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Conditions of Prodi-Serrin’s type for local regularity
of suitable weak solutions to the Navier-Stokes equations

ZDENEK SKALAK

Abstract. In the context of suitable weak solutions to the Navier-Stokes equations we
present local conditions of Prodi-Serrin’s type on velocity v and pressure p under which
(x0,t0) € Q x (0,T) is a regular point of v. The conditions are imposed exclusively on
the outside of a sufficiently narrow space-time paraboloid with the vertex (xg,t0) and
the axis parallel with the t-axis.

Keywords: Navier-Stokes equations, suitable weak solutions, local regularity
Classification: 35Q10, 35B65

Let © be either R? or a bounded domain in R3 with C2T# (1 > 0) boundary 99,
T >0and Qp = Q x (0,7). Consider the Navier-Stokes equations describing the
evolution of velocity v and pressure p in Q7p:

(1) %—UAV—I—V-VV—I—V]?:O,
(2) V-v=0,
(3) v=0 on 90 x(0,T),
(4) V]t=0 = vo,

where v > 0 is the viscosity coefficient and the initial data vg satisfy the com-
patibility conditions vglgg = 0 and V - vg = 0. The pair (v,p) is called a
suitable weak solution to (1)—(4) if v and p are measurable functions on Qr,
v € L°(0,T, L2(Q)) N L2(0, T, Wy 2 (),

T ¢
/0 /Q[V-E—V-VV-QS—VVV-V@dxdt:—/ﬂvo-(b(x,O)dx

for every ¢ € C§°(€2x (0,T)) such that V-¢ = 0in Qp, p € L5/4(QT) and (v, p)
satisfies the so called generalized energy inequality

ZIJ/OT/Q |Vv|2¢ dx dt < /OT/Q [|v|2(% + I/A¢) + (|v|2 +2p)v-Vo| dx dt

This research was supported by the Research plan of the Czech Ministry of Education
No. J04/98/210000010, by the Grant Agency of the Academy of Sciences of the Czech Republic
through the grant A2060803 and by the Institute of Hydrodynamics (project No. 5436).
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620 7. Skaldk

for every non-negative real-valued function ¢ € C§°(Qr). Further, a point
(x0,t0) € Q is called a regular point of v if there exists a space-time neigh-
borhood U of (xg, ) in Q7 such that v € L>(U)3. Points of Q7 which are not
regular are called singular. For the concept of regular and singular points and
suitable weak solutions, see [1].

In [6] J. Neustupa proved the following theorem:

Theorem 1. There exists an absolute constant eg > 0 such that if v is a suitable
weak solution to the problem (1)—(4), (xo,t0) € Qr and

1/3
lim liminf(/ lv(x, 1) dx) / < €p,
By (x0)

r—04 t—ty

then (xq,tg) is a regular point of v.

As was stressed in [6], Theorem 1 shows that if (xg, ) is a singular point of
v then the L? norm of v must necessarily concentrate in an amount greater than
or equal to €p in smaller and smaller neighborhoods of xg as t — tg—.

This paper was inspired by a theorem (Theorem 2 below) also proved in [6]
which says that under certain conditions on v and p the region of concentration
of L3 norm of v does not lie inside a sufficiently narrow paraboloid in Qp with
its axis parallel with the t-axis and with the vertex (xq,%g). Let p > 0, r > 0 and
oo = 2/p%. Denote

(5) UP ={(x,t) € Qr;to — 09 <t < to, pv/to —t < |[x —x¢| <},
(6) VP ={(x,t) € Qprito — oo < t < to,|x — x0| < pv/to — t},
(7) QF = {(x.,t) € Qrito — 1% /p* <t < tg, |x — x| <1}

Theorem 2. Suppose that (v, p) is a suitable weak solution to (1)—(4), (x0,%0) €
Qr, p € (0,V2v) and
(8) vx,t)l <c  Ip(xt)| <c in UP
for some ¢ and r > 0. Then (xg, tg) is a regular point of v.
It was shown in [8] that Theorem 2 can be further generalized:

Theorem 3. Suppose that (v, p) is a suitable weak solution to (1)—(4), (x0,t0) €
QT, p > 0 is sufficiently small, r > 0 and

1
(9) |V(X7 t)l < i T in Uﬁv pe L'Bﬁ(Vrp—i_R \ Vrp)v

|x — x|

where a € (0,1), 8,7v>1,2/8+3/y <3—aand k > 0. Then (xq,tg) is a regular
point of v.

