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On the Diophantine equation
qn−1
q−1 = y

Amir Khosravi, Behrooz Khosravi

Abstract. There exist many results about the Diophantine equation (qn − 1)/(q − 1) =
ym, where m ≥ 2 and n ≥ 3. In this paper, we suppose that m = 1, n is an odd integer
and q a power of a prime number. Also let y be an integer such that the number of prime
divisors of y − 1 is less than or equal to 3. Then we solve completely the Diophantine
equation (qn − 1)/(q − 1) = y for infinitely many values of y. This result finds frequent
applications in the theory of finite groups.

Keywords: higher order Diophantine equation, exponential Diophantine equation

Classification: 11D61, 11D41

The theory of finite groups leads to some Diophantine equations in which the
variables are restricted to be prime or a power of a prime number .

There exist many results about the Diophantine equation

(∗)
qn − 1

q − 1
= ym in integers q > 1, y > 1, n > 2, m ≥ 2.

A long standing conjecture claims that the Diophantine equation (∗) has finitely
many solutions, and, may be, only those given by

35 − 1

3− 1
= 112,

74 − 1

7− 1
= 202, and

183 − 1

18− 1
= 73.

Among the known results, let us mention that Ljunggren [14] solved (∗) completely
when m = 2 and Ljunggren [14] and Nagell [16] when 3|n and 4|n: they proved
that in these cases there is no solution, except the previous ones.
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Also Equation (∗) is completely solved when q is square (there is no solution in
this case [17], [5], [1]); when q is a power of any integer in the interval {2, · · · , 10}
(the only two solutions are listed above [4]); when q is a power of a prime number,
say p, and p|y − 1 [4]; or when m is a prime number and every prime divisor of q
also divides y − 1 [6].
For more information and in particular for finiteness type results under some

extra hypothesis, we refer the reader to Shorey & Tijdeman [19], [20] and to the
survey of Shorey [18].
If k is an integer, then π(k) is the set of prime divisors of k. Y. Bugeaud and

M. Mignotte in [4] solved the Equation (∗) when m ≥ 2 and q be a power of a
prime number, say p, and p|y − 1. Hence in this paper we consider Equation (∗)
when m = 1 and q be a power of a prime number, say p. Obviously p|y − 1.
Also we let 2 6 | n and |π(y − 1)| ≤ 3. Then we solve completely the Diophantine

equation qn−1
q−1 = y. This result finds frequent applications in the theory of finite

groups.

Lemma A ([4], [8]). With the exceptions of the relations (239)2 − 2(13)4 = −1
and 35 − 2(11)2 = 1, every solution of

pr
1 − 2p

s
2 = ±1; p1, p2 primes; r, s > 1,

has exponents r = s = 2; i.e., it comes from a unit p1 − p2.2
1/2 of the quadratic

field Q(21/2) for which the coefficients p1, p2 are prime.

Remark. Although it is proved that (with two exceptions) the above equation
becomes p21− 2p

2
2 = ±1, we do not know whether or not there are infinitely many

prime pairs p1, p2 that satisfy this equation.

Lemma B ([8]). The only solution of the equation pr
1− ps

2 = 1, where p1, p2 are

prime numbers and r, s > 1, is 32 − 23 = 1.

Remark ([11]). If n > 1 and an − 1 is prime, then a = 2 and n is prime, but
the converse is not true. Prime numbers of the form 2n − 1 are called Mersenne
primes .
Also if a ≥ 2 and an + 1 is prime, then a is even and n = 2k, but the converse

is not true. Prime numbers of the form 2n + 1 are called Fermat primes .

Main Theorem. Let q be a power of a prime number, |π(y − 1)| ≤ 3 and n ≥ 3
an odd integer. Then the solutions of the Diophantine equation

(1)
qn − 1

q − 1
= y,

are listed in table (I):
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Table I

q n y conditions

2 3 7

8 3 73

p − 1 3 p2 − p+ 1 p is a Fermat prime

p 3 p2 + p+ 1 p is a Mersenne prime

2 7 127

2 5 31

2α 5 25α
−1

2α
−1

2α + 1 and 22α + 1 are Fermat primes, α ≥ 1

p 3 p2 + p+ 1 p is a prime number such

that p+1
2
is a power of a prime number

2p − 1 3 4p2 − 2p + 1 p is a prime number such
that 2p − 1 is a power of a prime number

3 5 121

2392 3 3262865763

7 5 2801

p2 3 p4 + p2 + 1 p2+1
2
= p′2 where p′ is a prime number

b 5 b5−1
b−1

b = 2α−1 − 1 and p = 22α−3 − 2α−1 + 1 are prime

Proof: Let (q, n, y) be a solution of (1). Let y = A+1, where |π(A)| ≤ 3. Then

(2)
q(qn−1 − 1)

q − 1
=

q(q(n−1)/2 − 1)(q(n−1)/2 + 1)

q − 1
= A.

