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Conditions of Prodi-Serrin’s type for local regularity

of suitable weak solutions to the Navier-Stokes equations

Zdeněk Skalák

Abstract. In the context of suitable weak solutions to the Navier-Stokes equations we
present local conditions of Prodi-Serrin’s type on velocity v and pressure p under which
(x0, t0) ∈ Ω × (0, T ) is a regular point of v. The conditions are imposed exclusively on
the outside of a sufficiently narrow space-time paraboloid with the vertex (x0, t0) and
the axis parallel with the t-axis.

Keywords: Navier-Stokes equations, suitable weak solutions, local regularity

Classification: 35Q10, 35B65

Let Ω be either R
3 or a bounded domain in R

3 with C2+µ (µ > 0) boundary ∂Ω,
T > 0 and QT = Ω× (0, T ). Consider the Navier-Stokes equations describing the
evolution of velocity v and pressure p in QT :

∂v

∂t
− ν∆v + v · ∇v +∇p = 0,(1)

∇ · v = 0,(2)

v = 0 on ∂Ω× (0, T ),(3)

v|t=0 = v0,(4)

where ν > 0 is the viscosity coefficient and the initial data v0 satisfy the com-
patibility conditions v0|∂Ω = 0 and ∇ · v0 = 0. The pair (v, p) is called a
suitable weak solution to (1)–(4) if v and p are measurable functions on QT ,

v ∈ L∞(0, T, L2(Ω)) ∩ L2(0, T, W 1,2
0 (Ω)),

∫ T

0

∫

Ω
[v · ∂φ

∂t
− v · ∇v · φ − ν∇v · ∇φ] dx dt = −

∫

Ω
v0 · φ(x, 0) dx

for every φ ∈ C∞
0 (Ω×〈0, T )) such that ∇ ·φ = 0 in QT , p ∈ L5/4(QT ) and (v, p)

satisfies the so called generalized energy inequality

2ν

∫ T

0

∫

Ω
|∇v|2φ dx dt ≤

∫ T

0

∫

Ω

[

|v|2
(∂φ

∂t
+ ν∆φ

)

+ (|v|2 + 2p)v · ∇φ
]

dx dt
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for every non-negative real-valued function φ ∈ C∞
0 (QT ). Further, a point

(x0, t0) ∈ QT is called a regular point of v if there exists a space-time neigh-
borhood U of (x0, t0) in QT such that v ∈ L∞(U)3. Points of QT which are not
regular are called singular. For the concept of regular and singular points and
suitable weak solutions, see [1].
In [6] J. Neustupa proved the following theorem:

Theorem 1. There exists an absolute constant ǫ0 > 0 such that if v is a suitable
weak solution to the problem (1)–(4), (x0, t0) ∈ QT and

lim
r→0+

lim inf
t→t−0

(

∫

Br(x0)
|v(x, t)|3 dx

)1/3
< ǫ0,

then (x0, t0) is a regular point of v.

As was stressed in [6], Theorem 1 shows that if (x0, t0) is a singular point of
v then the L3 norm of v must necessarily concentrate in an amount greater than
or equal to ǫ0 in smaller and smaller neighborhoods of x0 as t −→ t0−.
This paper was inspired by a theorem (Theorem 2 below) also proved in [6]

which says that under certain conditions on v and p the region of concentration
of L3 norm of v does not lie inside a sufficiently narrow paraboloid in QT with
its axis parallel with the t-axis and with the vertex (x0, t0). Let ρ > 0, r > 0 and
σ0 = r2/ρ2. Denote

Uρ
r = {(x, t) ∈ QT ; t0 − σ0 < t < t0, ρ

√
t0 − t < |x− x0| < r},(5)

V ρ
r = {(x, t) ∈ QT ; t0 − σ0 < t < t0, |x− x0| < ρ

√
t0 − t},(6)

Qρ
r = {(x, t) ∈ QT ; t0 − r2/ρ2 < t < t0, |x− x0| < r}.(7)

Theorem 2. Suppose that (v, p) is a suitable weak solution to (1)–(4), (x0, t0) ∈
QT , ρ ∈ (0,

√
2ν) and

(8) |v(x, t)| ≤ c, |p(x, t)| ≤ c in Uρ
r

for some c and r > 0. Then (x0, t0) is a regular point of v.

It was shown in [8] that Theorem 2 can be further generalized:

Theorem 3. Suppose that (v, p) is a suitable weak solution to (1)–(4), (x0, t0) ∈
QT , ρ > 0 is sufficiently small, r > 0 and

(9) |v(x, t)| ≤ 1

|x− x0|α
in Uρ

r , p ∈ Lβ,γ(V ρ+κ
r \ V ρ

r ),

where α ∈ (0, 1), β, γ ≥ 1, 2/β+3/γ < 3−α and κ > 0. Then (x0, t0) is a regular
point of v.

The following theorem was proved in [7].



Conditions of Prodi-Serrin’s type for local regularity . . . 621

Theorem 4. Let Ω = R
3. Suppose that (v, p) is a suitable weak solution to (1),

(2) and (4), (x0, t0) ∈ QT , ρ > 0 and r > 0. Let

v ∈ La,b(Uρ
r ), 2/a+ 3/b = 1, a ≥ 3, b > 3 or ‖v‖L∞,3(Uρ

r )
< ǫ1 and(10)

P ∈ Lα,β(V ρ
r ), 2/α+ 3/β = 2, α ≥ 1, β > 3/2 or ‖P‖L∞,3/2(V ρ

r )
< ǫ2,(11)

where P denotes the negative part of pressure p : P = 0 if p ≥ 0, P = −p if p < 0
and ǫ1, ǫ2 are sufficiently small. Then (x0, t0) is a regular point of v.

Theorem 4 does not need any assumption on integrability of v inside the parab-
oloid. It is compensated by assumptions on a certain integrability of the negative
part of pressure P (conditions (11)).
The main goal of this paper is to prove the two following theorems:

Theorem 5. Suppose that (v, p) is a suitable weak solution to (1)–(4), (x0, t0) ∈
QT , ρ > 0 is sufficiently small, r > 0, κ > 0 and

v ∈ La,b(Uρ
r ), 2/a+ 3/b = 1, a ≥ 3, b > 3,(12)

p ∈ Lα,β(V ρ+κ
r \ V ρ

r ), 2/α+ 3/β = 2, α ≥ a/(a − 1), β > 3/2.(13)

Then v ∈ L∞(Q1η) for some η > 0. Moreover, if Ω = R
3 then (x0, t0) is a regular

point of v.

