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Lattice points in some special three-dimensional
convex bodies with points of Gaussian
curvature zero at the boundary

EKKEHARD KRATZEL

Abstract. We investigate the number of lattice points in special three-dimensional convex
bodies. They are called convex bodies of pseudo revolution, because we have in one
special case a body of revolution and in another case even a super sphere. These bodies
have lines at the boundary, where all points have GAUSSIAN curvature zero. We consider
the influence of these points to the lattice rest in the asymptotic representation of the
number of lattice points.

Keywords: convex bodies, lattice points, points with GAUSSIAN curvature zero

Classification: 11P21, 11H06

1. Introduction and statement of result

Let F' denote the distance function of the convex body PR3. That is

1

& 1

Pty ta.ts) = {(al" + t2%)% + [t}
PR3 = {(t1,t2,t3) € R? F(t1,ta,t3) <1}.

It is assumed that k,k € N, 2 < k < k, k > 3, x a divisor of k. Then we have
a body of revolution for k = 2 and a super sphere for k = k. Therefore, we call
PR3 a body of pseudo revolution in general.

We consider the points (¢1,t2,t3) at the boundary and we are confined to the
points t1,t9,t3 > 0 without loss of generality. We put

F(ty,ta,t3) =1, t3 = f(t1,12),
where f is given by X

fltrta) = (1=t +15)7) "
The GAUSSIAN curvature in such a point is defined by

_ H(f(t1,t2))
(1+ f2 (t1,t2) + f2 (t1,t2))?
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where H(f(t1,t2)) denotes the HESSIAN

H(f(t1,t2)) = forty (t1,t2) fraty (t1, t2) — fRr, (1, 12).

In the present case we find by means of long but simple calculations

(k — 1)(5 — 1) (tyto) =2 (5 + 1) 20 —2¢5 2

(tgk 2+(t%f£ 2+t§f£ 2)2——2)2

K =

From this it is seen that we have the following points with (GAUSSIAN curvature
K =0 at the boundary:
(1) Body of revolution (x = 2): The curve

2 4+13=1,1t3=0

and the isolated points (t1,te,t3) = (0,0, £1).
(2) Super sphere (k = k): The curves

thtth=1,161=0; th+th=11t=0; tf+t5=1,13=0.
(3) Body of pseudo revolution (2 < k < k): The curves
thrth=1,16=0; th+th=1t2=0;, tf+t5=1,t3=0.

The flat points (t1, t2, t3) = (0,0, £1) are of exceptional importance in all three
cases and the points (¢1,9,t3) = (£1,0,0), (t1,%2,t3) = (0,41, 0) are meaningful
as well in the cases (2) and (3).

The aim of the paper is to investigate the number of lattice points in the dilated
body of pseudo revolution x PR3, that is:

k
(1) Al PRg) = # { (n1,n2,m5) € Z% 5 (1| + [na|*) = + ng|F < 2}

Especially we study the influence of the points with GAUSSIAN curvature zero to
the asymptotic representation of Ay .(z; PR3).

In [3] a detailed description is given for the case of super spheres. See also the
paper [5]. Therefore, we are here in the first place interested for the case k < k,
but we do not exclude the case k = k.

It is not too hard to obtain the following asymptotic representation for
Aj.(2; PR3) from the results of the paper [7]:

5

A (2 PRg) = vl(PRg)a™ + Hy o1 (2)+ Hy s 2(2)+O (373 ) +0 (2 log ) .
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The second main term Hy, . 1(x) is a certain function of z coming from the flat
points (t1,t2,t3) = (0,0,+1) and can be estimated by

2
Hy, o1 (z) < 2?75,

Analogously, the third main term Hy, ., () is a certain function of z coming from
the flat points (t1, ¢, t3) = (£1,0,0), (0,41,0) and can be estimated by
1 1
Hy, o o) < 27wk,
The first error term results from the other points with GAUSSIAN curvature zero
and the second error term results from the points with GAUSSIAN curvature non-
Zero.

In this paper we will give explicit representations of the second and third main
terms which automatically show that the above upper bounds are at the same
time lower bounds. Further we give an improved estimation of the first error
term.

Let the generalized BESSEL functions J,Sk)(x) be defined by

(2) ’Sk)(x) = m (g)% /01 (1 - tk)y_% cos ztdt,

where I' is the gamma function, k, v are real numbers with & > 1, v > % Further
let

3) ,(,k) () = 2¢/7T <1/ +1- %) i (%) ¥ J,Ek) (2mnx),
n=1

which is absolutely convergent for v > % For a proof see [3].