The following theorem was proved in [7].
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Theorem 4. Let Q = R3. Suppose that (v,p) is a suitable weak solution to (1),
(2) and (4), (xg,t0) € Q, p >0 and r > 0. Let

(10) v € L**UP), 2/a+3/b=1,a>3,b>3 or VIl oo @py < €1 and
(1) P e L%P(VE),2/a+3/8=2, a>1, B>3/2 or |P||ea/yyr) < e

where P denotes the negative part of pressurep: P=0if p>0,P=—pif p <0
and €1, eg are sufficiently small. Then (xg,tg) is a regular point of v.

Theorem 4 does not need any assumption on integrability of v inside the parab-
oloid. It is compensated by assumptions on a certain integrability of the negative
part of pressure P (conditions (11)).

The main goal of this paper is to prove the two following theorems:

Theorem 5. Suppose that (v, p) is a suitable weak solution to (1)—(4), (x0,t0) €
Qr, p > 0 is sufficiently small, r > 0,x > 0 and

(12) veL“Up), 2/a+3/b=1,a>3,b>3,
(13) p e LYP(VETR\VE), 2/a+3/8=2, a>a/(a—1), #>3/2

Then v € L™ (Q}?) for some 1 > 0. Moreover, if Q = R3 then (xq,9) is a regular
point of v.

Theorem 6. Suppose that (v, p) is a suitable weak solution to (1)—(4), (xg,t0) €
Qr, p > 0 is sufficiently small, r > 0,x > 0 and

(14) v e LEUPy, 2/a+3/b=1,a>2 b>3,
(15) v e LYY(VPTR\VP), 2/a+3/b=1, a>3, b> 3,
(16) pe LYP(VPTE\VP), 2/a+3/3=2, a>a/(a—1), a>5/4, §>3/2.

Then v € L™ (ty — n?,to, WH2(By(x0))) for some n > 0. Moreover, if Q = R3
then (xq,tg) is a regular point of v.

In Theorem 5 the conditions on velocity v (12) are imposed only on Uf. They
are not the usual Prodi-Serrin’s conditions, since a > 3 instead of usually used
a > 2. In Theorem 6 this restrictive assumption is removed and the usual Prodi-
Serrin’s conditions with @ > 2 are used on Uf e However, an additional assump-
tion o > 5/4 for pressure is prescribed on an arbitrarily narrow strip V,* T \ VL.

Before proving Theorem 5 and Theorem 6, we present a few definitions and
considerations. For the sake of simplicity, we use the notation LP(A) throughout
the paper instead of LP(A)3 (similarly W™P(A) instead of W™P(A)? and so on)
if spaces of vector functions are considered. As in [6] define new coordinates
(17) x =222y D

Vig—t’ to—t°
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622 7. Skalak

Then

(18) t=1ty— aoe_t, and x=xg + \/er_t/ﬂx/.

If we denote

(x', ') € R3 x (0,00):t' > 0,p < x| < pet'/?},
') e R3 x (0,00);t' > 0, x| < p},

then we have

(19) (x,t) e UP — (x',t") e U’ (x,t) e VP = (¥, t') eV’
Define functions v/, p’ by the equations

(20) V(X )= Vg —t v(x,t), P, 1) = (tg—1t) p(x,t).
Then (v, p’) is a suitable weak solution of the problem

8 /
(9_‘1; —VvAV +V VIV VY = V2 X VIV)/2,

Vi-vi=0

in {(x/,#) € R3 x (0,00);#' > 0,|x'| < pe!'/2} and satisfies the generalized energy
inequality

1.2 / /</ / /12 /
(21) 21//0 /RS|VV|¢)dx a< | R3[|V|(_8t’+VA¢)
+ (VP2 Yo+ VP02 + (K- TV 2/2] d !

for every non-negative real-valued function ¢ € C§°({(x/,#') € R? x (0,00);¢' >
0, x| < pet'/2}). Moreover, it follows from (17)—(20) that

22)  IVlzaswe) = IV lpas@rey 19 paspreryey = 19 s quzmsmyyony

ifa>2,6>3,2/a+3/b=1anda>1,5>3/2,2/a+3/0=2.

