
Commentationes Mathematicae Universitatis Carolinae

Angel Tamariz-Mascarúa; H. Villegas-Rodríguez
Spaces of continuous functions, box products and almost-ω-resolvable spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 43 (2002), No. 4, 687--705

Persistent URL: http://dml.cz/dmlcz/119357

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119357
http://project.dml.cz


Comment.Math.Univ.Carolin. 43,4 (2002)687–705 687

Spaces of continuous functions, box

products and almost-ω-resolvable spaces

A. Tamariz-Mascarúa, H. Villegas-Rodŕıguez

Abstract. A dense-in-itself space X is called C� -discrete if the space of real continuous
functions on X with its box topology, C� (X), is a discrete space. A space X is called
almost-ω-resolvable provided that X is the union of a countable increasing family of
subsets each of them with an empty interior. We analyze these classes of spaces by
determining their relations with κ-resolvable and almost resolvable spaces. We prove
that every almost-ω-resolvable space is C� -discrete, and that these classes coincide in
the realm of completely regular spaces. Also, we prove that almost resolvable spaces and
almost-ω-resolvable spaces are two different classes of spaces if there exists a measurable
cardinal. Finally, we prove that it is consistent with ZFC that every dense-in-itself space
is almost-ω-resolvable, and that the existence of a measurable cardinal is equiconsistent
with the existence of a Tychonoff space without isolated points which is not almost-ω-
resolvable.

Keywords: box product, κ-resolvable space, almost resolvable space, almost-ω-resolvable
space, Baire irresolvable space, measurable cardinals

Classification: 54C35, 54F65, 54A35

Introduction

The spaces of continuous functions defined on a topological space X and with
values in R, C(X), have been widely studied as a purely algebraic structure ([GJ]),
and with a topological (topologico-algebraic) structure ([BNS], [DH]).
One of the natural topologies associated with C(X) is the pointwise conver-

gence topology, which is the topology in C(X) inherited from the Tychonoff topol-

ogy of RX . This space is usually denoted by Cp(X). A classical general problem
on Cp-spaces consists of determining the relations between the topological prop-
erties of space X with the topological properties of Cp(X) ([Ar]).
A generalization of the Tychonoff topology for a product of topological spaces,

is the box topology (see definition in Section 1) which was introduced by Tietze
in [T]. The study of the box product of an infinite family of topological spaces
has been useful to construct some interesting topological spaces ([R], [V]).
So, it seems natural to ask about the relations between the topological prop-

erties of a space X and those of C(X) with its box topology, which we denote
by C�(X). The purpose of this article is to analyze some of these relations when
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X is dense-in-itself. In particular, we determine for which dense-in-themselves
spaces X , C�(X) is a discrete space. This analysis will lead us to consider the
resolvable and irresolvable spaces and the measurable cardinals. Resolvable and
irresolvable spaces were studied extensively first by Hewitt [H]. Later, El’kin and
Malykhin published a number of papers on this subject and its connection with
various topological problems. One of the problems considered by Malykhin [M2]
refers to the existence of irresolvable spaces satisfying the Baire Category The-
orem. He proved that there is such a space if and only if there is a space X on
which every real-valued function is continuous at some point. The question about
the existence of a Hausdorff space on which every real-valued function is continu-
ous at some point was posed by M. Katětov in [K]. Bolstein introduced in [B] the
spaces X on which it is possible to define a real-valued function f with countable
range and such that f is discontinuous at every point of X (he called these spaces
almost resolvable), and proved that every resolvable space satisfies this condition.
Here we introduce the almost-ω-resolvable spaces defined as spaces on which it is
possible to define a real-valued function f with countable range, and such that r◦f
is discontinuous in every point of X , for every real-valued finite-to-one function r.
We prove in Section 2 that, for completely regular spaces, C�(X) is discrete if
and only if X is almost-ω-resolvable. Section 3 is devoted to obtaining the basic
properties of C�-discrete and almost-ω-resolvable spaces, and we determine their
relations with spaces having resolvable-like properties. In Section 4 we prove that
the existence of a measurable cardinal is equiconsistent with the existence of a Ty-
chonoff space without isolated points which is not almost-ω-resolvable, and that,
on the contrary, if V = L then every dense-in-itself space is almost-ω-resolvable.
Also, we prove that almost-ω-resolvable spaces and almost resolvable spaces are
two different classes of spaces if there exists a measurable cardinal. Finally, in the
last section we list some unsolved questions concerning these subjects.

1. Definitions and generalities

Let F = {Xs : s ∈ S} be a family of topological spaces. By �s∈SXs we
denote the cartesian product of the family F considered with the so called box
topology τ�, which is that generated by the sets of the form

∏
s∈S As where, for

each s ∈ S, As is an open subset of Xs. It is obvious that the Tychonoff topology
is contained in the box topology, and they coincide when |S| < ℵ0.
It is well known that, for an infinite family {Xs : s ∈ S} of non-trivial topolo-

gical spaces, �s∈SXs is neither first countable nor locally compact, and it never
is a topological vector space over R, but it is a topological group if each of the
spaces Xs is a topological group. A good survey of the characteristics of the box
topology can be found in [Wi].

For a topological space X we denote by RX the set of functions from X to R.
The subset of RX whose elements are the continuous functions is denoted by
C(X). The space �RX will be the set RX with the box topology, and C�(X) is
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the set C(X) considered as a subspace of �RX . Of course, C�(X) is a topological

subgroup of �RX .
For spaces X and Y and for a function f : X → Y , D(f) will denote the set of

points in X in which f is not continuous.
A point x in X is an isolated point of X if {x} is open in X , and a space X

is dense-in-itself if it does not contain isolated points. A space X is resolvable if
it is the union of two disjoint dense subsets. We say that X is irresolvable if it is
dense-in-itself and it is not resolvable. For a cardinal number κ > 1, we say that
X is κ-resolvable if X is the union of κ pairwise disjoint dense subsets.
The dispersion character ∆(X) of a spaceX is the minimum of the cardinalities

of nonempty open subsets of X .
If X is ∆(X)-resolvable, then we say that X is maximally resolvable.
A space X is hereditarily irresolvable if it is dense-in-itself and every subspace

of X is irresolvable. And X is open-hereditarily irresolvable if it is dense-in-itself
and every open subspace of X is irresolvable.
A space (X, t) is maximal if (X, t) is dense-in-itself and (X, t′) contains at

least an isolated point when t′ strictly contains the topology t. And a space X is
submaximal if it is dense-in-itself and every dense subset of X is open.
A space X is called almost resolvable if X is the union of a countable collection

of subsets each of them with an empty interior.
Of course, every κ-resolvable space is τ -resolvable if τ ≤ κ. Besides, every

maximal space is submaximal, and these are hereditarily irresolvable spaces, which
in turn are open hereditarily irresolvable.
The concept of resolvability and related topics were introduced by Hewitt in [H];

and Bolstein [B] proved that a space X is resolvable if it is the union of a finite
collection of subsets each of them with an empty interior. That is, every resolvable
space is almost resolvable.
The class of resolvable spaces includes spaces with well known properties:

Theorem 1.1 ([E2]). If X is dense-in-itself and has a π-network N such that
|N | ≤ ∆(X) and each N ∈ N satisfies |N | ≥ ∆(X), then X is maximally resolv-
able.

Theorem 1.2. All the spaces considered in this theorem are dense-in-themselves.

(1) The locally compact Hausdorff spaces are maximally resolvable [H].
(2) First countable spaces are maximally resolvable [E1].
(3) Hausdorff k-spaces are maximally resolvable [P] (in particular, metrizable
spaces are maximally resolvable [H]).

(4) Countably compact regular T1 spaces are ω-resolvable [CGF].
(5) Arc connected spaces are ω-resolvable (in particular, every topological
vector space over R is ω-resolvable).

(6) Every biradial space (in particular, every linearly orderable topological
space) is maximally resolvable [Vi2].
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(7) Every homogeneous space containing a non-trivial convergent sequence is
ω-resolvable [Vi1].

(8) If G is a non-countable T0 ℵ0-bounded topological group, then G is ℵ1-
resolvable [Vi2].

The terms not defined in this paper are considered as in [W].

2. C�-discrete and almost-ω-resolvable spaces

As we have already mentioned, we are interested in knowing when C�(X) is

a discrete subspace of �RX ; if this happens, we say that X is C�-discrete. The
finite spaces are not C�-discrete because if |X | = n+1, n ∈ ω, and r ∈

⋂
0≤i≤n Ai

where Ai is an open set in R with 0 ∈ Ai for every 0 ≤ i ≤ n, then f ≡ 0 and g ≡ r
are two different continuous functions in A0×· · ·×An. Because of this, from now
on we will only consider spaces with cardinality ≥ ℵ0. We also observe that if X
is a T1 or a regular space and a ∈ X is an isolated point, then X = {a}⊕X \ {a};
thus C�(X) ∼= R × C�(X \ {a}). Therefore, in this case, C�(X) is not discrete.
Furthermore, if C(X) is equal to the set of constant functions, then C�(X) is

discrete in �RX . Indeed, let N = {x0, . . . , xn, . . . } ⊂ X with xi 6= xj if i 6= j;
and let f(x) = r ∈ R for every x ∈ X . Then, {f} = C�(X) ∩

∏
x∈X Ax where

Axn = (r − 1
n , r + 1n ) and Ax = R for every x ∈ X \ N . Thus, we can find a T0

C�-discrete space having isolated points: take an infinite set X , and let a ∈ X .
The collection τ = {A ⊂ X : a ∈ A} ∪ {∅} is a T0 topology in X , {a} is open and
every continuous real-valued function on X is constant.

Proposition 2.1. If X is C�-discrete and regular or T1, then X does not have
isolated points.

Observe also that for every space X , C�(X) is a closed subspace of �RX .

This can be proved as follows: Let f ∈ �RX , and let x0 ∈ X such that f is not
continuous in x0. Then, there is an open neighborhood U of f(x0) such that, for
every neighborhood V of x0, there is xV ∈ V satisfying f(xV ) /∈ clU . For each
f(xV ) we take a neighborhoodWV of f(xV ) withWV ∩U = ∅. Let G =

∏
x∈X Ux

where Ux = U if x = x0, Ux = WV if x = xV , and Ux = R in all other cases. It
is clear that f ∈ G ⊂ �RX \ C�(X).

Theorem 2.2. Let (X, τ) be a topological space, and let τ∗ = τ \ {∅}. The
following properties are equivalent.

(1) There is a partition X = {Xn : n < ω} of X such that each A ∈ τ∗ has a
nonempty intersection with each of the elements of an infinite subcollection
of X .

(2) X =
⋃

n<ω Yn with Yn ⊂ Yn+1 and int(Yn) = ∅ for every n < ω.
(3) There is a decreasing sequence of dense subsets of X with an empty
intersection.
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(4) There is a function f : X → ω for which D(r ◦ f) is equal to X , for every
finite-to-one function r : ω → ω.

(5) There is a function h : X → R+ \ {0} such that, for each A ∈ τ∗, there is
a sequence (xn)n<ω in A such that (h(xn))n<ω converges to 0.

(6) There is a set S 6= ∅ and, for each s ∈ S, there exists Cs = {xs
n : n < ω},

such that (i) X =
⋃

s∈S Cs; (ii) for each s0 ∈ S and each n0 < ω, Cs0 is
not contained in

⋃
{xs

k : s ∈ S, k ≤ n0}; (iii) for each A ∈ τ∗, there is
s ∈ S such that Cs ⊂ A.

Proof: (1) ⇒ (2): The set Yn =
⋃
0≤i≤n Xn has an empty interior for every

n < ω.
(2) ⇒ (1): If we define X0 = Y0 and Xn+1 = Yn+1 \

⋃
0≤i≤n Yn, then {Xn :

n < ω} satisfies that which is required.
(2) ⇔ (3): Define Dn = X \ Yn. Then, Dn+1 ⊂ Dn if and only if Yn ⊂ Yn+1;

Dn is dense in X if and only if intYn = ∅; and
⋂

n∈ω Dn = ∅ if and only if
X =

⋃
n<ω Yn.