Theorem 1. Let s,k € N, 2 <k <k, k> 3, k a divisor of k. Then

(4) Ay, (2 PRg) = vol(PRg)2® + Hy, . 1(2) + Hy o 2(2) + Ay (@)
with
C%(3) 0. 022
(5) Hk,li,l(‘r) = KF(%) wg/k(‘f) =U, (m k) )
1 1_q 11
6)  Hp.o(z)=38 / (1= k) Tl @y dt =0, Q (a2 wF),
(6)  Hipal) =8z [ (1-45)" 0l o) (a277%)

119 165 315

(1) Apn(z) < 275 ~1iok (log ) 16 + 22 logd z.

)
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2. Preparation of the problem
We find, by symmetry,
Ak,ﬁ(x; PR3) = 16(3172,3 + 51,32+ 33,172) + O(x),
where S; j 1. are triple sums
Sigh=2_2.21
ny n2 ns
with the summation conditions
k
SC(Si,j,k) 10 <n; <nj <ny, (n"f—kn‘;)ﬁ —|—n]§ Sxk,
1
n; =0, n;=n;, n; =n et a factor —.
i 7 J g k8 2
We begin the summation process in each sum with n;.
For example, summing in S1 2 3 over ni, we obtain

1 1
K

l((mk—nlg)%—ng)ﬂ for ((xk—nlg)%—n§> < na

and ng otherwise. If we use [y] —i—% = y—1(y), we get a term which can be written
as an integral, and a term with the -function as a remainder. Hence

+

DN =

16517273 = 582)73 + A273(.'I;) + O(x).

Here

51, = 1622[1 dt

na2 n3

with the summation-integration conditions

k
SIC (ZZ/t1> :0<t; <ng<mz, (F+n5)=+n

na n3

RES
N
8

S

1
ng =n3 gets a factor 3

and

(8) Ags(z)=-16 Y ¥ (((xk _ ng)% - ng> %) |

(n1,n2)€D2 3
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where Do 3 denotes the domain
Do = {(tg,tg) ER?:0< (xk —t’g)z —t5<t5 < tg}.
In the next step we sum over ng in S£12) 3 and obtain similarly

16517273 = ng)’?) + P273($) + A273($C) + O(x)

with
@), = 162/ / dty dts,
14 s tl t2
SIC Z/ / 10 <ty <ty <ng, (tf+t5~)§ +n’§§:c’f
ns t1 Jito
and
9) PQg(%)——lGZ/ w(((xk—ng))k—tf)fi) dtq
ns t1

" 1 =
(a:k—nlg)k —n§<t’f§§(:rk—n§)k.

(2)

In the last step we sum over ng in 5’9 5 and finally we obtain

(10) 165123 = 55’2),3 + Haz(x) + P23(x) + Az 3(z) + O(x),

where

(11) Sf’2)73:16/// dty dis dis,
t1 Jitg Jit3

k
IC(/// (0<ty <ty <ty (tf+1t5)r+1t5<ak,
t1 Jita Ji3
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In the same way we obtain for the other triple sums:
3
(13) 165132 = S\ 95 + Haa(x) + P3a(z) + Asa() + O(a),

where

(14) S§3§2:16/// dty dts dis,
= t1 Jita Jit3

IO(/ / /> 0<ty <tg<ty, (t5+t5)n+1tk<ak,
t1 Jig Ji3
. 1
(15) H372(x):—16//1/) <(g;k—t§)’“—t'f> dt dts,
t1 Jit3
k

(17) Aga(x)=-16 w(((xk_nlg)%_@)ﬁ)’

(n3,n2)€D3 2

D3 = {(tg,tg) ER2:0< (xk —t’g)z 5 <th < tg}.
Finally, we obtain for S3 12

(18) 165312 = S5 1 5 + Hi2(x) + PLa(z) + Ara() + O(a),

where

(19) S§31)2:16/// dty dto dts,
Y t1 Jita Jit3

k
IC(/// D 0<t3<t;<ty, (Hf+t5)r+th <k
t1 Jig Ji3
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1
<(xk _tlg)ﬁ —t’f) ) dty dts,