Lemma 1. Let 9 € (0,1) and (x,t) € R3xR. Then there exist absolute constants
€1 > 0 and Cy > 0 with the following property. Suppose that (v,p) is a suitable
weak solution to the Navier-Stokes equations on QL = QL(x,t) = {(y,7); |x—y| <
r,t —r? <7 <t},r>0. Suppose further that

1 1 t
@) [ [ Pl dyars oz [ vt
r Qr r t—r2 Jix—y|<r
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for some € € (0, €1). Then
(24) v] < Coe?/3/r

Lebesgue-almost-everywhere on Q}% (x,1).

Lemma 1 was firstly declared and proved in [1] — see Proposition 1, Corol-
lary 1 and the proof on page 789. In fact, Lemma 1 differs slightly from Propo-
sition 1, Corollary 1. Firstly, we have f = 0. Secondly, Proposition 1 was proved
for ¥ = 1/2. However, it can be seen easily that the proof does not change if
¥ € (0,1). Of course, €1 and Cy may then possibly depend on ¢. Finally and
most importantly, we have that |v| < Cpe?/3/r Lebesgue-almost-everywhere on
Qur(x,t) in Lemma 1 (Co independent of €), which means that |[v||ze @y, (x,1))
depends on €. This fact is not particularly stressed in [1], but it follows directly
from the proof of Proposition 1 and Corollary 1 (see Step 3 of the proof — page 792
and the final remark in the proof). Thus, the smaller ¢ we take the smaller the
L°° norm of v we have and this fact will be used in the proof of Theorem 6.

Remark 1. Let (yg,79) € Q7 be a regular point of v. It is known (see
for instance [2]) that there exist ¢ > 0 and 6 > 0 such that D;Z%%, Dip €
L¥(m9 — €,70 + €, L>(Bs,(y0))) for every multi-index v = (v1,72,73), where

Dl = o ___ vl = v1 + 72 + 73, every 81 € (0,6) and o € (1,2). In

ox)1--0x33’
the case Q = R3, o can be even taken from the interval (1,00). We will use this
fact at the end of the proof of Theorem 6. It will enable us to conclude that
(x0,to) is a regular point of v. Unfortunately, in the case of € being a bounded
domain in R3 (and thus o < 2) we are not sure whether the same procedure can
be used or not and therefore cannot deduce the regularity of (xg,tg).

The following lemma (see e.g. [5]) will be useful in connection with the cut-off
function technique.

Lemma 2. Let D C R? be a bounded Lipschitz domain, r € (1,00) and m €
N U{0}. Then there exists a linear operator R from Wy"" (D) into V[/gn"'l’r(D)3
such that for every f € Wy (D)

div Rf = , jf/fdx:o,
D

IV RE | o py < ellV™ fll (D)

(25)

In addition, if f has a compact support in D then also Rf has a compact support
in D.

PrROOF OF THEOREM 5: The proof is based on the generalized energy inequal-
ity (21). We choose a suitable test function ¢, estimate the right hand side
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of (21) and obtain the inequality (42). Using then standard embedding theorems
we get the estimate (48) for velocity v which together with the analogical estimate
for pressure (49) leads to the use of the famous Lin’s result (see the paragraph
around (56)) and the proof is then easily completed.