(2) ⇒ (4): The function f : X → ω defined by f(x) = 0 if x ∈ Y0, and
f(x) = n+ 1 if x ∈ Yn+1 \ Yn, satisfies the required conditions.

(4) ⇒ (5): Let h(x) = 1
f(x)+1

for each x ∈ X , and let A ∈ τ∗. If for some

n < ω, A ⊂
⋃
0≤i≤n f−1(i) and x0 ∈ A, then r ◦ f is a continuous function in

x0, where r : ω → ω is defined by r(i) = 0 if 0 ≤ i ≤ n, and r(i) = i if i > n.
But this is not possible, thus, there is a cofinal sequence (nk)k<ω in ω such that
A ∩ f−1(nk) 6= ∅ for every k < ω. If xk ∈ A ∩ f−1(nk), then limk→∞ h(xk) = 0.

(5) ⇒ (6): Fix a point x0 ∈ X . For each A ∈ τ∗, let (xA
n )n<ω be a sequence

in A such that (h(xA
n ))n<ω converges to 0. We take yA

n ∈ h−1([ 1n+1 ,
1
n)) ∩ {xA

n :

n < ω} = T A
n if T

A
n 6= ∅, and yA

n = x0 if T
A
n = ∅. Let CA = {yA

n : n < ω}. Since
h(x) > 0 for every x ∈ X and h(xA

n ) → 0, then |CA| = ℵ0. Besides, because of
the election of each yA

n , for each A0 ∈ τ∗ and each n0 < ω, CA0 is not contained

in
⋃
{yA

n : A ∈ τ∗, k ≤ n0}.
IfX\

⋃
A∈τ∗ CA = K is finite, we add the points in K to some CA. In this case,

we define T = ∅. If, on the contrary, |K| ≥ ℵ0, let {Ct : t ∈ T } be a partition of K
where |Ct| = ℵ0 for each t ∈ T . Then, the collection {CA : A ∈ τ} ∪ {Ct : t ∈ T }
satisfies the conditions in (6).
(6) ⇒ (2): For each s ∈ S we enumerate Cs: {cs

n : n < ω} such that cs
n 6= cs

m

if n 6= m. We define, Y0 = {cs
0 : s ∈ S}, and Yn+1 =

⋃
0≤i≤n Yi ∪ {cs

n+1 : s ∈ S}.
Now, we have that X =

⋃
n<ω Yn and intYn = ∅ for every n < ω. �

Definition 2.3. A space X is almost-ω-resolvable if X satisfies one (thus all)
of the properties (1)–(6) enlisted in Theorem 2.2. We will call the partition
{Xn : n < ω}, which satisfies the conditions in (1) of this theorem, an almost-ω-
resolvable partition on X ; and the sequence {Yn : n < ω} in (2) will be called an
almost-ω-resolvable sequence.
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Observe that every almost-ω-resolvable space is an infinite dense-in-itself space.
Besides, it is evident that every ω-resolvable space is almost-ω-resolvable, and this
class of spaces is contained in the class of almost resolvable spaces.

Theorem 2.4. Let X be an almost-ω-resolvable space. Then C�(X) is a discrete

subspace of �RX .

Proof: Let f ∈ C(X), and let X = {Xn : n ∈ ω} be a partition on X for which
each nonempty open set of X intersects ℵ0 elements in X . We take the following
open subset of �RX : G =

∏
x∈X Gx, where Gx = (f(x) − 1/n, f(x) + 1/n) if

x ∈ Xn. Of course, f ∈ G. Assume that g is also a continuous function from X to
R which belongs to G. Let x0 be a fix point in X , and let n0 be a natural number.
Since g and f are continuous functions in x0, there is an open set V ofX containing
x0 such that f(V ) ⊂ (f(x0)−

1
n0

, f(x0)+
1
n0
) and g(V ) ⊂ (g(x0)−

1
n0

, g(x0)+
1
n0
).

Because of the definition of X , there is k ≥ n0 such that V ∩Xk 6= ∅. If y ∈ V ∩Xk,
we have that d(f(x0), g(x0)) ≤ d(f(x0), f(y)) + d(f(y), g(y)) + d(g(y), g(x0)) ≤
1
n0
+ 1

k
+ 1

n0
≤ 3

n0
. Since x0 is fixed and n0 is arbitrary, we conclude that f = g.

That is, G ∩ C(X) = {f}. �

The converse of the last result is true if we consider completely regular spaces:

Theorem 2.5. Let X be a completely regular space. Then X is an almost-ω-
resolvable space if and only if C�(X) is a discrete subspace of �RX .

Proof: Assume that C�(X) is a discrete subspace of �RX . So there is an open

set G =
∏

x∈X Gx in �RX which only contains the continuous function f ≡ 0.
Let d : X → ω be the function defined by d(x) = the least natural number n such

that (−1n , 1n ) ⊂ Gx. Let Yn = {x ∈ X : d(x) ≤ n+ 1}.
Assume that there exists a nonempty open set A of X satisfying A ⊂ Yn0 for

an n0 ∈ ω. We pick a point x0 in A. Since X is a completely regular space,
there is a continuous function h : X → [0, 1

2(n0)
] such that h(x0) =

1
2(n0)

and

h(y) = 0 if y ∈ X \A. It happens that h ∈ G∩C(X) and, of course, h 6= f . This
contradiction implies that intYn = ∅ for every n < ω. So, {Yn : n < ω} is an
almost-ω-resolvable sequence on X . �

We are going to see that almost resolvable spaces, almost ω-resolvable spaces
and C�-discrete spaces are very similar classes of spaces, and, in fact, we will
prove that the proposition “every dense-in-itself topological space is almost-ω-
resolvable” is consistent with ZFC.

3. Basic properties of C�-discrete and almost ω-resolvable spaces

Since a T0 topological space is dense-in-itself if and only if its dispersion char-
acter is infinite, we obtain:
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Proposition 3.1. Every T0 dense-in-itself space with cardinality ℵ0 is an almost-
ω-resolvable space.

Proposition 3.2. If X contains an almost-ω-resolvable (resp., C�-discrete)
dense subspace, then X is an almost-ω-resolvable (resp., C�-discrete) space.