@ auw=-1 Y (- areh)),

(n1,n2)€D1,2
k
Do = {(tl,tg) eER?:0 < k- (tlf —i—t';)z < tlf < té} .
3. Representation of the triple integrals
It is clear that it follows from (11), (14) and (19)
3 3 3
Staa+ Siaa+ Sita = vol(PRg)a,

which is the main term in (4).
4. Representation and estimation of the double integrals
We begin with Ha 3(x). We write the integration condition in (12) in the form
0<t1 <ts, th+t5< (xk—té)z

‘We have .
(xk — té) P> o2k,

We integrate only up to 5. The remainder is of order x. Hence, by substituting
t1 — tix, tg — tox, we obtaln

1
Ha3(x :—16x// ( tf+t2)§)") dty dtg + O(z),
t1 Jio

1
(//)10<t1<t2, t1+t —
t1 Jito 2
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Putting t§ + t§ = 2" we get, by symmetry,

Hs3(z) = —8:1:2/

zh<

where again the integral from 0 up to (1 — z=%/%)1/¥ is of order % By means of
the FOURIER representation of the i-function,

(23) Y(t) = —% nzzjl % sin(2nnt) dt,
we obtain
2(1y,.2 1 2_
Ho 3(x) = % ngl % /0 21 (1 - zk) " sin(2rnaz) dz 4+ O(x)
8F2(% 23 &t 2
= T2) ngl/o (1 — zk) cos(2mnxz) dz + O(x)
and, by (2) and (3),
4y/aT2(HI(2 +1)2% S
Hy3(z) = VT (:F) ( %(; + e ;(wn:c)_gJéljll(an:c) +0(a)
2U%(5) (x
=) k() + 0@

Hence
Hj 3(x) = Hy r1(z) + O(x)

and the representation (5) is obtained. The asymptotic representation of the
generalized BESSEL functions is given in Lemma 3.11 of [3]. We obtain

oene) =i () o (- 3 (21)) v 0 () .
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Hence, it follows with a positive constant ¢

oo

Hy o1(z ) = ca? Z isin(27rn:c—g)+0( x).

Thus, the estimations in (5) are clear.

In order to obtain the term Hy, .. o(x) we add H32(X) and Hi2(z). Then we
get from (15) and (20)

1
H3zo(x) + Hy2(x ——16:6// (l—t’?‘f)z—t’f>” dtq dts,
t1 Jit3
1 % z
IC(//) << (1-4)" osu<(1-4)" -
t1 Jis

By means of the substitution t§ = (1 — tlg)“/k — 2" we obtain

" E |
H32(x) + Hy () = 162 //t <1—t3) —z“) V(x2) dtz dz,

IO(//) 1—t3)kSzk,t§+zk§1,0§t3§z.
t3

We may extend the domain of integration such that the new integration conditions

are given by
1
IC<//>:tl§+zk§1, 0<th<-.
z Jt3 2

The integral over the new domain is of order % which can be seen by partial
integrating with respect to z. Now we substitute 1 — tlg = ¢k, Then

H3o(x) + Hip(x)
1
I_g
= —16z / ) dt/ th= 1 )’“ LR oy (az) dz + O(x).
2—1/k
The substitution z — zt gives
H372($L') + HLQ(JI) =

1 14 1
- —16:102/ tk (1 - tk) ) dt/ 11— e p(atz) dz + O(x).
2-1/k 0
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We take the integral with respect to ¢ from 0 up to 1, since the new part of the
integral is of order 2+ As in case of Hp3(x) we use the FOURIER representation
(23) of the y-function and we obtain analogously

Hs () + Hip(z) =
16 (1 o (1 e DAL
= ﬁf‘ (E +1>x /0 t (1—t ) ;EJWK(%W:W) dt+ O(x)

1 1_
:81:/ £k (l—tk)k 11/;52(3:15) dt + O(x).

0

Hence
H3o(x) + Hy2(x) = Hy 4o 2(2) + O(2)

and the representation (6) is obtained. For the asymptotic representation we
use (24). Clearly, the integral from 0 up to % is of order % Therefore, we use the
asymptotic representation of the generalized BESSEL function from Lemma 3.11
n [3] for ¢ > % Then

() _ L (_r yw (1 1
J/ (27mxt)—ﬁ(27mxt) cos (27m:vt 2(n+1>)+0<n:c .