Thus, let t/l > 2, t/2 > 2t/1 and € > 0 and suppose without loss of generality
that k < p/2. We use the generalized energy inequality (21) with the function
p(x', ') = €t )x(|x'|)e "'/2, where y is an infinitely differentiable function on
(0,00), x(s) = 1for 0 < s < p+£/3, x(s) = 0 for s > p+ 2k/3 and x is
decreasing on (p + k/3,p + 2k/3). £ is defined on (0,00) in the following way:
E(t) = 0 on (0, /2 — e 3U/2) U (th + €,00), (') = ' — th/2 + e731/2 on
(/2 — e73/2 1, /2), €(t') = €' 7%1 on (t]/2,2t}), €(t') = 1 on (2t},}), 0 <
E(t') < 1on (th,th +e), £ is decreasing on (th, t), + €) and infinitely differentiable
on (2t},00). To justify the use of (non-smooth) function ¢ in (21), it is possible
to find a suitable sequence of functions &, € C3°((0, 00)) such that (21) holds for
(X, t) = & (t)x(1X'])e /2, n € N and letting n — oo we get the validity of
the generalized energy inequality also for ¢(x, ') = &(t')x(|x'|)e~"/2.

Firstly, we will estimate the terms on the right hand side of (21).

Ji (G orz) o at = [ [ (= et

’ 1 ,
(26) + CENRDe 2+ S (e 7?) ax! a
th4e )
= / 2 e §I(t/)€_t /2/ |V/|2X(|X,|) dx’ dt’.
t/1/2—6 1 BP+K 0)
Further, we will use the inequality

27) / 2 dx < kl(/ V2 dx+/ uf?ds).
B1(0) B1(0) 0B1(0)

which holds for every u € W12(B1(0)) and where k; is an absolute constant. It
follows from (27) that

(28) / 2 dx < klr(r/ V2 dx+/ uf2ds),
.0) B.(0) 2B, (0)

for every u € W12(B,.(0)) and r > 0. Using (28) and the Hélder inequality we
get for almost every ¢ € (0, 00) that

[ W< [
BP+I~”~ 0

Bp+’r1(t/)(0
/ 2 1 12 / /
(20) <ki(p+mi(t)) 9V '+ (p 4 (1))
B,y 1)(0)
- /
(o

A RGO
) x'[>p

2/b 2/b
|v/|b dS/) / + Cl(/ |v/|b dx/) / ,
(0) p<Ix| <prr

ptry(t)
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where r1 (') is such a number from (0, x/3) that

/ |V/('7t/)|b ds' = inf / |V/(',t/)|b ds’.
aB/)+T'1(t/)(O) T€<07H/3> 8Bp+r.(0)

It follows from the continuity of v/(-,#’) in space coordinates that r1(t') is well
defined for almost every ¢’ € (0,00). We have from (12), (26), (29), the definition
of ¢ and (17)—(20) that

(30)
12 (2% s
/0 /Rg|v| (8t’+¢/2) dx' dt
/2 /
S/ , e—t /2/ |v/|2 dx/ dt/
t/2—e 21/ Bp1x(0)

thte ,
w7t [ W) ax e

tl2 pt+k 0
2t’1 2
4 // et//2—2t/1 kl (p +7r (t/)) / |v/v/|2 dX/
t1/2 Bp+7“1(t’)(0)

2/b
|V/|b ds/) /

+k1cq (P + Tl(t/)) (/6

Bp+’r'1(t’)(0)
HVH%OO(t —00,t0,L2())
+oeq( |V/|b dx/)Z/b at' < 0—00,t0,
p<|x[<ptr Al
to— —th/2
X [— ln(tO _t)] 0T o0e ' g —3t’1/2
t=to—cge 1/21¢
th+e
st [ W) ax
tlz BP+K(O)

!