Proof: Assume that D is a dense subspace of X , and let D = {Dn : n < ω}
be an almost-ω-resolvable partition of D. The partition of X determined by
X = {X \ D} ∪ D witnesses that X is almost-ω-resolvable.
Now, assume that D is a dense subset of X and D is C�-discrete. Let f ∈

C(X). There exists an open set B =
∏

d∈D Bd of �RD such that f |D is the only
continuous function contained in B. Then, {f} = G∩C(X) where G =

∏
x∈X Gx

and Gx = Bx if x ∈ D and Gx = R if x /∈ D. �

Corollary 3.3. Every T0 dense-in-itself space X such that min{|D| : D ⊂ X ,
D is dense in X and dense-in-itself } = ℵ0, is an almost-ω-resolvable space. In
particular, every T1 dense-in-itself separable space is almost-ω-resolvable.

Observe that for every topological space X there is a dense subset of X , DX =
FX ∪ GX , such that every point in FX (if FX is not empty) is an isolated point
of DX and GX is dense-in-itself (GX can be an empty set). It is possible to
prove that every T0 space X without isolated points for which |GX | = ℵ0 and
clX FX ∩ clX GX = ∅, is a C�-discrete space. A similar result does not hold for
almost-ω-resolvable spaces as the examples in Section 4 testify.
We have already mentioned that every ω-resolvable space is almost-ω-resolv-

able, thus by Theorems 1.1 and 1.2 we obtain:

Theorem 3.4. Dense-in-themselves spaces with the following properties are
almost-ω-resolvable: locally compact Hausdorff spaces, first countable spaces,
Hausdorff k-spaces (in particular, metrizable spaces), countably compact regular
T1 spaces, arc connected spaces, biradial spaces (in particular, linearly orderable
topological spaces), homogeneous spaces with a non-trivial convergent sequence,
non-countable T0 ℵ0-bounded groups, and spaces X with a π-network N such
that |N | ≤ ∆(X) and |N | ≥ ∆(X) for every N ∈ N .

We present now some subclasses of almost-ω-resolvable spaces which are not
contained in the class of ω-resolvable spaces.

Theorem 3.5. Let X be a dense-in-itself space. If X is

(i) of the first category, or
(ii) T0 and σ-discrete, or
(iii) a T0 ℵ0-bounded topological group,

then X is an almost-ω-resolvable space.

Proof: Let X be of the first category. Since |X | ≥ ℵ0, we can split X into a
sequence {Xn : n < ω} such that Xn 6= ∅ and intX (clX Xn) = ∅ for each n < ω.
Then, {Xn : n < ω} is an almost-ω-resolvable partition on X .
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Assume now that X =
⋃

n<ω Xn, where each Xn is a discrete subspace of X .
Since X is dense-in-itself and T0, X must be the union of an infinite countable
collection of different discrete subspaces. So, we can assume, without loss of
generality, that Xn 6= Xm if n 6= m. Let Z0 = X0, Z1 = X1 \ X0, . . . ,Zn+1 =
Xn+1 \

⋃
0≤i≤n Xn, . . . . Each Zn is a discrete subspace of X , and if Zn = ∅ for

every n > n0, then X is the union of a finite collection of discrete subspaces. But
this implies that X has an isolated point, which is not possible. Therefore, there
exists an increasing sequence {nk : k < ω} of natural numbers, such that Zn 6= ∅
if and only if n ∈ {nk : k < ω}. We now have that the collection {Znk

: k < ω}
is an almost-ω-resolvable partition on X .

The last assertion of the theorem is a consequence of Proposition 3.1 and
Theorem 3.4. �

For each infinite cardinal number κ, there are dense-in-themselves first category
and σ-discrete spaces with cardinality κ, which are not resolvable. Indeed, van
Douwen constructed a countable irresolvable Hausdorff zero-dimensional space X
in [vD] using a maximal independent family of subsets of ω. The free topological
sum of κ copies of X is a first category σ-discrete space with cardinality κ and it is
not resolvable. Besides, Malykhin in [M1] constructed an extremally disconnected
group topology on the countable Boolean group G =

⊕
n<ω{0, 1}, in the system

[ZFC + P (c)], which is maximal among regular Hausdorff topologies without
isolated points (so, G is an irresolvable ℵ0-bounded topological group).

The following two propositions are easy to prove.

Proposition 3.6. If {Xs : s ∈ S} is a family of almost-ω-resolvable (resp.,
C�-discrete) spaces, then the free topological sum of the elements of this family,⊕

s∈S Xs, is almost ω-resolvable (resp., C�-discrete).

Proposition 3.7. Every open subspace of an almost-ω-resolvable space is
almost-ω-resolvable.

It is not possible to get, in ZFC, a proposition like Proposition 3.7 for dense
or Gδ closed subsets. Indeed, assume that (T, τ) is a dense-in-itself Tychonoff
non almost-ω-resolvable space T (see Theorem 4.16.1 below), then β(T ), the
Stone-Čech compactification of T , is maximally resolvable (Theorem 1.2) (so,
it is almost-ω-resolvable) and T is dense in β(T ). Besides, Y = T ×

∏
n<ω Xn,

where each Xn is a non-trivial T1 space with countable pseudo-character, is an
almost-ω-resolvable space (see Theorem 3.9 below), and T is homeomorphic to a
Gδ closed subset of Y . On the other hand, it is not possible to prove in ZFC that
C�-discreteness is inherited by open subspaces: Consider the space Z = T ∪ {p}
with p /∈ T , and such that A ⊂ Z is open if and only if A ∈ τ or p ∈ A and
|X \ A| < ℵ0. We have that C(Z) is equal to the set of constant functions, and,
hence, C�(Z) is discrete. Moreover, T is open in Z and it is not C�-discrete.
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The proof of the following result follows the pattern of the proof of the Theorem
in [CLF] (see also [CGF], Theorem 2.2).

Theorem 3.8. If X is the union of almost-ω-resolvable (resp., almost resolvable,
κ-resolvable) subspaces, then X is almost-ω-resolvable (resp., almost resolvable,
κ-resolvable).