Theorem 6. Suppose that (v, p) is a suitable weak solution to (1)–(4), (x0, t0) ∈
QT , ρ > 0 is sufficiently small, r > 0, κ > 0 and

v ∈ Lã,b̃(Uρ+κ
r ), 2/ã+ 3/b̃ = 1, ã ≥ 2, b̃ > 3,(14)

v ∈ La,b(V ρ+κ
r \ V ρ

r ), 2/a+ 3/b = 1, a ≥ 3, b > 3,(15)

p ∈ Lα,β(V ρ+κ
r \ V ρ

r ), 2/α+ 3/β = 2, α ≥ a/(a − 1), α ≥ 5/4, β > 3/2.(16)

Then v ∈ L∞(t0 − η2, t0, W
1,2(Bη(x0))) for some η > 0. Moreover, if Ω = R

3

then (x0, t0) is a regular point of v.

In Theorem 5 the conditions on velocity v (12) are imposed only on Uρ
r . They

are not the usual Prodi-Serrin’s conditions, since a ≥ 3 instead of usually used
a ≥ 2. In Theorem 6 this restrictive assumption is removed and the usual Prodi-
Serrin’s conditions with ã ≥ 2 are used on U

ρ+κ
r . However, an additional assump-

tion α ≥ 5/4 for pressure is prescribed on an arbitrarily narrow strip V ρ+κ
r \ V ρ

r .
Before proving Theorem 5 and Theorem 6, we present a few definitions and

considerations. For the sake of simplicity, we use the notation Lp(A) throughout
the paper instead of Lp(A)3 (similarly Wm,p(A) instead of Wm,p(A)3 and so on)
if spaces of vector functions are considered. As in [6] define new coordinates

(17) x′ =
x− x0√
t0 − t

, t′ = ln
σ0

t0 − t
.
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Then

(18) t = t0 − σ0e
−t′ and x = x0 +

√
σ0e

−t′/2x′.

If we denote

U ′
r
ρ
= {(x′, t′) ∈ R

3 × (0,∞); t′ > 0, ρ < |x′| < ρet′/2},
V ′

r
ρ
= {(x′, t′) ∈ R

3 × (0,∞); t′ > 0, |x′| < ρ},

then we have

(19) (x, t) ∈ Uρ
r ⇐⇒ (x′, t′) ∈ U ′

r
ρ
, (x, t) ∈ V ρ

r ⇐⇒ (x′, t′) ∈ V ′
r
ρ
.

Define functions v′, p′ by the equations

(20) v′(x′, t′) =
√

t0 − t v(x, t), p′(x′, t′) = (t0 − t) p(x, t).

Then (v′, p′) is a suitable weak solution of the problem

∂v′

∂t′
− ν∆′v′ + v′ · ∇′v′ +∇′p′ = −v′/2− x′ · ∇′v′/2,

∇′ · v′ = 0

in {(x′, t′) ∈ R
3× (0,∞); t′ > 0, |x′| < ρet′/2} and satisfies the generalized energy

inequality

(21) 2ν

∫ ∞

0

∫

R3
|∇′v′|2φ dx′ dt′ ≤

∫ ∞

0

∫

R3

[

|v′|2
(∂φ

∂t′
+ ν∆′φ

)

+ (|v′|2 + 2p′)v′ · ∇′φ+ |v′|2φ/2 + (x′ · ∇′φ)|v′|2/2
]

dx′ dt′

for every non-negative real-valued function φ ∈ C∞
0 ({(x′, t′) ∈ R

3 × (0,∞); t′ >

0, |x′| < ρet′/2}). Moreover, it follows from (17)–(20) that

(22) ‖v‖La,b(Uρ
r )
= ‖v′‖La,b(U ′

r
ρ), ‖p‖

Lα,β(V ρ+κ
r \V ρ

r )
= ‖p′‖Lα,β(V ′

r
ρ+κ\V ′

r
ρ),

if a ≥ 2, b ≥ 3, 2/a+ 3/b = 1 and α ≥ 1, β ≥ 3/2, 2/α+ 3/β = 2.

Lemma 1. Let ϑ ∈ (0, 1) and (x, t) ∈ R
3×R. Then there exist absolute constants

ǫ1 > 0 and C0 > 0 with the following property. Suppose that (v, p) is a suitable
weak solution to the Navier-Stokes equations on Q1r = Q1r(x, t) = {(y, τ); |x−y| <
r, t − r2 < τ < t}, r > 0. Suppose further that

(23)
1

r2

∫ ∫

Qr

(|v|3 + |v||p|) dy dτ +
1

r13/4

∫ t

t−r2
(

∫

|x−y|<r
|p| dy)5/4 dτ ≤ ǫ



Conditions of Prodi-Serrin’s type for local regularity . . . 623

for some ǫ ∈ (0, ǫ1〉. Then

(24) |v| ≤ C0ǫ
2/3/r

Lebesgue-almost-everywhere on Q1ϑr(x, t).

Lemma 1 was firstly declared and proved in [1] — see Proposition 1, Corol-
lary 1 and the proof on page 789. In fact, Lemma 1 differs slightly from Propo-
sition 1, Corollary 1. Firstly, we have f ≡ 0. Secondly, Proposition 1 was proved
for ϑ = 1/2. However, it can be seen easily that the proof does not change if
ϑ ∈ (0, 1). Of course, ǫ1 and C0 may then possibly depend on ϑ. Finally and

most importantly, we have that |v| ≤ C0ǫ
2/3/r Lebesgue-almost-everywhere on

Qϑr(x, t) in Lemma 1 (C0 independent of ǫ), which means that ‖v‖L∞(Qϑr(x,t))

depends on ǫ. This fact is not particularly stressed in [1], but it follows directly
from the proof of Proposition 1 and Corollary 1 (see Step 3 of the proof — page 792
and the final remark in the proof). Thus, the smaller ǫ we take the smaller the
L∞ norm of v we have and this fact will be used in the proof of Theorem 6.

Remark 1. Let (y0, τ0) ∈ QT be a regular point of v. It is known (see

for instance [2]) that there exist ǫ > 0 and δ > 0 such that D
γ
x

∂v
∂t , D

γ
xp ∈

Lα(τ0 − ǫ, τ0 + ǫ, L∞(Bδ1(y0))) for every multi-index γ = (γ1, γ2, γ3), where

Dγ
x =

∂|γ|

∂x
γ1
1 ···∂xγ3

3

, |γ| = γ1 + γ2 + γ3, every δ1 ∈ (0, δ) and α ∈ 〈1, 2). In
the case Ω = R

3, α can be even taken from the interval 〈1,∞〉. We will use this
fact at the end of the proof of Theorem 6. It will enable us to conclude that
(x0, t0) is a regular point of v. Unfortunately, in the case of Ω being a bounded
domain in R

3 (and thus α < 2) we are not sure whether the same procedure can
be used or not and therefore cannot deduce the regularity of (x0, t0).