2ty ’ ’ /
+/€1(p+1€)2/ et /2—2t1/ |V,V/|2 dx’ dt,+026_2t1
/2 Bptr/3(0)

2t 9/a
x [(/ 1(/ V'[P dgye/b dt’) /
/2 JOB, 40, 11)(0)
2t o 2! ! —2)/a
- (/ 1(/ VPP dx)elb dt’)2/ 1(/ L ety dt/)( 2)/
t/1/2 p<|xX |<p+k t’1/2

< fate 14—t /2 2 / Il
< g(te )IVI x(jx']) dx” dt

tlz BpJF,i 0
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2t
+ k1(p+ H)z/

et//2—2t’1/ |V,V,|2 dx’' dt'—f—c;),e_tﬁcl(t/l),
/2 B,y x/3(0)

where

(tl) HV||L°°(t0 oo,to,L () —tﬁ/2
2t}
(31) / /
/2 JOB, o v >(°

2t’
/ / V[0 dx)e/b dt) 2l
th/2 Jp<|x!|<ptr
We now show that

(32) lim ¢1(¢)) = 0.

t1—>oo

V'[P ds')/ dt’)2/ ‘

. . 2t 2
Obviously, limy; ., (ﬁfﬁ/l?(fpSIX’\Sp—m |v/|b dx’)e/b dt') /a _ 0, as follows from
(12) and (22). Check on the second term of ¢y (#]):

/ (/ |V/|b dS/)a/b dt/
L JOB, . )(0)
< ,3 rr/3 b a/b
:/ (—/ (/ VP ds’) dr) dt’
1 & Jo 0B, 11)(0)
0o K/3 a/b
1 \kJo 9B, (0)

0o 3 b
S/ (_/ |V/|b dx/)a/ dar’
1 \E gl <3

< (5 IV ey < o

Therefore, the second term of ¢1(t]) goes to zero if ] goes to infinity and (32) is
proved.

Further, we can use integration by parts and get

t’2+5 ,
/ ¢ (e "'/? / V2x()) dx’ d’
t

/2 BP+K(O)

= ez [ NG x|

t'=t)

th+e d .
- / () (e / VP dx')
A ¢ Bpr(x0)

!
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for almost every ¢, € (2t, 00). Therefore,
t/2+5 t’
(34) lim (e 2 / V' I2x(x|) dx’ dt’
ptr 0

e—0 J¢

tl
:_f—%/ V(' 1) 2 (X)) dx’
By+1(0)

If we suppose that p is such a small number that k1(p+ )2 < v, we get from (30)
and (34) that

/ / (57 +¢/2) dx’ dt’

(35) s—&ﬂé VOB i

ptr 0
!

2t ’ / /
+ I// /224 / \V'V/|? dx' dt’ + c3eq(t))e ™,
t9/2 B,y r/3(0)

which holds for every ¢, > 2¢] since v/ is weakly continuous as a function from

(2t} 00) into L?(Byx(0)).
It follows from the definition of ¢ that x’ - V/¢ < 0. Therefore

(36) / / V)22 ax dt’ <.

Further, using (12), the Holder inequality gives

o
‘/ / |v/|2 /.
0 R3
tll/2 ’ ’
§C4/ , e—(3t1+t )/2/ |V/|3 dx’ dt’
th/2—e %172 p<Ix!|<ptr
2t .,
+ 64/ elt _4t1)/2/ |v/|3 dx’ dt’
# /2 p<|x!|<ptr
* t'/2 N3 gl g4
(37) +C4/ et/ / [V'|? dx" dt
2t} p<|x/|<p+k
t /2

< exe3t/2e—t /4(/ / (/ Wb dx )b dt/)3/a
th/2—e 1% p< x| <ptn

) 2ty 3/a
et (7] VP dad )/
12 Jpsii<pin

o0 3/a
+ creh (/%/ (/< . V[0 dx!)e/b dt’) < cgea(th)e ™,
I Jp<|x |<p+r
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where