Proof: We prove the theorem for almost-ω-resolvability. For almost resolvable
or κ-resolvable spaces the proof is analogous. Assume that X =

⋃
j∈J Xj where

each Xj is almost-ω-resolvable. Let A = {As : s ∈ S} be a maximal family of
pairwise disjoint, nonempty almost-ω-resolvable subspaces of X . For s ∈ S, let
Cs = {A(s, n) : 0 < n < ω} be an almost-ω-resolvable partition of As. If there
is j ∈ J for which B = Xj \ clX

⋃
A 6= ∅, then, by Proposition 3.7, B is almost-

ω-resolvable and its intersection with each element A ∈ A is equal to the empty
set. This contradicts the maximality of A; so,

⋃
A must be dense in X . Now,

the family {Xn : n < ω}, where X0 = X \
⋃
A and Xn =

⋃
s∈S A(s, n) for every

0 < n < ω, is an almost-ω-resolvable partition of X . �

If X is a Tychonoff product with an infinite number of non-trivial T1 factors,
then a σ-product in X is dense, has no isolated points and is a first category
set. Then, by Proposition 3.2 and Theorem 3.5, X is almost-ω-resolvable. The
following theorem and corollary seem not to have been noted before. The maximal
resolvability of a product of maximal resolvable spaces is treated in [C] and [CP].

Theorem 3.9. The Tychonoff product X of an infinite collection {Xλ : λ < κ}
of non-trivial T1 topological spaces is, at least, 2

κ-resolvable. In particular, if
supλ<κ |Xλ| ≤ 2

κ, then X is maximally resolvable.

Proof: The space X can be covered by copies of the Cantor cube of weight κ,
C = {0, 1}κ, and C is maximally resolvable; that is, C is 2κ-resolvable. We finish
the proof by applying Theorem 3.8.
The last part of the Theorem is obtained because ∆(X) ≤ (supλ<κ |Xλ|)

κ.
�

Corollary 3.10. Every T2 locally path connected space (in particular, every
topological vector space over R) is, at least, 2ω-resolvable.

Proof: If X is a T2 locally path connected space, then X can be covered by
copies of the real line, and R is 2ω-resolvable. It remains to refer to Theorem 3.8.

�

Corollary 3.11. Let X be a homogeneous space. If X contains an almost-ω-
resolvable subspace, then X is almost-ω-resolvable.

Proposition 3.12. Let X and Y be two spaces, and f : X → Y be an onto
function.

(1) If int f(A) 6= ∅ for every nonempty open subset A of X (in particular, if
f is open) and Y is almost-ω-resolvable, then X is almost-ω-resolvable.
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(2) If f is a one-to-one continuous function and X is almost-ω-resolvable
(resp., C�-discrete), then Y is almost-ω-resolvable (resp., C�-discrete).

Proof: (1) Let {Yn : n < ω} be an almost-ω-resolvable partition of Y . Then,
{f−1(Yn) : n < ω} is an almost-ω-resolvable partition of X .
(2) If {Xn : n < ω} is an almost-ω-resolvable partition of X . Then, {f(Xn) :

n < ω} is an almost-ω-resolvable partition of Y .
Now assume thatX is C�-discrete. So, C�(X) is a discrete subspace of �RX =

�RY . Moreover, the function f# : C�(Y )→ C�(X) defined by f#(g) = g ◦ f is

an embedding. Then, C�(Y ) is discrete in �RY . �

The following result is a consequence of Proposition 3.12.1.

Corollary 3.13. Let {Xs : s ∈ S} be a family of topological spaces, and let
X =

∏
s∈S Xs. If for an s0 ∈ S, Xs0 is almost-ω-resolvable, and t is a topology

on X contained in the box topology of X , then (X, t) is almost-ω-resolvable.

Remarks 3.14.

(1) With regard to Proposition 3.12, we give the following counterexamples
which prove that this proposition cannot be ameliorated in various senses:
Let Z = [0, 1] ⊕ X where X is the non almost-ω-resolvable space in
Example 4.2 below. Let Y be the quotient space obtained from Z by
identifying 0 in [0, 1] with p in X ; and let q : Z → Y be the quotient
map. We have that q is a continuous finite-to-one quotient map, Z is
not almost-ω-resolvable and Y is almost-ω-resolvable. In addition, the
function g : Z → [0, 1] defined as g|[0,1] = id and g|X ≡ 0 is continuous
and closed. On the other hand, the projection π : X × Q → X , where
Q is the space of rational numbers with its usual topology, is a contin-
uous open map with countable fibers from an almost-ω-resolvable space
(Corollary 3.13) and with values in a space which does not satisfy this
property. Finally, let W be a space which is not C�-discrete, V =W ⊕X
and f : V → X which sends every point in W to p, and coincides with
the identity function in X ; then, f is a continuous function from a space
which is not C�-discrete onto a C�-discrete space.

(2) In a similar way as in Theorem 3.8, several results presented in this sec-
tion can be formulated by almost resolvable spaces and for κ-resolvable
spaces. Indeed, observe that Propositions 3.2, 3.6, 3.7, and 3.12, and
Corollaries 3.11 and 3.13 remain true if we put “almost resolvable” or
“κ-resolvable” instead of “almost-ω-resolvable”.

4. Measurable cardinals, almost resolvable spaces and

almost-ω-resolvable spaces

As we have already mentioned, every resolvable space X and every almost-
ω-resolvable space is almost resolvable. The spaces mentioned in the paragraph
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following Theorem 3.5 are examples of irresolvable almost-ω-resolvable spaces
of cardinality κ, where κ is an arbitrary infinite cardinal number. Now we are
going to give examples of almost-ω-resolvable hereditarily irresolvable Tychonoff
spaces with an arbitrarily large dispersion character. Also, we are going to see
that the existence of a measurable cardinal number provides us with an example
of a resolvable C�-discrete space which is not almost-ω-resolvable. A simple
modification of this space produces a C�-discrete space which is not even almost
resolvable:

Example 4.1. For each cardinal number κ, there are Tychonoff spaces X which
are almost-ω-resolvable, hereditarily irresolvable and ∆(X) ≥ κ.

Proof: Let α be a cardinal number such that κ ≤ α and cof(α) = ℵ0. Let H ,
G and τ be the topological groups and the topology in G, respectively, defined in
[LF, pages 33 and 34], with |H | = α. L. Feng proved there that (H, τ |H ) is an
irresolvable card-homogeneous (every open subset of H has the same cardinality
as H) Tychonoff space, and each subset S ⊂ H with cardinality < α is a nowhere
dense subset of H .