The following lemma (see e.g. [5]) will be useful in connection with the cut-off
function technique.

Lemma 2. Let D ⊂ R
3 be a bounded Lipschitz domain, r ∈ 〈1,∞) and m ∈

N ∪ {0}. Then there exists a linear operator R from W
m,r
0 (D) into W

m+1,r
0 (D)3

such that for every f ∈ W
m,r
0 (D)

(25)
div Rf = f, if

∫

D
f dx = 0,

‖∇m+1Rf‖Lr(D) ≤ c‖∇mf‖Lr(D).

In addition, if f has a compact support in D then also Rf has a compact support
in D.

Proof of Theorem 5: The proof is based on the generalized energy inequal-
ity (21). We choose a suitable test function φ, estimate the right hand side
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of (21) and obtain the inequality (42). Using then standard embedding theorems
we get the estimate (48) for velocity v which together with the analogical estimate
for pressure (49) leads to the use of the famous Lin’s result (see the paragraph
around (56)) and the proof is then easily completed.
Thus, let t′1 ≥ 2, t′2 > 2t′1 and ǫ > 0 and suppose without loss of generality

that κ ≤ ρ/2. We use the generalized energy inequality (21) with the function

φ(x′, t′) = ξ(t′)χ(|x′|)e−t′/2, where χ is an infinitely differentiable function on
〈0,∞), χ(s) = 1 for 0 ≤ s ≤ ρ + κ/3, χ(s) = 0 for s ≥ ρ + 2κ/3 and χ is
decreasing on (ρ + κ/3, ρ + 2κ/3). ξ is defined on (0,∞) in the following way:
ξ(t′) = 0 on (0, t′1/2 − e−3t

′
1/2〉 ∪ 〈t′2 + ǫ,∞), ξ(t′) = t′ − t′1/2 + e−3t

′
1/2 on

〈t′1/2 − e−3t
′
1/2, t′1/2〉, ξ(t′) = et′−2t′1 on 〈t′1/2, 2t′1〉, ξ(t′) = 1 on 〈2t′1, t′2〉, 0 ≤

ξ(t′) ≤ 1 on 〈t′2, t′2 + ǫ〉, ξ is decreasing on (t′2, t′2 + ǫ) and infinitely differentiable
on (2t′1,∞). To justify the use of (non-smooth) function φ in (21), it is possible
to find a suitable sequence of functions ξn ∈ C∞

0 ((0,∞)) such that (21) holds for
φn(x

′, t′) = ξn(t
′)χ(|x′|)e−t′/2, n ∈ N and letting n −→ ∞ we get the validity of

the generalized energy inequality also for φ(x′, t′) = ξ(t′)χ(|x′|)e−t′/2.
Firstly, we will estimate the terms on the right hand side of (21).

(26)

∫ ∞

0

∫

R3
|v′|2

(∂φ

∂t′
+ φ/2

)

dx′ dt′ =
∫ ∞

0

∫

R3
|v′|2

(

− 1
2
ξ(t′)χ(|x′|)e−t′/2

+ ξ′(t′)χ(|x′|)e−t′/2 +
1

2
ξ(t′)χ(|x′|)e−t′/2

)

dx′ dt′

=

∫ t′2+ǫ

t′1/2−e−3t
′
1

/2
ξ′(t′)e−t′/2

∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′ dt′.

Further, we will use the inequality

(27)

∫

B1(0)
|u|2 dx ≤ k1

(

∫

B1(0)
|∇u|2 dx+

∫

∂B1(0)
|u|2 dS

)

,

which holds for every u ∈ W 1,2(B1(0)) and where k1 is an absolute constant. It
follows from (27) that

(28)

∫

Br(0)
|u|2 dx ≤ k1r

(

r

∫

Br(0)
|∇u|2 dx+

∫

∂Br(0)
|u|2 dS

)

,

for every u ∈ W 1,2(Br(0)) and r > 0. Using (28) and the Hölder inequality we
get for almost every t′ ∈ (0,∞) that

(29)

∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′ ≤

∫

Bρ+r1(t
′)(0)

|v′|2 dx′ +
∫

|x′|>ρ
|v′|2χ(|x′|) dx′

≤ k1

(

ρ+ r1(t
′)
)2

∫

Bρ+r1(t
′)(0)

|∇′v′|2 dx′ + k1

(

ρ+ r1(t
′)
)

× c1

(

∫

∂Bρ+r1(t
′)(0)

|v′|b dS′
)2/b

+ c1

(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′

)2/b
,
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where r1(t
′) is such a number from 〈0, κ/3〉 that

∫

∂Bρ+r1(t
′)(0)

|v′(·, t′)|b dS′ = inf
r∈〈0,κ/3〉

∫

∂Bρ+r(0)
|v′(·, t′)|b dS′.

It follows from the continuity of v′(·, t′) in space coordinates that r1(t
′) is well

defined for almost every t′ ∈ (0,∞). We have from (12), (26), (29), the definition
of ξ and (17)–(20) that

∫ ∞

0

∫

R3
|v′|2

(∂φ

∂t′
+ φ/2

)

dx′ dt′
(30)

≤
∫ t′1/2

t′1/2−e
−3t′

1
/2

e−t′/2
∫

Bρ+κ(0)
|v′|2 dx′ dt′

+

∫ t′2+ǫ

t′2

ξ′(t′)e−t′/2
∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′ dt′

+

∫ 2t′1

t′1/2
et′/2−2t′1

[

k1

(

ρ+ r1(t
′)
)2

∫

Bρ+r1(t
′)(0)

|∇′v′|2 dx′

+ k1c1

(

ρ+ r1(t
′)

)(

∫

∂Bρ+r1(t
′)(0)

|v′|b dS′
)2/b

+ c1(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)2/b

]

dt′ ≤
‖v‖2

L∞(t0−σ0,t0,L2(Ω))√
σ0

× [− ln(t0 − t)]t0−σ0e
−t′1/2

t=t0−σ0e
−t′
1

/2+e
−3t′

1
/2

+

∫ t′2+ǫ

t′2

ξ′(t′)e−t′/2
∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′ dt′

+ k1(ρ+ κ)2
∫ 2t′1

t′1/2
et′/2−2t′1

∫

Bρ+κ/3(0)
|∇′v′|2 dx′ dt′ + c2e

−2t′1

×
[

(

∫ 2t′1

t′1/2
(

∫

∂Bρ+r1(t
′)(0)

|v′|b dS′)a/b dt′
)2/a

+
(

∫ 2t′1

t′1/2
(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)2/a
]

(

∫ 2t′1

t′1/2
e

at′

2(a−2) dt′
)(a−2)/a

≤
∫ t′2+ǫ

t′2

ξ′(t′)e−t′/2
∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′ dt′
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+ k1(ρ+ κ)2
∫ 2t′1

t′1/2
et′/2−2t′1

∫

Bρ+κ/3(0)
|∇′v′|2 dx′ dt′ + c3e

−t′1c1(t
′
1),

where

(31)

c1(t
′
1) =

‖v‖L∞(t0−σ0,t0,L2(Ω))√
σ0

e−t′1/2

+
(

∫ 2t′1

t′1/2
(

∫

∂Bρ+r1(t
′)(0)

|v′|b dS′)a/b dt′
)2/a

+
(

∫ 2t′1

t′1/2
(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)2/a
.