, t1/2 3
ca(th) = e_3t1/4(/ 1 , (/ v/|b dx’)e/b dt’) /e
t/2—e721% Jp<|x/|<ptr
2t 3
68+ ( / Y / [P )l ar') o
/2 Jp<|x|<ptr
S 3
+ (/ (/ V[P ax'ye/ at') a
2ty Jp<[x![<ptr
and by (12) and (22) limy o ca(t}) = 0. Analogically, using (12) and (13)
[e.e]
‘ / / 2wV -V'¢ dx' dt’
0 R3

tll/2 / /
§C4/ , e—(Bt1+t )/2/ |p/vl| dx’ dt’
th/2—e %172 p< x| <ptr

) "
+ 64/ el _4t1)/2/ |p/v/| dx’ dt’
# /2 p<|x!|<pt
+e > —t'/2 VI dx! dt < Iy, —th
4 e |p'v'| dx < cge3(ty)e M,
2t} p<[x|<ptr
where
, (3] 1/«
) =ene ([ () /)P ax)*/® ar')
(40) t/1/2—6 1 P§|xl‘§P+’i

o0 1
% (/ , (/ |v/|b dx/)a/b dt/) /a
th/2—e 1% p< x| <ptn

and by (12), (13) and (22) limy o c3(t)) — 0. To estimate the term

o
(41) u/ /|v’|2A’¢dx’ a
0 R3

we proceed in the same way as above and get a similar estimate as in (37). It can
be concluded from (21) and (35)—(41) that

0 !
(42) u/ / |V'V'|?¢ dx’ dt’+e‘t2/2/ V' (X', th) 2 x(|x]) dx’
0 JR3 Btk (0

gy
< cpreqa(ty)e ™,
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where limt’l oo C4(th) — 0 and ¢17 is an absolute constant independent of ¢

and to.

Secondly, let 6 € (0, r) be sufficiently small and let 7 = 2In(r/6). Put tj = 7/2.
If % + % > % and b € (2,6) then by (17)-(20), (42) and by classical embedding

theorems

(43)

/ q vix, )| dx)T/P dt
to—62/p? Bp

to—t

_ /°° eat'(1_2/a_3/z§)/2(/ v ()P )b
S/o‘°erne'(1_§_%)/z(/ |:/(x/7t/)|2 dx!Ya(3/6-1/2)/2
<A 19V dx’p)f‘1<3/2—3/b>/2 v

+(/ p|vl(xl,t/)|2 dx/)a(3/2—3/5)/2] dt’

< (04:t/1)e_t;)a(3/b_1/2)/2 /°° St g_g_g)p(e_t'/z
X/ YV (<, )2 dx/)&(3/;—3/b)/2 &

+/<:0 e[—lt’(l—%—%)ﬂ(/ v (o, #)[2 dx )2 g’

< (;—4(t/1)e—t’1)a(3/l_7—1/2?/p2€at’1 (3/2—2/a—3/0b)

« (/OO e—t’/z/ |V/V/(X/,t,)|2 dx’ dt/)(BaB—Ga)/ALB
T P
+/°°eat'(g—§—%)/2(e_t'/2/ v (<, )[2 )/ ai!
T P
< (04(t/1)e—t’1 )5(3/5—1/2)/2€at'1 (3/2—2/a—3/b) (04(t/1)e—t’1 )(355—65)/45

<H%@k%wn/mgﬂ%%%wdygmﬁw%wmwﬂm.

T

Consequently,

. 1 b g.na/b
S oYy /to_gz/pz( /B v ) dx)™ dt

p/to—t
< élim 04(1n(r/5))a/2 =0.

—04
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We could prove in the same way that for every w € (0,1)

1 — _
(45) lim 7/ (/ lv(x, t)|" dx)*® dt = 0.
-0 §a(2/a+3/b=1) Jy,_52 /(ptuwn)? Bpwnyig—t
If we put @ = b = 3, (45) gives
3 —
(46) 61—1>I(r)1+ 52 //V’J*“”‘”" x,t)|° dx dt = 0.
Further,
(47)
1 3
5_2//U§ |v(x,t)]° dx dt

as (/
e to—02/p? Jp\/to—t<|x—x0|<$

< %4( / § ( / v(x, )b dx)/® dt)g/ ¢ 53(6-3)/b+2(a—3) /a
o to—02/p? Jp/lo—t<|x—x%0|<d

1l vl 0o (rpy — 0, if § 0.