Hence, it follows with a positive constant a

Hy, g o(z) =
polom -t [y KYEL
:ax_EZn_ _E/1t+_g(l—t) sin(Zmet—2—)dt—|—O()
n=1 2

The remaining integral has a singularity at ¢ = 1. We obtain the asymptotic
representation of the integral very easy by means of Chapter 3, Section 11 from [1].
We use a special case of formula (11.6) on page 24: Let ¢(t) be continuously
differentiable in a« <t < 3. Let (o) =0. Then, if 0 < p <1,

B ) 1
[ et - oyt e = Kl -emig) 10 (1)

M

The condition ¢(a) = 0 is not necessary. In case of ¢(a) # 0 the point « yields
an error term of order 1/x. Thus, with a constant b # 0, we get

[e.e]
1 1
Hy, ;. o(7) = bz 2-%-% Z 1% =% sin (27mx— g (E - E)) + O(x).

Hence, the estimations (6) follow immediately.
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5. Estimations of sums and integrals

The aim of this chapter is to estimate the sums and integrals (9), (16) and (21).
k

to|é“2
IN
\‘

>
IA
8

Lemma 1. Assume that for all z W1th < z <1 and for all T with

1

oo (( ) ' Z) K Ag23(x).

Q”7<nk<7-
Then
_1 1—-1
(25) Pys(z) < 2'7 2% (Apps(@)) "

PROOF: It is easily seen that in (9) the condition ¢; < ng is superfluous and that

>xk
=

Ealby

(:ck—nlgf) —n§>0 = nlg

_162/¢ <( —ng)% —t’f)1> dt1,
)

Further, consider

It is seen at once that this term is of order . Now we bring (9) and this term
together and obtain

z nk < ﬁ
ok/n 41~ 3T 27
Now we put t; = (zF — nlg)l/kt. Then
Pyp(x) =
27 l/n 1 1 1
:—16/ Z (xk—nlg)kd)((xk—n?))k (l—t'{)m) dt + O(x)
0 zk k<zk
zk/n+1<n377

= —16(I1 + I2) + O(x).
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Applying partial summation we obtain by means of the condition of the lemma

[ S (o)
Tt pk

x
ok /R 1 n3<y

< CL‘yAk’Zg(.’L').

In I, where the integral is taken from y up to 2_1/“, we use the FOURIER
expansion of the ¢-function (23) and obtain

1 O N 1-1
I = — Z (:v —ng) ZE/y TR =t T x

1—1
[tl_” (l—t”)l_%cos <2ﬂ'm (xk—nlg) * (l—t“)%>} -
Yy
1

271/1{ .
_/ % ( l_ﬁ(l_tﬁ)l_é)cos (27rm (xk—nlgf) k (1_#@),1) dt}.
y

We estimate the sum over n3z with VAN DER CORPUT’S simplest theorem (see
Theorem 2.1 in [3]). Then we get exactly in the same way as on page 183 of [3]

K

14
L <<z2y .

Now we put

1
1 Tk
y= (562 Ak,2,3($))
Then the estimations of I; and I are equal and we obtain (25). O
Lemma 2. Assume that for all z with 1 < z < 2 and for all uw with 1_?_; < uk <
k
T

1

T ()

ki k<yk
n u
1+zk< -

) < Ak’372($€).
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Then
_ 1 1—1
(26) Pyo(r) < z' 72 (Apga() "

PRrROOF: The proof is quite the same as the proof to Lemma 1 such that we omit
it. O

Lemma 3. Assume that

> ((t“ - n“)%) < Ag12().

tK/
o <ni<tr
Then

(27) Pia(a) < o' % (Aml,z(iv))l_l

k .

Proor: Consider
z K 1
—16/ Z Y <<(:vk - tlg) - ng) ) dts.
O (ah—thyn/k s <ns < (ak—th)n/k

It is easily seen that this term is of order z. Now we bring (21) and this term
together and obtain

Py a(x) =
ST AN SR (S5
O Lkt ng < (ki)

Putting #¥ — t§ = t¥ then

T 1
Py o(x) = —16/ th=1 (a:k - tk) "

0

==
=

- nfg) ) dt3 + O(x).

S o (5 = n§)%) di + O(w).

%<n§§t"

Here we have the same situation as in Lemma 4.8 of [3]. Using this result (27)
follows immediately.