We now show that

(32) lim
t′1→∞

c1(t
′
1) = 0.

Obviously, limt′1→∞
( ∫ 2t′1

t′1/2
(
∫

ρ≤|x′|≤ρ+κ |v′|b dx′)a/b dt′
)2/a

= 0, as follows from

(12) and (22). Check on the second term of c1(t
′
1):

(33)

∫ ∞

1
(

∫

∂Bρ+r1(t
′)(0)

|v′|b dS′)a/b dt′

=

∫ ∞

1

( 3

κ

∫ κ/3

0
(

∫

∂Bρ+r1(t
′)(0)

|v′|b dS′) dr
)a/b

dt′

≤
∫ ∞

1

( 3

κ

∫ κ/3

0
(

∫

∂Bρ+r(0)
|v′|b dS′) dr

)a/b
dt′

≤
∫ ∞

1

( 3

κ

∫

ρ≤|x′|≤ρ+κ/3
|v′|b dx′

)a/b
dt′

≤
( 3

κ

)a/b
‖v′‖a

La,b(U ′
r

ρ) < ∞.

Therefore, the second term of c1(t
′
1) goes to zero if t

′
1 goes to infinity and (32) is

proved.
Further, we can use integration by parts and get

∫ t′2+ǫ

t′2

ξ′(t′)e−t′/2
∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′ dt′

=
[

ξ(t′)e−t′/2
∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′

]t′2+ǫ

t′=t′2

−
∫ t′2+ǫ

t′2

ξ(t′)
d

dt′

(

e−t′/2
∫

Bρ+κ(x0)
|v′|2χ(|x′|) dx′

)

dt′



Conditions of Prodi-Serrin’s type for local regularity . . . 627

for almost every t′2 ∈ (2t′1,∞). Therefore,

(34) lim
ǫ→0

∫ t′2+ǫ

t′2

ξ′(t′)e−
t′

2

∫

Bρ+κ(0)
|v′|2χ(|x′|) dx′ dt′

= −e−
t′2
2

∫

Bρ+κ(0)
|v′(x′, t′2)|2χ(|x′|) dx′.

If we suppose that ρ is such a small number that k1(ρ+κ)2 ≤ ν, we get from (30)
and (34) that

(35)

∫ ∞

0

∫

R3
|v′|2

(∂φ

∂t′
+ φ/2

)

dx′ dt′

≤ −et′2/2
∫

Bρ+κ(0)
|v′(x′, t′2)|2χ(|x′|) dx′

+ ν

∫ 2t′1

t′1/2
et′/2−2t′1

∫

Bρ+κ/3(0)
|∇′v′|2 dx′ dt′ + c3c1(t

′
1)e

−t′1 ,

which holds for every t′2 > 2t′1 since v
′ is weakly continuous as a function from

(2t′1,∞) into L2(Bρ+κ(0)).
It follows from the definition of φ that x′ · ∇′φ ≤ 0. Therefore

(36)

∫ ∞

0

∫

R3
(x′ · ∇′φ)|v′|2/2 dx′ dt′ ≤ 0.

Further, using (12), the Hölder inequality gives

(37)

∣

∣

∣

∫ ∞

0

∫

R3
|v′|2v′ · ∇′φ dx′ dt′

∣

∣

∣

≤ c4

∫ t′1/2

t′1/2−e
−3t′

1
/2

e−(3t
′
1+t′)/2

∫

ρ≤|x′|≤ρ+κ
|v′|3 dx′ dt′

+ c4

∫ 2t′1

t′1/2
e(t

′−4t′1)/2
∫

ρ≤|x′|≤ρ+κ
|v′|3 dx′ dt′

+ c4

∫ ∞

2t′1

e−t′/2
∫

ρ≤|x′|≤ρ+κ
|v′|3 dx′ dt′

≤ c5e
−3t′1/2e−t′1/4

(

∫ t′1/2

t′1/2−e−3t
′
1

/2
(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)3/a

+ c6e
−2t′1et′1

(

∫ 2t′1

t′1/2
(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)3/a

+ c7e
−t′1

(

∫ ∞

2t′1

(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)3/a
≤ c8c2(t

′
1)e

−t′1 ,
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where

(38)

c2(t
′
1) = e−3t

′
1/4

(

∫ t′1/2

t′1/2−e−3t
′
1

/2
(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)3/a

+
(

∫ 2t′1

t′1/2
(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)3/a

+
(

∫ ∞

2t′1

(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)3/a

and by (12) and (22) limt′1→∞ c2(t
′
1) = 0. Analogically, using (12) and (13)

(39)

∣

∣

∣

∫ ∞

0

∫

R3
2p′v′ · ∇′φ dx′ dt′

∣

∣

∣

≤ c4

∫ t′1/2

t′1/2−e−3t
′
1

/2
e−(3t

′
1+t′)/2

∫

ρ≤|x′|≤ρ+κ
|p′v′| dx′ dt′

+ c4

∫ 2t′1

t′1/2
e(t

′−4t′1)/2
∫

ρ≤|x′|≤ρ+κ
|p′v′| dx′ dt′

+ c4

∫ ∞

2t′1

e−t′/2
∫

ρ≤|x′|≤ρ+κ
|p′v′| dx′ dt′ ≤ c9c3(t

′
1)e

−t′1 ,

where

(40)

c3(t
′
1) = c10e

−t′1
(

∫ ∞

t′1/2−e−3t
′
1

/2
(

∫

ρ≤|x′|≤ρ+κ
|p′|β dx′)α/β dt′

)1/α

×
(

∫ ∞

t′1/2−e−3t
′
1

/2
(

∫

ρ≤|x′|≤ρ+κ
|v′|b dx′)a/b dt′

)1/a

and by (12), (13) and (22) limt′1→∞ c3(t
′
1) −→ 0. To estimate the term

(41) ν

∫ ∞

0

∫

R3
|v′|2∆′φ dx′ dt′

we proceed in the same way as above and get a similar estimate as in (37). It can
be concluded from (21) and (35)–(41) that

(42) ν

∫ ∞

0

∫

R3
|∇′v′|2φ dx′ dt′ + e−t′2/2

∫

Bρ+κ(0)
|v′(x′, t′2)|2χ(|x′|) dx′

≤ c11c4(t
′
1)e

−t′1 ,
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where limt′1→∞ c4(t
′
1) −→ 0 and c11 is an absolute constant independent of t1

and t2.
Secondly, let δ ∈ (0, r) be sufficiently small and let τ = 2 ln(r/δ). Put t′1 = τ/2.