Let (αn)n<ω be a sequence of cardinal numbers such that αn < αn+1 for every
n < ω and sup{αn : n < ω} = α. We take subsets Hn of H with the properties
Hn ⊂ Hn+1 and |Hn| = αn for each n < ω, and H =

⋃
n<ω Hn. We have

that each Hn is nowhere dense in H ; so {Hn : n < ω} is an almost-ω-resolvable
sequence on H . That is, H is almost-ω-resolvable.

By the Hewitt Decomposition Theorem (see Lemma 4.7 below), there exists a
nonempty open subset U of H which is hereditarily irresolvable. Besides, ∆(U) =
∆(H) ≥ κ and it is almost-ω-resolvable (Proposition 3.7). �

Example 4.2. If there is a measurable cardinal α, then there is a T0 resolvable
C�-discrete Baire space X which is not almost-ω-resolvable and ∆(X) = α.

Proof: Let α be a non-countable Ulam-measurable cardinal, and let p be a free
ultrafilter on α w+-complete. Let X = α ∪ {p}. We define a topology t for X as
follows: A ∈ t \ {∅} if and only if p ∈ A and A ∩ α ∈ p. This space is resolvable
because α and {p} are two disjoint dense subsets, and ∆(X) = α because the
cardinality of each element of p is α. Assume now that X =

⋃
n<ω Yn, and

Yn ⊂ Yn+1 for every n < ω. Let n0 be a natural number such that p ∈ Yn0 ,
and let n1 < ω such that Yn1 ∩ α ∈ p (this is because p is ω+-complete). Thus,
if k ≥ max{n0, n1}, then intYk 6= ∅. This means that (X, t) is not almost-ω-
resolvable. Furthermore, X is C�-discrete because the only continuous functions
from X to R are constant functions. Finally, X is a Baire space because if
{Un : n < ω} is a sequence of open dense subsets of X , then Un ∩ α ∈ p for
each n < ω. Since p is ω+-complete, D =

⋂
n<ω(Un ∩ α) ∈ p. Therefore, D is a

dense subset of X . �
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Example 4.3. If there is a measurable cardinal α, then there is a T1 submaximal
C�-discrete Baire space X which is not almost resolvable and ∆(X) = α.

Proof: Let α be a non-countable Ulam-measurable cardinal, and let p be a free
ultrafilter on α w+-complete. Let X = α ∪ {p}. We define a topology σ for X as
follows: A ∈ σ \ {∅} if and only if A ∩ α ∈ p. This space is not almost resolvable
because if X =

⋃
n<ω Xn, at least for a n0 ∈ ω, Xn0 ∩α ∈ p; that is intXn0 6= ∅.

Because of the same argument of the former example, (X, σ) is C�-discrete, Baire
and ∆(X) = α.
Also, observe that a subset D of X is dense in (X, σ) if and only if D ∩ α ∈ p.

So, D is open. This means that (X, σ) is submaximal. �

Example 4.4. If there is a measurable cardinal α, then there is a T1 compact
C�-discrete Baire space Y which is not almost resolvable (in particular, it is
irresolvable), and ∆(Y ) = α.

Proof: Let (X, σ) be as in Example 4.3. Now, let q /∈ X and let F = {{q} ∪A :
A ⊂ α and |α \ A| < ℵ0}. Let τ be the topology in Y = X ∪ {q} generated by
the base σ ∪ F . Then, (Y, τ) is compact, T1 and non almost resolvable. It is not
difficult to prove that (Y, τ) is a Baire space and C�(Y ) coincides with the set of
constant functions. �

It is not possible to get a T2 irresolvable Baire space from measurable cardinals.
Indeed, Theorem 3.8 in [KST] states that there are models of ZFC with measurable
cardinals in which all Baire T2 spaces are resolvable.
We will prove that the existence of a measurable cardinal number is equicon-

sistent with the existence of a Tychonoff space which is not C�-discrete. In order
to achieve this goal we need to establish some previous statements.
The following lemma is Fact 1.13 in [vD].

Lemma 4.5. A dense-in-itself space X is open-hereditarily irresolvable if and
only if for every A ⊂ X , intA = ∅ implies int(clA) = ∅.

Then we conclude:

Proposition 4.6. In the class of open-hereditarily irresolvable (completely regu-
lar) spaces, almost resolvability and almost-ω-resolvability (and C�-discreteness)
coincide.

Proof: These are consequences of Lemma 4.5 and Theorems 2.5 and 3.5. �

We are going to prove that every Baire irresolvable space is not almost-ω-
resolvable by using the following two lemmas. (The referee pointed out to the
authors that the proof of Corollary 4.9 below, was already given in [Ma].)

Lemma 4.7 ([H]). Every dense-in-itself topological space X is the union of a
resolvable subspace X1, and a hereditarily irresolvable open subspace X2, and
X1 ∩ X2 = ∅.
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Lemma 4.8 ([FL]). For a dense-in-itself space X the following statements are
equivalent.

(1) X is an almost resolvable space.
(2) X = X1 ∪ X2 where X1 is closed (with a nonempty interior if X1 6= ∅)
and it is resolvable, and X2 is a first category open set.

(3) There is a function f : X → ω such that D(f) = X .

Corollary 4.9. If X is a Baire irresolvable space, thenX is not almost resolvable;
in particular, X is not almost-ω-resolvable. Besides, if X is completely regular,
C�(X) is not discrete in �RX .

Proof: If X is a Baire irresolvable space, then, by Lemma 4.7, it contains a
nonempty open hereditarily irresolvable subspace Y , and Y is a Baire space. If
X is almost resolvable, then Y is almost resolvable. But this means that Y is a
set of the first category (Lemma 4.8). This is a contradiction. �

Even more, it is consistent with ZFC that every Baire dense-in-itself space is
resolvable (see Theorem 4.11 below). Indeed:

Proposition 4.10. Assume V = L. Then every space without isolated points is
almost resolvable.

Proof: Proposition 3.9 in [KST] says that V = L implies that every space of
regular cardinality without isolated points is almost resolvable.

