∗ yα for α ≤ β < ω1,
and for every x ∈ ω2 there is α < ω1 such that xα 6≤∗ x or x 6≤∗ yα. Let
Kα = {x ∈ ω2 : xα 6≤∗ x or x 6≤∗ yα} for α < ω1. Then Kα ⊆ Kβ for α ≤ β,
Kα ∩ X is countable, and consequently, the sets Kα \ X , α < ω1, are Gδ sets
covering ω2 \ X . The Baire space ωω is a union of d many compact sets and as
every Polish space is a continuous image of ωω, every Polish space is a union of ≤ d

compact sets. It follows that every set Kα \ X a union of ≤ d compact sets and
hence ω2 \ X is a union of ≤ d compact sets. Considering the perfect kernels of
these compacts (obtained by removing countable sets) we obtain a family of ≤ d

perfect subsets of ω2 whose union has uncountable complement of size < c and
hence cov1 ≤ d.

Let us assume that a(ω1, S) < cov1 and we prove a contradiction. Let A ⊆ S

be a maximal antichain of size a(ω1, S). The set X =
⋃
{[p] ∩ [q] : p, q ∈ A,

p 6= q} has size < c. For every p ∈ A let xp ∈ [p] \ X be arbitrary. The family
A′ = {τ(p, xp, n) : p ∈ A and n ∈ ω} is a maximal antichain in S because if [p]∩ [q]
is uncountable for some p ∈ A, then [τ(p, xp, n)] ∩ [q] is uncountable for some n.
The set Y = ω2 \

⋃
BA′ is uncountable as it contains the set {xp : p ∈ A} and as

a(ω1, S) < cov1, there is a perfect set [q] ⊆ Y . But [p] ∩ [q] ⊆ {xp} for all p ∈ A
which contradicts the assumption that A is maximal. Therefore cov1 ≤ a(ω1, S).

The inequality a4 ≤ a1 can be easily proved by the same argument. Therefore
a1 = a4 and by the same proof we obtain ã1 = ã4. The other inequalities are
trivial.

(2) is an easy consequence of definitions.
(3–4) The implications from the right to the left are obvious. Let us assume

that ai < c for some i. Then ai < a+
i ≤ ãi and ãi ≤ ã1.

(5) By (1), for all i, ai = c and by (3), ãi = ω1.
(6) If there is a maximal antichain A ⊆ S of size < c such that the family BA

is disjoint and the set X = ω2 \
⋃

BA has size < c, then the partition B =
BA ∪ {{x} : x ∈ X} has size < c.

(7) Let a3 = c. If a2 = c, then, by (6), a1 = a3 = c.
(8) ã1 ≥ ã2 and ã1 ≥ ã3. Let us assume that ã3 < ã1. For any κ with

ã3 ≤ κ < ã1 there is an antichain A ∈ A1 \ A3 of size < c and ≥ κ. Then the
partition BA ∪{{x} : x ∈ ω2 \

⋃
BA} has size < c and ≥ κ. Therefore ã2 > κ and

so ã2 = ã1. �

Clearly, a(ω, S) = ω. There are known several constructions of small uncount-
able antichains in S. J. Stern and independently K. Kunen (for the proof see [8])
under CH constructed a partition of ω2 into ω1 compact sets. L. Newelski [9]
pointed out that under MA the same construction produces a partition into c com-
pact sets which is preserved by forcing with measure algebras and he proved that
after adding ω1 dominating reals, the Baire space ωω (and hence, by Lemma 2.2,
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also the Cantor space ω2) can be partitioned into ω1 disjoint compact perfect sets.
A. Ros lanowski and S. Shelah [10], by a finite support iteration of c.c.c. forcing
notions of length ω1, constructed a maximal antichain A such that the family BA

is disjoint and every tree p ∈ A has on each level at most one branching node.
Moreover, the set