If 2ā +
3
b̄

> 3
2 and b̄ ∈ (2, 6) then by (17)–(20), (42) and by classical embedding

theorems

(43)

∫

t0−δ2/ρ2
(

∫

B
ρ
√

t0−t

|v(x, t)|b̄ dx)ā/b̄ dt

=

∫ ∞

τ
eāt′(1−2/ā−3/b̄)/2(

∫

Bρ

|v′(x′, t′)|b̄ dx′)ā/b̄ dt′

≤
∫ ∞

τ
eāt′(1− 2

ā
− 3

b̄
)/2(

∫

Bρ

|v′(x′, t′)|2 dx′)ā(3/b̄−1/2)/2

× [(
∫

Bρ

|∇′v′(x′, t′)|2 dx′)ā(3/2−3/b̄)/2 dt′

+ (

∫

Bρ

|v′(x′, t′)|2 dx′)ā(3/2−3/b̄)/2] dt′

≤ (c4(t′1)e−t′1)ā(3/b̄−1/2)/2
∫ ∞

τ
eāt′( 3

2
− 2

ā
− 3

b̄
)/2(e−t′/2

×
∫

Bρ

|∇′v′(x′, t′)|2 dx′)ā(3/2−3/b̄)/2 dt′

+

∫ ∞

τ
eāt′(1− 2

ā
− 3

b̄
)/2(

∫

Bρ

|v′(x′, t′)|2 dx′)ā/2 dt′

≤ (c4(t′1)e−t′1)ā(3/b̄−1/2)/2eāt′1(3/2−2/ā−3/b̄)

× (
∫ ∞

τ
e−t′/2

∫

Bρ

|∇′v′(x′, t′)|2 dx′ dt′)(3āb̄−6ā)/4b̄

+

∫ ∞

τ
eāt′( 3

2
− 2

ā
− 3

b̄
)/2(e−t′/2

∫

Bρ

|v′(x′, t′)|2 dx′)ā/2 dt′

≤ (c4(t′1)e−t′1)ā(3/b̄−1/2)/2eāt′1(3/2−2/ā−3/b̄)(c4(t
′
1)e

−t′1)(3āb̄−6ā)/4b̄

+ (c4(t
′
1)e

−t′1)ā/2
∫ ∞

τ
eāt′( 3

2
− 2

ā
− 3

b̄
)/2 dt′ ≤ c4(t

′
1)

ā/2δā(2/ā+3/b̄−1).

Consequently,

(44) lim
δ→0+

1

δā(2/ā+3/b̄−1)

∫

t0−δ2/ρ2
(

∫

B
ρ
√

t0−t

|v(x, t)|b̄ dx)ā/b̄ dt

≤ lim
δ→0+

c4

(

ln(r/δ)
)ā/2

= 0.
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We could prove in the same way that for every ω ∈ 〈0, 1)

(45) lim
δ→0+

1

δā(2/ā+3/b̄−1)

∫

t0−δ2/(ρ+ωκ)2
(

∫

B
(ρ+ωκ)

√
t0−t

|v(x, t)|b̄ dx)ā/b̄ dt = 0.

If we put ā = b̄ = 3, (45) gives

(46) lim
δ→0+

1

δ2

∫ ∫

V ρ+ωκ
δ

|v(x, t)|3 dx dt = 0.

Further,
(47)
1

δ2

∫ ∫

Uρ
δ

|v(x, t)|3 dx dt

≤ c13
δ2

∫ t0

t0−δ2/ρ2
(

∫

ρ
√

t0−t<|x−x0|<δ
|v(x, t)|b dx)3/bδ3(b−3)/b dt

≤ c14
δ2

(

∫ t0

t0−δ2/ρ2
(

∫

ρ
√

t0−t<|x−x0|<δ
|v(x, t)|b dx)a/b dt

)3/a
δ3(b−3)/b+2(a−3)/a

= c14‖v‖3La,b(Uρ
δ )

−→ 0, if δ → 0.

It follows from (46) and (47) that

(48) lim
δ→0+

1

δ2

∫ ∫

Q1δ

|v(x, t)|3 dx dt = 0.

Derive now that

(49) lim
δ→0+

1

δ2

∫ ∫

Q1δ

|p(x, t)|3/2 dx dt = 0.

We present a proof which was used in [7]. Let θ > 2. It is possible to prove that
for almost every t ∈ ((t0 − (δ/θ)2, t0)

(50)

∫

Bδ/θ(x0)
|p|3/2 dx ≤ c15

∫

Bδ(x0)
|v|3 dx +

c16
θ3

∫

Bδ(x0)
|v|3 dx

+
c16
θ3

∫

Bδ(x0)
|p|3/2 dx,

where c15, c16 are independent of t. Integrating (50) with respect to t on (t0 −
(δ/θ)2, t0) and dividing then the inequality by (δ/θ)2, we obtain

(51)
θ2

δ2

∫

Q1
δ/θ

|p|3/2 dx dt ≤
(

c15 θ2 +
c16
θ

) 1

δ2

∫

Q1δ

|v|3 dx dt

+
c16
θ

1

δ2

∫

Q1δ

|p|3/2 dx dt.
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Denoting

h(δ) =
1

δ2

∫

Q1δ

|p|3/2 dx dt, g(δ) =
1

δ2

∫

Q1δ

|v|3 dx dt,

equation (51) can be written as

(52) h(δ/θ) ≤
(

c15 θ2 +
c16
θ

)

g(δ) +
c16
θ

h(δ).

If we further denote

λ = 1/δ, h̃(λ) = h(1/λ), g̃(λ) = g(1/λ),

we get from (52) that

(53) h̃(θλ) ≤
(

c15 θ2 +
c16
θ

)

g̃(λ) +
c16
θ

h̃(λ).