Now, let X be a space without isolated points such that |X | = κ is a singular
cardinal. κ+ is regular and Z =

⊕
λ<κ+ Xλ, with Xλ = X for every λ < κ+, is a

topological space with regular cardinality and without isolated points. So, since
we are assuming that V = L, Z is almost resolvable; that is Z can be written as⋃

n<ω Jn where intZ Jn = ∅. Then X0 =
⋃

n<ω Ln where Ln = X0 ∩Jn for every
n < ω. We have that intX0 Ln = ∅ and X0 is homeomorphic to X , so X is almost
resolvable. �

Then, by Corollary 4.9 and Proposition 4.10, we obtain:

Theorem 4.11. Assume V = L. Then every Baire space (in particular, every
Tychonoff pseudocompact space) without isolated points is resolvable.

The authors of [A] prove their Theorem 3.1 assuming that every space is Haus-
dorff. By a slight modification of that proof we obtain the same result without
assuming any separation axiom:

Lemma 4.12. The following assertions are equivalent in ZFC.

(1) There is a Baire irresolvable space.
(2) There is a maximal space which is not σ-discrete.
(3) There is a submaximal space which is not σ-discrete.
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We remind the reader that a dense-in-itself Tychonoff space (X, t) is maximal
Tychonoff if for every Tychonoff topology t′ on X with t ⊂ t′ and t 6= t′, (X, t′)
has an isolated point.

Remarks 4.13.

(1) If C is a chain of Tychonoff topologies on a set X , then the topology τ
generated by

⋃
C is a Tychonoff topology in X ; if in addition, (X, t) is

dense-in-itself for every t ∈ C, so is (X, τ).
(2) Every submaximal space is T1. Moreover, every σ-discrete T0 space is
almost-ω-resolvable (Theorem 3.5), and every maximal Tychonoff space
is hereditarily irresolvable ([vD, Theorem 1.8 and Fact 1.11]).

Theorem 4.14. The following assertions are equivalent in ZFC.

(1) There is a Baire irresolvable (Tychonoff ) space.
(2) There is a maximal (maximal Tychonoff ) space which is not almost re-
solvable.

(3) There is a submaximal space which is not almost resolvable.
(4) There is a maximal (maximal Tychonoff ) space which is not almost-ω-
resolvable.

(5) There is a submaximal space which is not almost-ω-resolvable.

Proof: (1) ⇒ (2): Let (X, t) be a Baire irresolvable (Tychonoff) space. Be-
cause of Corollary 4.9, X is not almost resolvable. Let (X, t′) be a maximal
(maximal Tychonoff) topology containing t (The existence of t′ is guaranteed by
Remark 4.13.1 and Zorn Lemma). Assume that (X, t′) is almost resolvable. It
happens that the direct image of an almost resolvable space under a continuous
bijective function is again almost resolvable; so, (X, t) must be almost resolvable,
which is a contradiction by Corollary 4.9. So, (X, t′) is not almost resolvable.
(2) ⇒ (3) and (4) ⇒ (5): Every maximal space is submaximal.
(2)⇒ (4) and (3)⇒ (5): Every almost-ω-resolvable space is almost resolvable.
(5)⇒ (1): The statement in (5) implies that there is a submaximal space which

is not σ-discrete (Remark 4.13.2), and this assertion implies that there is a Baire
irresolvable space (Lemma 4.12).
Tychonoff case of (4)⇒ Tychonoff case of (1): Assume that (X, t) is a maximal

Tychonoff space which is not almost-ω-resolvable. Let S = {U ∈ t : U 6= ∅ and U
is almost-ω-resolvable }. Using Theorem 3.8 and Proposition 3.2, we obtain that
Y = cl

⋃
S is almost-ω-resolvable. Therefore, Z = X \Y is an open dense-in-itself

nonempty subspace of X which has no open almost-ω-resolvable subsets. Since
X is a maximal Tychonoff space, it is hereditarily irresolvable (Remark 4.13.2),
hence Z is irresolvable. Besides, Z is a Baire space: indeed, if Un is an open dense
subset of Z for every n ∈ ω, then T =

⋃
n<ω(Z \Un) is of the first category, hence,

it is almost-ω-resolvable; so T cannot contain a nonempty open subset of Z. This
means that

⋂
{Un : n < ω} is dense in Z, and hence Z is a Baire space. �
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In the article of Kunen, Szymanski and Tall [KST], Theorem 3.3, they estab-
lished the following result which contrasts with Theorem 4.11.

Theorem 4.15. ZFC is consistent with the existence of a measurable cardi-
nal if and only if ZFC is consistent with the existence of an irresolvable (zero-
dimensional, Tychonoff ) Baire space.

As a consequence of Theorems 4.14 and 4.15 we obtain:

Theorem 4.16.

(1) ZFC is consistent with the existence of a measurable cardinal if and only
if ZFC is consistent with the existence of a Tychonoff dense-in-itself
space X for which C�(X) is not discrete in �RX .

(2) ZFC is consistent with “every space X without isolated points is almost-

ω-resolvable and C�(X) is a discrete subspace of �RX”.
(3) Con (ZFC) → Con (ZFC + for every T1 or regular space X , C�(X) is a

discrete subspace of �RX if and only if X does not have isolated points).

Proof: (1) This is a consequence of Theorems 4.14 and 4.15.
(2) In the system [ZFC + V = L] every maximal spaceX is almost-ω-resolvable

because of Theorems 4.11 and 4.14. Let (X, t) be a topological space (dense-in-
itself). Then, we can consider a maximal topology t′ of X such that t ⊂ t′.
So, (X, t′) is almost-ω-resolvable; then (X, t) is also almost-ω-resolvable, because
id : (X, t′) → (X, t) is bijective and continuous (Proposition 3.12). Moreover,
every almost ω-resolvable space is C�-discrete.
(3) Here we need to apply (2) and Proposition 2.1. �

Examples 4.1, 4.2, 4.3 and 4.4 and this last theorem gives us a good picture
of what we can expect about almost-ω-resolvable spaces when we assume the
existence of measurable cardinals or V = L. We finish this section by giving, in
Theorem 4.19, one more detail of this panorama.
The following lemma was proved in [FL].