⋃
BA does not contain any ground model reals and therefore

a3 = ω1 holds in the extension.
We say that a set a ⊆ <ω2 is saturated if for every s, t ∈ <ω2 whenever s ⊆ t

and t ∈ a, then s ∈ a. Easily, it can be observed that a2 is the minimal size of a
family A, maximal with respect to the inclusion, such that A is an uncountable
almost disjoint family of infinite saturated sets. Notice that such a family A
cannot be a maximal almost disjoint family of infinite subsets of <ω2. To see this,
let a ∈ A be such that the set of all infinite branches in a is nowhere dense in ω2
and let x ∈ a be arbitrary. For every n choose sn ∈ <ω2 such that x↾n ⊆ sn

and sn /∈ a. Then the set {sn : n ∈ ω} has a finite intersection with every
b ∈ A. The similarity of this characterization of a2 with maximal almost disjoint
families suggests the question whether there is some relation between a2 and a

(the minimal size of a maximal almost disjoint family of subsets of ω).

3. Marczewski’s ideal and the collapse by Sacks forcing

A subset X of ω2 is an s0-set if for every p ∈ S there is q ≤ p such that
[q] ∩ X = ∅. This notion is due to E. Marczewski [7]. It is known that ω1 ≤
add(s0) ≤ cov(s0) ≤ cf(c) ≤ non(s0) = c < cf(cof(s0)) (see [4]) and add(s0) ≤ b

(in fact sh(S) ≤ b see [11]; this is not true for cov(s0) because in the iterated
Sacks forcing model cov(s0) = ω2 see [4] but b = cof(N ) = ω1). Notice that
add(I) ≤ cf(non(I)) for each ideal I. If y ∈ ω2 is a new real, then the perfect
set Ay = {x ∈ ω2 : (∀n) x(2n) = y(n)} does not contain old reals. This explains

why in iterations of length ω1 the set of old reals is an s0-set and cov(s0) = ω1.
To see that there are s0-sets of size c (see also [4]), take any maximal antichain
{pα : α < c} of size c in S so that the system of perfect sets BA = {[pα] : α < c} is
disjoint and clearly, every selector of this system is an s0-set. By Theorem 2.4(2)
every s0-set has this form. If BA is not disjoint, then its selectors need not be
s0-sets (observe that the system {Ay : y ∈ ω2} has a perfect selector).

The next theorem refines Theorem 1.1 in [4].

Theorem 3.1. (1) sha3(S) ≤ add(s0) ≤ shã2(S) ≤ sh(S) ≤ min{cf c, b}.

(2) shω1(S) = sha1(S) = min{sha2(S), add(s0)} ≤ sha3(S).
(3) shã2(S) ≤ max{shã3(S), add(s0)} = shã1(S) = sh(S).
(4) shω1(S) ≤ shcf c(S) ≤ cfπ(S) ≤ sh(S).
(5) shcf c(S) ≤ cf sh(S), and if sh(S) is singular, then shκ(S) < sh(S) for κ < c,

ã1 = ã3 = c, and c is singular.

(6) If max{a1, a2, a3} = c, then add(s0) = sha3(S) = shã2(S).

(7) If a1 = c, then, for every κ with ω1 ≤ κ ≤ c, add(s0) = shκ(S) = cfπ(S).
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(8) If a2 = c, then add(s0) = shω1(S).
(9) If a3 = c, then add(s0) = sh(S).

(10) If a(cf c, S) = c, then sh(S) = cfπ(S) = shcf c(S).

In particular, if d = c, then the assumptions of (6)–(10) are satisfied, and if c is

regular, then the assumption of (10) is satisfied.

Here is the picture of the inequalities between the cardinals:

sha2(S)

,,XXXXXXXXXXXXXXXXXXXXXXXXXXXX shã3(S)

&&MMMMMMMMMMM

shω1(S) = sha1(S) //

77oooooooooooo

''OOOOOOOOOOOO

22fffffffffffffffffffffffffffff

sha3(S) // add(s0) // shã2(S) // shã1(S) = sh(S)

shcf c(S) // cfπ(S)

88ppppppppppp

Proof: (1) shã2(S) ≤ sh(S) because ã2 ≤ c, sh(S) ≤ cf c by Theorem 1.1(8). We
shall sketch a proof of the inequality sh(S) ≤ b which a little simplifies the proof
presented in [11]. Let us recall some notation.