To prove (49), it suffices to show that limλ→+∞ h̃(λ) = 0. Verify first the bound-

edness of h̃. Without loss of generality we can suppose that c16 > 1. If we put
h̃1(λ) = max{h̃(λ); η}, where η is a fixed positive number and θ = 2c16 then

(54) h̃(θλ) ≤
[(

c13 θ2 + 1/2
) g̃(λ)

η
+ 1/2

]

h̃1(λ).

Since limλ→∞ g̃(λ) = 0, there exists λ0 such that
[(

c13 θ2+1/2
)

g̃(λ)/η+1/2
]

≤ 1,
∀λ ≥ λ0, i.e.

(55) h̃(θλ) ≤ h̃1(λ), ∀λ ≥ λ0.

Further, there exists L ≥ η such that h̃1(λ) ≤ L on the interval 〈λ0, 2c16λ0〉,
as follows from the fact that p ∈ L3/2

(

(δ∗, T ) × Ω
)

for any positive δ∗ (see [3]).
Thus, as a result of (55), h̃ is bounded by L on 〈2c16λ0, 4c216λ0〉 and therefore by
the definition also h̃1 is bounded by L on 〈2c16λ0, 4c216λ0〉. Proceeding further in
this way we get that h̃(λ) ≤ L, ∀λ ≥ λ0.

If we return to (53) and use the boundedness of h̃ we get that lim supλ→∞ h̃(θλ)

≤ c16L/θ. Since θ can be chosen arbitrarily large, we have limλ→+∞ h̃(λ) = 0
and (49) follows immediately.
To finish the proof of Theorem 5 we use the result proved by F. Lin in [4]:

There exists a positive constant ǫ3 such that if

(56)
1

δ2

∫ ∫

Q1δ

(|v(x, t)|3 + |p(x, t)|3/2) dx dt ≤ ǫ3
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for some δ > 0 then v ∈ L∞(Q1δ/2). The first part of Theorem 5 thus follows from
(48), (49) and (56). The regularity of (x0, t0) can be now proved exactly in the
same way as is done in detail at the end of the proof of Theorem 6. The proof of
Theorem 5 is complete. �

Proof of Theorem 6: We proceed in the same way as in the proof of Theorem 5
until the relation (46). Unfortunately, (47) was proved under the assumption
that a ≥ 3, which is not the case now (we have only ã ≥ 2). Therefore, we
are not able to obtain equation (48) which is key for the use of the Lin’s result
mentioned earlier. Thus, we proceed in the following way. It holds for almost
every t ∈ (t0 − r2/(ρ+ κ/2)2, t0) and every x ∈ B(ρ+κ/2)

√
t0−t(x0) that

(57) p(x, t) = pI(x, t) + pII(x, t),

where

(58) |pII(x, t)| ≤ c

κ3(t0 − t)3/2

∫

d(t)
(|v|2 + |p|) dy,

d(t) = B(ρ+κ)
√

t0−t(x0) \ Bρ
√

t0−t(x0) and

(59)

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|pI |q dx ≤ c(q)

∫

B
(ρ+3κ/4)

√
t0−t

(x0)
|v|2q dx, q > 1.

For more detailed description of these facts see [1, p. 782] and [7, Lemma 1]. Prove
now that

(60)

lim
δ→0+

(
1

δ2

∫ ∫

V
ρ+κ/2
δ

(|v(x, t)|3 + |v||p|) dx dt

+
1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
(

∫

B
(ρ+κ/2)

√
t0−t

|p| dx)5/4 dt) = 0.

We begin with the term

(61) lim
δ→0+

1

δ2

∫ ∫

V
ρ+κ/2
δ

|v||p| dx dt = 0.

Thus, we have using (57), (58) and (59) and taking q ∈ (3, 18/5), ā > α/(α − 1)
and b̄ > β/(β − 1)

1

δ2

∫ ∫

V
ρ+κ/2
δ

|v||p| dx dt ≤ 1

δ2

∫ ∫

V
ρ+κ/2
δ

|v|(|pII |+ |pI |) dx dt

(62)
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≤ 1

δ2

∫ t0

t0−δ2/(ρ+κ/2)2
(

c

κ3(t0 − t)3/2

∫

d(t)
(|v|2 + |p|) dx)

× (
∫

B
(ρ+κ/2)

√
t0−t

(x0)
|v| dx) dt

+
1

δ2

∫ t0

t0−δ2/(ρ+κ/2)2
|v|q(

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|pI |q/2 dx)2/q(t0 − t)3(q−3)/2q dt

≤ 1

δ2

∫ t0

t0−δ2/(ρ+κ/2)2
c(t0 − t)3[(β−1)/β+(b̄−1)/b̄−1]/2

× |p|β,d(t)|v|b̄,B
(ρ+κ/2)

√
t0−t

(x0)
dt

+
1

δ2

∫ t0

t0−δ2/(ρ+κ/2)2
c(t0 − t)3[(b−2)/b+(b̄−1)/b̄−1]/2

× |v|2b,d(t)|v|b̄,B(ρ+κ/2)
√

t0−t
(x0)

dt

+
1

δ2
(

∫ t0

t0−δ2/(ρ+κ/2)2
|v|3q,B

(ρ+3κ/4)
√

t0−t
(x0)

dt)δ3(q−3)/q

≤ (|p|
Lα,β(V ρ+κ

δ(ρ+κ)/(ρ+κ/2)
)
+ |v|2

La,b(V ρ+κ
δ(ρ+κ)/(ρ+κ/2)

)
)

× ( 1

δā(2/ā+3/b̄−1)

∫ t0

t0−δ2/(ρ+κ/2)2
(

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|v|b̄ dx)ā/b̄ dt)1/ā

+
1

δ3(3/q−1/3) (
∫ t0

t0−δ2/(ρ+κ/2)2
|v|3q,B

(ρ+3κ/4)
√

t0−t
(x0)

dt).

(61) now follows from (45), where we use firstly the pair (ā, b̄) and then (3, q).
Show now that

(63) lim
δ→0+

1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
(

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|p| dx)5/4 dt = 0.