Also (q(n−1)/2 − 1, q(n−1)/2 + 1)|2, q − 1|q(n−1)/2 − 1 and hence q(n−1)/2 + 1|A.

If |π(A)| = 1 then n = 2, since (q, qn−1−1
q−1 ) = 1, which is a contradiction.

If |π(A)| = 2 then y = xαpβ + 1, where p, x are prime numbers and α, β are

positive integers. Now we have q(qn−1 − 1)/(q − 1) = xαpβ . Therefore q = xα or

q = pβ . Let q = xα then q(n−1)/2 + 1 = pβ′

, for some β′ ≤ β. Therefore p = 2 or
x = 2, and hence y = 2αpβ + 1. Now we consider two cases:

Case 1. q = 2α

Then q(n−1)/2+1 = pβ and q(n−1)/2−1
q−1 = 1, since (q(n−1)/2−1, q(n−1)/2+1) = 1.

Hence n = 3, 2α + 1 = pβ . If α = 1 then pβ = 3, and hence (2, 3, 7) is a solution

of (1). If α, β > 1 then α = 3, pβ = 32 by Lemma B. Hence (8, 3, 73) is a solution
of (1), too. If β = 1 then p = 2α + 1. Since p is a prime number, α = 2t. Hence

if p = 22
t
+ 1, t ≥ 1, is a prime number, then (p − 1, 3, p2 − p + 1) is a solution

of (1). Special cases are (4, 3, 21), (16, 3, 273), (256, 3, 65793).



4 A.Khosravi, B.Khosravi

Case 2. q = pβ

Obviously if n 6= 3 then q(n−1)/2−1
q−1 > 2. Therefore q(n−1)/2−1

q−1 = 1 and q(n−1)/2 +

1 = 2α which implies that n = 3, pβ + 1 = 2α. By using Lemma B, β = 1,
p = 2α − 1, and hence α is a prime number. Therefore if p = 2α − 1 is a prime
number, then (p, 3, p2 + p + 1) is a solution of (1). Special cases are (3, 3, 13),
(7, 3, 57).

If |π(A)| = 3, then y = aαbβpλ + 1, where α, β and λ are positive integers.

Similar to the case |π(A)| = 2, we have y = 2αbβpλ + 1, and q = 2α or q = bβ or

q = pλ, where α, β and λ are positive integers.

Step 1. q = 2α

Then

2α(n−1)/2 + 1 = pλ and
2α(n−1)/2 − 1

2α − 1
= bβ .

Obviously n 6= 3, since β 6= 0. Now we consider 3 cases:

(1.1) If α(n − 1)/2 = 1 then β = 0, which is a contradiction.

(1.2) If α(n − 1)/2 > 1, λ > 1 then α(n − 1)/2 = 3 and pλ = 32, by Lemma B.
Then n = 7 and α = 1, since n 6= 3. Hence (2, 7, 127) is a solution of (1).

(1.3) If λ = 1 then p = 2α(n−1)/2 + 1. Hence α(n − 1)/2 = 2t > 1, since p is a
prime number. Therefore

bβ =
2α(n−1)/2 − 1

2α − 1
=
(2α(n−1)/4 − 1)(2α(n−1)/4 + 1)

2α − 1

and since (2α(n−1)/4−1, 2α(n−1)/4+1) = 1 we have n = 5, and p = 22α+1.

Hence bβ = 2α + 1. Now we consider 3 subcases:

(1.3.1) If α = 1 then bβ = 3, p = 5 and y = 31. Hence (2, 5, 31) is a solution
of (1).

(1.3.2) If α > 1, β > 1 then bβ = 32 and α = 3 by Lemma B. But then
p = 65 which is not a prime number, a contradiction.

(1.3.3) If β = 1 then b = 2α+1 and p = 22α+1. Hence (2α, 5, 24α+23α+
22α+2α+1) is a solution of (1), where 2α+1 and 22α+1 are prime
numbers.