For p ∈ S let fp ∈ ωω be such that for every n and every s ∈ fp(n)2 there is a

splitting node t ∈ <fp(n+1)2 above s in p. For p ∈ S and a ⊆ ω, p[a] is a subtree
of p defined by induction: (i) ∅ ∈ p[a]; (ii) Let s ∈ p[a] and dom s = n. If n ∈ a,
then, for i = 0, 1, s⌢i ∈ p[a] if and only if s⌢i ∈ p. If n /∈ a, then, for i = 0, 1,
s⌢i ∈ p[a] if and only if i = 0 and s⌢0 ∈ p or i = 1 and s⌢0 /∈ p.

If p, q ∈ S and a, b ⊆ ω, then p[a]∩q[b] = (p∩q)[a∩b], and if [fp(n), fp(n + 1)) ⊆
a for infinitely many n, then p[a] ∈ S.

We shall construct a base matrix on S of size b using the fact that h ≤ b

where h is the minimal size of a base matrix on P(ω)/fin (see [2]). Let F ⊆ ωω
be an unbounded family of increasing functions and let {Bα : α < h} be a
base matrix on P(ω)/fin. If p ∈ S, then there is an f ∈ F such that the set
xp = {n : |[f(n), f(n + 1)) ∩ rng fp| ≥ 2} is infinite and so there is α < h and
a ∈ Bα such that a ⊆∗ xp. Now for f ∈ F and a ∈

⋃
α<h Bα let Sf,a be the

set of all p ∈ S such that |[f(n), f(n + 1)) ∩ rng fp| ≥ 2 for all but finitely many
n ∈ a. As Sf,a has size ≤ c, we can assign, in a one-to-one way, for each p ∈ Sf,a

an infinite set bf,a,p ⊆ a so that the system {gf,a,p : p ∈ Sf,a} is almost disjoint.
Let cf,a,p =

⋃
{[f(n), f(n + 1)) : n ∈ bf,a,p}. Then {cf,a,p : a ∈ Bα and p ∈ Sf,a}

is an almost disjoint family and hence the system Af,α = {p[cf,a,p] : a ∈ Bα and
p ∈ Sf,a} is an antichain in S refining

⋃
a∈Bα

Sf,a. Therefore {Af,α : f ∈ F and

α < h} is a base matrix on S.

sha3(S) ≤ add(s0): Let κ < sha3(S) and let Xα, α < κ, be s0-sets. We prove
that the set X =

⋃
α<κ Xα is an s0-set and hence κ < add(s0). Let Aα, α < κ,
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be maximal antichains in S such that Xα ∩BAα
= ∅. By Theorem 2.4(1) we can

assume that for every α < κ, BAα
is a disjoint family. Let q ∈ S be arbitrary.

By (κ, c, a3)-distributivity of r. o.(S) there is q′ ≤ q such that for every α the set
A′

α = {p ∈ Aα : q′ ∧ p 6= 0} has size < a3. By the definition of a3 it follows that
every set Yα = [q′]\

⋃
BA′

α
has size < c and as κ < cf c, the set X∩[q′] ⊆

⋃
α<κ Yα

has size < c. Therefore there is r ≤ q′ such that X ∩ [r] = ∅.

add(s0) ≤ shã2(S): Let κ < add(s0) and let {Aα : α < κ} be a system of
maximal antichains in S. We prove that for every q ∈ S there is r ≤ q such
that for every α < κ the set {p ∈ Aα : r ∧ p 6= 0} has size < a2 and hence
κ < shã2(S). By refining the antichains, if necessary, we can assume without
loss of generality that they all satisfy the conditions in Theorem 2.4(1). By the
additivity assumption, the set X =

⋃
α<κ(ω2 \

⋃
BAα

) is an s0-set. Let q ∈ S.
There is r ≤ q such that X ∩ [r] = ∅ and hence for every α, [r] ⊆

⋃
BAα

. By
Theorem 2.4(1) then, for every α, Cα = {p ∈ Aα : [r] ∩ [p] 6= ∅} has size < c and
by the definition of ã2 we have |Cα| < ã2.

(2) We prove only min{sha2(S), add(s0)} ≤ shω1(S); all the remaining inequal-
ities of this part of the theorem hold due to the monotonicity of the invariants
shκ(S) and part (1).