It follows again from (57), (58) and (59) that

1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
(

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|p| dx)5/4 dt

≤ 1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
((

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|pI | dx)5/4

+ (

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|pII | dx)5/4) dt
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≤ 1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
(

∫

d(t)
(|v|2 + |p|) dx)5/4 dt

+
1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
((

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|pI |q/2 dx)2/q

× (t0 − t)3(q/2−1)/q)5/4 dt

≤ 1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
((t0 − t)15(β−1)/8β |p|5/4

β,d(t)

+ (t0 − t)15(b−2)/8b|v|5/2
b,d(t)

) dt

+
1

δ13/4

∫ t0

t0−δ2/(ρ+κ/2)2
(t0 − t)15(q/2−1)/4q |v|5/2

q,B
(ρ+3κ/4)

√
t0−t

(x0)
dt

≤ 1

δ13/4
|p|5/4

Lα,β(V ρ+κ
δ(ρ+κ)/(ρ+κ/2)

)
(

∫ t0

t0−δ2/(ρ+κ/2)2

× (t0 − t)15α(β−1)/2β(4α−5) dt)(4α−5)/4α

+
1

δ13/4
|v|5/2

La,b(V ρ+κ
δ(ρ+κ)/(ρ+κ/2)

)

× (
∫ t0

t0−δ2/(ρ+κ/2)2
(t0 − t)30a(b−2)/8b(2a−5) dt)(2a−5)/2a

+
1

δ(15/q−1)/2

∫ t0

t0−δ2/(ρ+κ/2)2
|v|5/2

q,B
(ρ+3κ/4)

√
t0−t

(x0)
dt

= |p|5/4
Lα,β(V ρ+κ

δ(ρ+κ)
ρ+κ/2

)
+ |v|5/2

La,b(V ρ+κ
δ(ρ+κ)
ρ+κ/2

)

+
1

δ(15/q−1)/2

∫ t0

t0−δ2/(ρ+κ/2)2
|v|5/2

q,B
(ρ+3κ/4)

√
t0−t

(x0)
dt

and (63) follows from (15), (16) and (45). In the previous paragraph we used the
assumption that α ≥ 5/4. (60) now follows now from (46), (61) and (63).
Due to (60) we have

1

δ2[1 + (ρ+ κ/2)2]

∫ ∫

V
ρ+κ/2

δ
√
1+(ρ+κ/2)2

(|v(x, t)|3 + |v(x, t)||p(x, t)|) dx dt

(64)

+
1

(δ
√

[1 + (ρ+ κ/2)2])13/4

∫ t0

t0− δ2[1+(ρ+κ/2)2]

(ρ+κ/2)2

(

∫

B
(ρ+κ/2)

√
t0−t

(x0)
|p(x, t)| dx)5/4 dt
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= c(δ
√

1 + (ρ+ κ/2)2) −→ 0, if δ → 0.

Since

Qδ(x0, t0 − δ2/(ρ+ κ/2)2) ⊂ V
ρ+κ/2

δ
√
1+(ρ+κ/2)2

,

it follows from (64) that

(65)

1

δ2

∫ ∫

Qδ(x0,t0−δ2/(ρ+κ/2)2)
(|v(x, t)|3 + |v(x, t)||p(x, t)|) dx dt

+
1

δ13/4

∫ t0− δ2

(ρ+κ/2)2

t0− δ2[1+(ρ+κ/2)2]

(ρ+κ/2)2

(

∫

Bδ(x0)
|p(x, t)| dx)5/4 dt

≤ [1 + (ρ+ κ/2)2]13/8 c(δ
√

1 + (ρ+ κ/2)2).

Choosing now δ so small that the right hand side of (65) is smaller than ǫ1 from
Lemma 1, it follows from Lemma 1 that

(66) |v| ≤ C0{[1 + (ρ+ κ/2)2]13/8 c(δ
√

1 + (ρ+ κ/2)2)}2/3/δ = c̃(δ)/δ,

almost everywhere on Qδρ/(ρ+κ/2)(x0, t0− δ2/(ρ+κ/2)2) with limδ→0+ c̃(δ) = 0.

Further, we use the fact that v(·, t) is a smooth function for almost every t and

obtain that for every such t = t0 − δ2

(ρ+κ/2)2
we have |v(x, t0 − δ2/(ρ+ κ/2)2)| ≤

c̃(δ)/δ for every x ∈ Bρδ/(ρ+κ/2)(x0). As a result of this we get that for r > 0

sufficiently small

(67) |v(x, t)| ≤ c̃((ρ+ κ/2)
√

t0 − t)/((ρ+ κ/2)
√

t0 − t) = c∗(
√

t0 − t)/
√

t0 − t,

almost everywhere in V
ρ
r and lims→0+ c∗(s) = 0. Therefore, we can write

(

∫

B
ρ
√

t0−t

|v(x, t)|3 dx)1/3

≤ (
∫

B
ρ
√

t0−t

|c∗(
√

t0 − t)/
√

t0 − t|3 dx)1/3 = ρc∗(
√

t0 − t),

which means that

(68) ‖v‖L∞,3(V ρ
r )

≤ ρc∗(r/ρ).

for every r > 0 sufficiently small.
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It follows from (14), (15) and (68) that if δ is sufficiently small then v on Q1δ
can be written as the sum

v = v1 + v2 + v3,

v1 ∈ L∞,3(Q1δ),

‖v1‖L∞,3(Q1δ)
can be made arbitrarily small by making(69)

δ sufficiently small,

v2 ∈ La,b(Q1δ), 2/a+ 3/b ≤ 1, a ≥ 3, b > 3,(70)

v3 ∈ Lã,b̃(Q1δ), 2/ã+ 3/b̃ ≤ 1, ã ≥ 2, b̃ > 3.(71)

We use the fact that (v, p) is a suitable weak solution to (1)–(4). Then as was
explained in detail in [5] there exist δ1, δ2 such that δ/2 < δ1 < δ2 < δ and
the set (Bδ2(x0) \ Bδ1(x0)) × (0, T ) does not contain any singular point of v. It
follows from [2] that if D = (Bδ2(x0) \ Bδ1(x0)) then

D
γ
xv ∈ L∞(t0 − δ2, t0 + δ2, L∞(D)),(72)

D
γ
x

∂v

∂t
, D

γ
xp ∈ Lα(t0 − δ2, t0 + δ2, L∞(D)),(73)

for every multi-index γ = (γ1, γ2, γ3), D
γ
x =

∂|γ|

∂x
γ1
1 ...∂x

γ3
3

, |γ| = γ1 + γ2 + γ3 and

α ∈ 〈1, 2). Moreover, if Ω = R
3, then α can be taken from the interval 〈1,∞). Let

δ3 ∈ (δ1, δ2). Multiplying (1) by −∆v and integrating this equation over Bδ3(x0)

we obtain for almost every t ∈ (t0 − δ2, t0)

(74)
1

2

d

dt
|∇v|22 + ν|∆v|22 ≤

∫

Bδ3
(x0)

|v||∇v||∆v| dx

+

∫

∂Bδ3
(x0)
(|∂v

∂t
||∇v|+ |p||∆v|) dS.