Step 2. q = bβ

Then (q(n−1)/2−1, q(n−1)/2+1) = 2, and n 6= 3. Similar to the last step we have
3 subcases:

(2.1) If

bβ(n−1)/2 − 1

bβ − 1
= 2pλ, bβ(n−1)/2 + 1 = 2α−1,
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then β(n − 1)/2 = 1, by Lemma B, which is a contradiction since n > 3.
(2.2) If

bβ(n−1)/2 − 1

bβ − 1
= pλ, bβ(n−1)/2 + 1 = 2α,

then similarly to (2.1), we have n = 3 which is a contradiction.
(2.3) If

bβ(n−1)/2 − 1

bβ − 1
= 2α−1, bβ(n−1)/2 + 1 = 2pλ,

then by using Lemma A we consider 4 cases:

(2.3.1) If β(n − 1)/2 = 1 then n = 3, β = 1 and q = b. Then α = 1,

b + 1 = 2pλ. Hence if (b, p, λ) is a solution of the Diophantine

equation b + 1 = 2pλ, then (b, 3, b2 + b+ 1) is a solution of (1).

(2.3.2) If λ = 1 then bβ(n−1)/2 + 1 = 2p. Let m = n−1
2 . Hence qm − 1 =

2α−1(q − 1) and qm + 1 = 2p.
If m is odd and m > 1 then 2p = qm + 1 = (q + 1)(qm−1 − · · ·+ 1),
which is a contradiction, since p is a prime number. Thereforem = 1,
α = 1 and hence y = 2bβp + 1, 2p = bβ + 1. Hence if p is a prime
number and 2p − 1 is a power of a prime number then (2p − 1, 3,
4p2 − 2p+ 1) is a solution of (1).

If m is even then let m = 2k. Now we have (qk − 1)(qk + 1) =
2α−1(q − 1). Therefore k = 1, n = 5 and q + 1 = 2α−1. Hence

bβ + 1 = 2α−1. By using Lemma B, β = 1 and hence b = 2α−1 − 1.
Now if b = 2α−1 − 1 and p = 22α−3 − 2α−1 + 1 are prime numbers,
then (b, 5, b4+ b3+ b2+ b+1) is a solution of (1). But we guess that
the only possible case is (3, 5, 121).

(2.3.3) If pλ = 134 and bβ(n−1)/2 = 2392 then β(n − 1)/2 = 2.
If β = 2, n = 3 then α = 1 and y = 3262865763.

If β = 1, n = 5 then 239
2−1

239−1 = 240 which is not a power of 2, which

is a contradiction. Hence (2392, 3, 3262865763) is a solution of (1).
(2.3.4) If λ = 2 and β(n − 1)/2 = 2 then we have two subcases:

(2.3.4.1) If β = 1, n = 5 then b2 + 1 = 2p2 and b + 1 = 2α−1. Hence p2 =
22α−3−2α−1+1 which implies that (p−1)(p+1) = 2α−1(2α−2−1).
Therefore p−1 = 2α−2 and p+1 = 2(2α−2−1). Hence α = 4, p = 5,
b = 7 and y = 2801. Therefore (7, 5, 2801) is a solution of (1).

(2.3.4.2) If β = 2 and n = 3 then b2 + 1 = 2p2. Hence if b and p are odd
prime numbers such that b2 + 1 = 2p2 then (b2, 3, b4 + b2 + 1) is a
solution of (1).

(2.4) If

bβ(n−1)/2 − 1

bβ − 1
= 2α, bβ(n−1)/2 + 1 = pλ,
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then we get a contradiction since b and p are odd numbers.

Now the proof of the main theorem is completed. �

Remark. Sometimes in the theory of finite groups we need the solutions of (1),
where y is prime.
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[16] Nagell T., Note sur l’equation indéterminée (xn − 1)/(x − 1) = yq, Norsk. Mat. Tidsskr. 2
(1920), 75–78.

[17] Saradha N., Shorey T.N., The equation (xn − 1)/(x − 1) = yq with x square,, Math. Proc.
Cambridge Philos. Soc. 125 (1999), 1–19.

[18] Shorey T.N., Exponential Diophantine equation involving product of consecutive integers
and related equations, (English) Bambah, R.P. (Ed.) et al., Number theory; Basel, Birk-
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