Iv(x, t)|° dx)3/0530=3)/b gt

It follows from (46) and (47) that

3 —
(48) 61_1)%1+ 52 // v(x,t)]” dx dt = 0.
Derive now that

3/2 _
(49) 5£r8+ 5—2// (x,1)] /2 dx dt = 0.

We present a proof which was used in [7]. Let § > 2. It is possible to prove that
for almost every t € ((to — (6/6)2,tg)

60 [ p¥axsas [ P2 vI? dx
Bs/6(x0) 5(x0 02 JBs(xo0)

€16 3/2
+ —/ P dx,
93 Bé(xo) | |

where c15, c16 are independent of ¢. Integrating (50) with respect to ¢t on (tg —
(6/6)2,t0) and dividing then the inequality by (§/6)2, we obtain

62 c16\ 1 3
(51) —/ |p|3/2 dx dt < (cy5 92 / |v| dx dt
62 Q(1§/9 ( )52

c16 1 3/2
+75_2/ Ip|?/? dx dt.
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Denoting

1 1
h(d) = =5 /Ql Pl dx dt, g(6) = 5 /Q1 v[® dx dt,
13 )

equation (51) can be written as

(52) h(5/6) < (015 02 + %)g(a) + %611(5).

If we further denote

A=1/6, RN =h(1/X),  g(A) = g(1/N),

we get from (52) that

(53) h(6N) < (015 02 + %6) GO + S8R0

To prove (49), it suffices to show that limy_,, ,, h(A) = 0. Verify first the bound-
edness of h. Without loss of generality we can suppose that c¢i > 1. If we put
h1(A) = max{h(\);n}, where 7 is a fixed positive number and 6 = 2¢16 then

- 50\ _
(54) h(ON) < {(013 02 + 1/2) % + 1/2} hi(N).
Since limy ., §(\) = 0, there exists Ao such that [(c1362+1/2)g(\)/n+1/2] <1,

YA >\, ie.
(55) R(OA) < hi(N), YA > Ao.

Further, there exists L > n such that Bl(/\) < L on the interval (\g,2¢c16M0),
as follows from the fact that p € L3/2 ((6*,T) x Q) for any positive 6* (see [3]).
Thus, as a result of (55), h is bounded by L on (2¢16M0, 4c%6/\0> and therefore by
the definition also iy is bounded by L on (2c16)0, 40%6)‘0>' Proceeding further in
this way we get that h(\) < L, VA > Xo.

If we return to (53) and use the boundedness of & we get that lim supy_, . 2(6))
< ¢16L/0. Since 6 can be chosen arbitrarily large, we have limy_, iL()\) =0
and (49) follows immediately.

To finish the proof of Theorem 5 we use the result proved by F. Lin in [4]:
There exists a positive constant €3 such that if

(56) 52 | (007 5 oo P2 e < g
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for some 6 > 0 then v € LOO(Q(% /2). The first part of Theorem 5 thus follows from

(48), (49) and (56). The regularity of (xq,tg) can be now proved exactly in the
same way as is done in detail at the end of the proof of Theorem 6. The proof of
Theorem 5 is complete. ([

PROOF OF THEOREM 6: We proceed in the same way as in the proof of Theorem 5
until the relation (46). Unfortunately, (47) was proved under the assumption
that @ > 3, which is not the case now (we have only @ > 2). Therefore, we
are not able to obtain equation (48) which is key for the use of the Lin’s result
mentioned earlier. Thus, we proceed in the following way. It holds for almost

every t € (tg — r2/(p + £/2)%, to) and every x € B(,1x/2)m=7(%0) that

(57) p(x,t) = pl(x,t) + ' (x,1),

where

53 Iy )| < #/ 2 J
(58) Ip* " (x,1)] < ETPNET d(t)(|"| + Ipl) dy,

d(t) = B(p-i—li)\/toi—t(xo) \ BPW(XO) and

69 | 17 dx < ) [ V2 dx, g> 1.
Bptn2)y/ig=(%0) Bpt3r/4)/ig=7(X0)
For more detailed description of these facts see [1, p. 782] and [7, Lemma 1]. Prove
now that
3

alir& 52 //p+ o (VO D)™+ [vllpl) dx dt
(60) )

+ 7 / (/ p| dx)>/* dt) = 0.