Obviously,

(75)

∫

Bδ3
(x0)

|v||∇v||∆v| dx ≤
3

∑

i=1

∫

Bδ3
(x0)

|vi||∇v||∆v| dx

and we will now estimate the terms on the right hand side of (75).

∫

Bδ3
(x0)

|v2||∇v||∆v| dx ≤ ν

8
|∆v|22 +

8

ν

∫

Bδ3
(x0)

|v2|2|∇v|2 dx(76)
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≤ ν

8
|∆v|22 +

8

ν
(

∫

Bδ3
(x0)

|v2|b dx)2/b(

∫

Bδ3
(x0)

|∇v|
2b

b−2 dx)
b−2

b

≤ ν

8
|∆v|22 +

8

ν
|v2|2b |∇v|

2(b−3)
b

2 |∇v|
6
b
6

≤ ν

8
|∆v|22 +

8

ν
|v2|2b |∇v|

2(b−3)
b

2 c17(|∆v|2 + c18)
6
b

≤ ν

8
|∆v|22 + c19c(ν)|v2|

2b
b−3

b |∇v|22 +
ν

16
(|∆v|2 + c18)

2

≤ ν

4
|∆v|22 + c19c(ν)|v2|ab |∇v|22 + c20.

Analogically,

(77)

∫

Bδ3
(x0)

|v3||∇v||∆v| dx ≤ ν

4
|∆v|22 + c19c(ν)|v3|ãb̃ |∇v|

2
2 + c20.

Similarly,

(78)

∫

Bδ(x0)
|v1||∇v||∆v| dx| ≤ ν

8
|∆v|22 +

8

ν
|v1|23|∇v|26 ≤

ν

8
|∆v|22

+
8

ν
|v1|23c17(|∆v|2 + c18)

2 ≤ ν

4
|∆v|22 + c21.

The last inequality follows from (69) for δ sufficiently small and the fact that

c17 does not depend on δ. Denote h1(t) = 2c19c(ν)(|v2(t)2|ab + |v3(t)|ã
b̃
) and

h2(t) = 2
∫

∂Bδ3
(x0)
(|∂v∂t ||∇v|+ |p||∆v|) dS+2c20+2c21. Using (74)–(78) we have

for almost every t ∈ (t0 − δ2, t0)

(79)
d

dt
|∇v|22 ≤ h1(t)|∇v|22 + h2(t),

from which we get

(80)
d

dt
(|∇v|22h3(t)) ≤ h2(t)h3(t),

where we denoted h3(t) = e
−
R t
t0−δ2

h1(s) ds
. Then for every t1 ∈ (t0 − δ2, t0)

|∇v(t1)|22h3(t1)− |∇v(t0 − δ2)|22h3(t0 − δ2)

(81)

=

∫

Bδ3
(x0)
(|∇v(x, t1)|2h3(t1)− |∇v(x, t0 − δ2)|2h3(t0 − δ2)) dx
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=

∫

Bδ3
(x0)

∫ t1

t0−δ2

∂

∂t
(|∇v(x, t)|2h3(t)) dt dx

=

∫ t1

t0−δ2

∫

Bδ3
(x0)

∂

∂t
(|∇v(x, t)|2h3(t)) dx dt

=

∫ t1

t0−δ2

d

dt
(

∫

Bδ3
(x0)

|∇v(x, t)|2h3(t) dx) dt =

∫ t1

t0−δ2

d

dt
(|∇v|22h3(t)) dt.

We used the fact that for every x ∈ Bδ3(x0) the function t 7→ Dγ
xv(x, t) is

absolutely continuous (see [2]), then (72) and (73) and Fubini theorem. (80) can
now be integrated over (t0 − δ2, t1) and using (81) we get

(82) |∇v(t1)|22 ≤ |∇v(t0 − δ2)|22e
R t1
t0−δ2

h1(s) ds
+ c

∫ t1

t0−δ2
h2(t)e

R t1
t

h1(s) ds dt

for every t1 ∈ (t0 − δ2, t0). Since h1, h2 ∈ L1(t0 − δ2, t0), (82) gives that

(83) v ∈ L∞(t0 − δ2, t0, W
1,2(Bδ3(x0))).

The proof of Theorem 6 is almost complete now. It suffices to prove that if
Ω = R

3 then (x0, t0) is a regular point of v. Let δ4 ∈ (δ1, δ3). Let η be an infinitely
differentiable function on R

3 with its values in 〈0, 1〉, η ≡ 1 on Bδ1(x0) and η ≡ 0
outside Bδ4(x0). Set V(·, t) = R(∇η ·v(·, t)) for every t ∈ (t0− δ2, t0+ δ2), where
R is the operator from Lemma 2. Putw = ηv−V. It follows from (83), reflexivity
ofW 1,2(Bδ3(x0)) and the weak continuity of w as a function from (t0−δ2, t0+δ2)

to L2(Bδ3(x0)) that w(·, t0) ∈ W
1,2
0 (Bδ3(x0)) and ∇ · w(·, t0) = 0 in Bδ3(x0).

Further, w is a weak solution to the following system in Bδ3(x0)×(t0−δ2, t0+δ2):

(84)

∂w

∂t
− ν∆w +w · ∇w +∇(ηp) = g,

∇ ·w = 0,
w = 0 on ∂Bδ3(x0)× (t0 − δ2, t0 + δ2),

w|t=t0 = w(·, t0),

where

(85)

g = −ν∆ηv − 2ν∇η · ∇v + v · ∇ηv − p∇η

− ∂V

∂t
+ ν∆V − v · ∇V + [(η − 1)v −V] · ∇w.

It follows from the definition of w and V, Lemma 2 and (72) and (73) that

(86) g ∈ L∞(t0 − δ2, t0 + δ2, L∞(Bδ3(x0)))
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and due to [9, Chapter III., Theorem 3.11] there exists ζ1 ∈ (0, δ2) such that

(87) w ∈ L∞(t0, t0 + ζ1, W
1,2(Bδ3(x0))).

It gives together with (83) and the definition of w that

(88) v ∈ L∞(t0 − δ2, t0 + ζ1, W
1,2(Bδ1(x0))).

The regularity of (x0, t0) now follows from the standard Prodi-Serrin’s conditions.
The proof of Theorem 6 is complete. �

Remark 2. Theorem 5 can also be proved if we consider b = 3 or β = 3/2 in (12)
and (13) and the appropriate norms are sufficiently small. Similarly, Theorem 6

can also be proved if b̃ = 3 or b = 3 or β = 3/2 in (14)–(16) and the appropriate
norms are sufficiently small.
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