Estimations of the error terms Ay o 3(x), A 32(7), Ag1,2(2): G. KUuBA [§]
has pointed out that M.N. HUXLEY’S [2] method is applicable to the above sums.
Assume that a, b, ¢, d are fixed positive real numbers. Then he proved

1

5 . (X—b(:+d)k>’“ -

(35)V/k—d<n< (Xt —d
< X\ 1 X2
X og (X
vab & ab
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But the proof shows essentially more: All the three cases in the lemmas are
included. Hence

119 165 315
Py 3(x), P3o(x) < x73 ~16x (log ) 146,
119 _ 165 315

Py o(r) < o773 146k (log ) 146 .
This gives the first term in the estimation (7). O

6. Estimations of the double sums

In order to estimate the sums (8), (17) and (22) we apply Theorem 3 in [4]
or, what is the same, Satz 4.4 in [6]. For this purpose the domains Ds 3, D32
and Dj 2 must be divided into some subdomains. The technical realization is
worst of all in case of D1 2. The both other cases are somewhat simpler and the
calculations are in principle the same, but easier. Therefore, we consider only the
estimation of Aj o(x), which is given by (22).

Now let

Bl

k
f(t1,t2) = — (iﬂk —( 'f+t§)“)
such that

1
E\r~1L
K

_ E_
fua(trt2) = 571 (¢ +15)0 71 (ah = (e + 15) 7 )

Let v1, v2 be non-negative integers. Then we consider the following subdomains
D1,2(V1, I/Q) of DLQ:

D1 a(vi,19) = {(tl,tz) eR%: 0 <o — (tf +15)

g(1-)+E-1 < fio < o +1)(1—1)+E—1

2”2%:17'f k 2(V2+1)%xk
& % St = ﬁ}
9 4 V21 or + o2ty
It is easily seen that
il P
E sSthrsat -1
3k +1
and from this v

t =2 % 1g.

If ag <t9 < by and cg = by — ag then

ko
o K2 "Ck-lg,
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If g < ft; < By and y1 = a1 — B then
71 =< 2”1(1_%).
We obtain for the second partial derivative

1
_ k_ E\E 2
fan = 20 +15)= 72 (aF — (@ +15)7 )"

: {(k — D)tfak + (k — 1)t5 (xk — (7 +13) )}

A Eol

and for the Hessian

H(f) = foty fiots — fir,
= ()" 2 (8 +5) = 4 (k= (¢ +85)" ) i
x| = D + (e - 125 (a8 - 05 + tg)f)}
x [0 = Dt + (5 — 0 (% — (e +85)% )| -

() [ - D+ + - (- 5+ )]

From this we get after some calculations

Now we apply Theorem 3 from [4] or Satz 4.4 from [6]. The following assump-
tions of that theorem are certainly satisfied in the domain D = Dy 2(v1,v2):
(A) Let D be a compact domain defined by

D = {(t1,t2) : a1 < o(t2) <t1 < o(t2) < b1, ag <ty < ba},

with ¢y = by —a1 > 1, cg =by—ag > 1, where ¢y, co are so small as possible. As-
sume that o(t), o(t) are partly monotonic and two times differentiable in [ag, ba].
(B) Let f(t1,t2) be a real-valued function in D with continuous partial derivatives
up to the third order.

(C) Let

|ft1t1| = A11, H(f) = ftaty Jtats — ft21t27 |H(f)| = A.

769
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(D) Suppose that ay < fi, < b1, 71 = 1 — 1.
(E) Let the function (p(y,t2),t2) be defined by

ftl (<P(ya t2)a t2) =Y.

Let n(t) = o(t), o(t), p(y,t). Then suppose that the functions

n//(t)v ferts (1), t)ﬁ/(f) + frata (n(t), 1),
Feats ((t), ) e (n(t), )" (2)

are partly monotonic. Further, let py(y,t2) be partly monotonic with respect to to.
Then

o w(f(nrng) < - (Ai + )\%) ot

A
(n1,n2)€D 1

+ { (A—\/f —|—1> c2+ (11 +1) <% + %)}(HogM +[log A1 |+ 1)2

Now we use this result for our problem and we obtain

1

Ar2(z) =—16 Z w((xk—(n'f—i—ng)i)k) <
(n1,m2)€D1,2(v1,v2)

- (k+1-%)

Y1

L2 2%

3 2
2 z(log vy + logvg + log x)*.

T
We may sum over v such that 2¥1 < \/x, because the trivial estimation of the
remainder gives an error term of order 23/2. Then

3
Aq2(z) < 22 log’ .

Analogously we obtain the same estimation for Ag 3(x) and A3z o(x). This gives
the second term in (7).
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