Let κ < min{sha2(S), add(s0)} and let Aα, α < κ, be maximal antichains in S.
We show that for every q ∈ S there is r ≤ q such that for every α < κ the set
{p ∈ Aα : r ∧ p 6= 0} is countable. Without loss of generality we can assume that
all the antichains Aα satisfy conditions in Theorem 2.4(2). Given q ∈ S by the
κ-additivity of s0 and (κ, c, a2)-distributivity of r. o.(S) there is q′ ≤ q such that
for each α < κ, [q′] ⊆

⋃
BAα

and the set {p ∈ Aα : q′ ∧ p 6= 0} has size < a2. By
condition (c) in Theorem 2.4(2), as κ < cf c, the set X =

⋃
α<κ

⋃
{[q′]∩[p] : p ∈ Aα

and q′ ∧ p = 0} has size < c. Let r ≤ q′ be such that X ∩ [r] = ∅. Then for each
α < κ the set {p ∈ Aα : [r] ∩ [p] 6= ∅} has size < a2 and therefore it is countable.

(3) It is clear that shã2(S) ≤ sh(S) = shã1(S). Let κ1 = shã3(S) and κ2 =

add(s0). We prove that max{κ1, κ2} = sh(S). We know that the inequality ≤
holds true. Let us assume that κ1, κ2 < sh(S) and we prove a contradiction. Let
{A′

α : α < κ1} be a system of maximal antichains in S witnessing the (κ, c, ã3)-
nowhere distributivity of r. o.(S) and let {Xβ : β < κ2} be a system of s0-sets such
that for every q ∈ S, [q] ∩

⋃
β<κ Xβ has size c. For each pair (α, β) ∈ κ1 × κ2 let

Aα,β be a maximal antichain in S such that Aα,β refines A′
α and Xβ∩

⋃
BAα,β

= ∅.

We can find Aα,β ’s so that the conditions in Theorem 2.4(2) are satisfied. We
claim that the system {Aα,β : (α, β) ∈ κ1 × κ2} is a witness for the (κ1 · κ2, c, c)-
nowhere distributivity of r. o.(S) which contradicts the inequality κ1 · κ2 < sh(S).
To see this let q ∈ S be arbitrary. As κ1 · κ2 < sh(S) there is r ≤ q such that for
every (α, β) ∈ κ1 × κ2 the set A′

α,β = {p ∈ Aα,β : r ∧ p = 0} has size < c. As

[r] ∩
⋃

β<κ2
Xβ has size c and κ2 < cf c there is β < κ2 such that [r] ∩ Xβ has

size c. As for every α the antichain Aα,β refines the antichain A′
α, there is α < κ1
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such that |A′
α,β | ≥ ã3. Now [r] ∩ Xβ is disjoint from

⋃
BA′

α,β
and |A′

α,β | < c. It

follows that ã3 ≥ |A′
α,β |

+ while |A′
α,β | ≥ ã3. A contradiction.

(4) The inequalities hold true by Theorem 1.2(6) because shω1(S) ≤ shcf c(S) ≤
sh(S) ≤ cf c.

(5) The inequalities hold true by Theorem 1.2(8) by which shκ(S) is regular for
κ regular. Hence if sh(S) is singular, then c is singular, and as add(s0) is regular,
by (3), shã3(S) = shã1(S) = sh(S). Therefore, ã1 = ã3 = c.

(6)–(9) are easy consequences of the above proved inequalities using the fact
that ai = c if and only if ãi = ω1.

(10) follows by (4) since under the assumption sh(S) = shcf c(S). �

By Theorem 3.1(10), if the continuum is regular, then it is collapsed to a
regular cardinal of the extension. MA(countable) does not imply the continuum
is regular. Anyway, by Theorem 3.1(7), under MA(countable) (even under d = c)

Sacks forcing collapses the continuum to a regular cardinal in V r.o.(S). We think
that it is an open question whether Sacks forcing can collapse the continuum to
a singular cardinal.

Under some hypotheses (see Theorem 3.1), there is κ ≤ c such that add(s0) =
shκ(S). We do not know whether the same is true in ZFC.
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