Lemma 4.17. Suppose X is a dense-in-itself topological space. Then X can be
written as the union of mutually disjoint subsets F , B and N (resp., R, I, andM)
such that F , B, R and I are open, N and M are nowhere dense, F is of the first
category, R is resolvable, B is Baire or B = ∅, and I is irresolvable or I = ∅.

Corollary 4.18. A dense-in-itself topological space X is almost resolvable if and
only if X = X0 ∪X1 ∪X2 = Y0 ∪ Y1, where X0 is open and of the first category,
X1 is open, Baire and resolvable or X1 = ∅, X2 is a nowhere dense set, Y0 is of
the first category and Y1 is open Baire and resolvable or Y1 = ∅. Besides, X0, X1
and X2 (resp., Y0 and Y1) are mutually disjoint.

Proof: Assume that X is almost resolvable and put X = F ∪B∪N = R∪I∪M
as in Lemma 4.16.
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We have that B ∩ I is empty or is an open Baire almost resolvable space. By
Corollary 4.9, if B ∩ I 6= ∅, then B ∩ I must be resolvable.
Therefore X = F ∪(B∩R)∪(B∩I)∪(B∩M)∪N . The set (B∩R)∪(B∩I) is

empty or is open, Baire and resolvable; and the set (B∩M)∪N is nowhere dense,
so F ∪ (B∩M)∪N is of the first category. Take X0 = F , X1 = (B∩R)∪ (B ∩I),
X2 = (B ∩ M) ∪ N , Y0 = X0 ∪ X2 and Y1 = X1.
The converse is a consequence of Lemma 4.8. �

Theorem 4.19. The following properties are equivalent.

(1) There exists a resolvable Baire (Tychonoff ) space which is not almost-ω-
resolvable.

(2) There exists a resolvable (Tychonoff ) space which is not almost-ω-
resolvable.

(3) There exists an irresolvable almost resolvable (Tychonoff ) space which is
not almost-ω-resolvable.

(4) There exists an almost resolvable (Tychonoff ) space which is not almost-
ω-resolvable.

Proof: (1) ⇒ (2) and (3) ⇒ (4) are trivial.
(2) ⇒ (3): Assume that X is resolvable (Tychonoff) and it is not almost-ω-

resolvable. Let Y be a countable irresolvable Tychonoff space (see for example
[vD]), then X ⊕ Y is irresolvable (Tychonoff) and it is not almost-ω-resolvable.
Besides, since X and Y are almost resolvable (X is resolvable and Y is countable),
then X ⊕ Y is almost resolvable.
(4)⇒ (2): In fact, let X be an almost resolvable (Tychonoff) space which is not

almost-ω-resolvable. By Lemma 4.8, X = X1∪X2, where X1 is resolvable and X2
is of the first category. If X1 were empty or almost-ω-resolvable, then X would
be almost-ω-resolvable. Therefore, X1 is a resolvable non almost-ω-resolvable
(Tychonoff) space.
(3) ⇒ (1): Because of Corollary 4.18, the irresolvable almost resolvable and

non almost-ω-resolvable (Tychonoff) space X can be written as the union of two
disjoint subspaces Y0 and Y1, where Y0 is of the first category and Y1 is open,
Baire and resolvable. Since X is not almost-ω-resolvable, then Y1 is a nonempty
Baire resolvable (Tychonoff) space which is not almost-ω-resolvable. �

By Example 4.2, if there is a measurable cardinal, then each of the equivalent
conditions in Theorem 4.19 holds.

5. Questions

The results obtained in Section 4 produce several questions:

Questions 5.1.

(1) Is the existence of a measurable cardinal a consequence of the existence of a
Tychonoff space without isolated points which is not almost-ω-resolvable?
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(2) Is it possible to construct, assuming the existence of a measurable cardinal,
a regular (or a completely regular) space without isolated points which is
not almost-ω-resolvable?

Questions 5.2.

(1) Are almost resolvability and almost-ω-resolvability equivalent in the class
of irresolvable spaces?

(2) Is every Baire irresolvable space C�-discrete?
(3) Is the existence of an irresolvable Baire space equivalent to the existence
of a maximal non C�-discrete space?

(4) Does Con (ZFC) imply Con (ZFC + every dense-in-itself space is C�-
discrete + there exists a dense-in-itself non almost-ω-resolvable space)?

(5) Is every non almost resolvable irresolvable space a Baire space?
(6) Is every maximal space C�-discrete?

W.W. Comfort and S. Garćıa-Ferreira asked in [CGF] whether every Tychonoff
pseudocompact space without isolated points is resolvable. Theorem 4.11 implies
that there is a model of ZFC in which the answer to this question is in the
affirmative. Besides, Malykhin asked if every Lindelöf Tychonoff space without
isolated points with ∆(X) > ω was resolvable [CGF]. This leads us to the following
problems:

Questions 5.3.

(1) Is every pseudocompact Tychonoff dense-in-itself space almost-ω-
resolvable?

(2) Is every Lindelöf Tychonoff dense-in-itself space almost-ω-resolvable?

The following problem is motivated by Corollary 3.10, Examples 4.2, 4.3 and
4.4, and Question 8.13 in [CGF].

Question 5.4. Is every connected Tychonoff dense-in-itself space almost-ω-
resolvable?

Of course, the more general question regarding topological groups is:

Question 5.5. Is every dense-in-itself topological group almost-ω-resolvable?

In [CM] it is proved that every Baire topological group is resolvable, thus a
more restricted but still reasonable question is:

Question 5.6. Is every dense-in-itself Baire topological group almost-ω-
resolvable?

Theorem 3.9 and Corollary 3.10 produce the following:
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Questions 5.7.

(1) Is every Tychonoff product of an infinite collection of non-trivial T1 topo-
logical spaces a maximally resolvable space?

(2) Is every arc connected T2 space maximally resolvable?

We finish this list of problems with the following natural questions:

Questions 5.8.

(1) (O. Okunev) Let {τs : s ∈ S} be a chain of almost-ω-resolvable topologies
on X . Is, then, the topology generated by

⋃
s∈S τs almost-ω-resolvable?

(2) Is X almost-ω-resolvable if X2 satisfies this property?
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