T =52/ 4/202 1By 0y e

We begin with the term

(61) Jim 5 //ﬂ+ L Ivllpl dx dt =0.

Thus, we have using (57), (58) and (59) and taking ¢ € (3,18/5), @ > a/(a — 1)
and b> 3/(8—1)

(62)
=S vilp| dx dt < = V(P! |+ [p]) dx dt
62 V6p+~/2 - 52 V6p+m/2
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1 [to . 2
=5 PEYTRE Y] +1pl) d
62 /t0—52/(p+ﬁ/2)2(:‘$3(t0 — 1)3/2 /d(t)(|"| lp|) dx)

x ( |v| dx) dt
B(pn/2)fig=i(¥0)
1 b

i il [
to—0%/(p+r/2)? By /2 i (%0)
< l2 /to c(to — t)3[(ﬁ—1)/ﬁ+(13—1)/13_1]/2
0% Jio-52 (ot /2)?
“WPloaw Vo5, ) ixo)
iz ! ety — t)3[(b—2)/b+(13—1)/1;_1}/2
0% Jio-52(pn /22

2 i
Vloa) V18,5, 1, ) g mit0) X

1, [t 3
_ dt 53(f1—3)/q
* 62 (/130—52/(,04-/@/2)2 |V|Q7B(P+3"/4)\/t0*t(x0) )

S p . e + v 2a, K
(Ipl}, BV ey /(prns2) | |L ,b(V5’E:JL+~)/(P+~/2)))

1 fo b a/b in\1/a
x (55(2/714-3/5—1) /150_52/([)4_,4/2)2 (/B [vI" dx)* dt)

(p+r/2) /7= (X0)

1 to 3
" a7 (/to—éz/(p-‘rn/?)z V108, 0 o) B0

(61) now follows from (45), where we use firstly the pair (@,b) and then (3,q).

Show now that

t
63)  lim — /0 (/B ip| dx)>/4 dt = 0.

13/4
6=0+ 813/% Jio—52 /(o)D) I B, ) jioi(x0)

It follows again from (57), (58) and (59) that

t
po / 0 (/ pl
4 to—32/(p+r/2)? B o1 y2)/ig—1(%0)

1 [ I 7.5
< — dx)°/4
B /to—éz/(p+n/2)2((/B Ip°] dx)

(p+r/2)/ig—(X0)

- / p!1| dx)>/4)
Bl 1/2)/ig=5(X0)

p1|9/2 dx)2/4(ty — )3(a=3)/2a gy

633
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1 fo 2 5/4
< - + d dt
" /to_éz/w/mz( /d o (VP 1) 0

1 [t
o | («f ! [9/2 dx)?/1
5 to=02/(p+5/2)2 I B, 1ay sig=i(X0)

x (to — t)3(@/2=D/a)5/4 g4

L 15(5-1)/861(5/4
< (SlT/‘l/ 8 )2)? ((to — 1) |p|ﬁ,d(t)

¥ (to — )15(b 2/8b| |5/2 )dt

bid(t)
1 /to 15(q/2—1)/4q | 5/2

b to — )15 q dt

513/4 YL 0By )

to
5/4

< pl . . ( /

513/4 Lo (VIS ) Jto—82 ) (pm /22

« (tO _ t)15a( 1)/28(4a—5) dt)(4a—5)/4a

Ly
G134 LN (VIR )
t
y (/ 0 (to — #)30a(b=2)/8b(20—5) y(2a-5)/2a
to—82/ (p-+1/2)?
1 to 5/2
e — dt
6(15/q=1)/2 /150—52/([)-‘:-/4/2)2 V|‘1’B<p+3n/4>\/mft(x°)
5/4 5/2
= + .
Py UGTANY v |L“(V§+p+n>)
PpHR/2 Ptr/2

+ g J, vl at
—_— %
§(15/a=1)/2 [ 52 /(pri/2)2 B (1 30/) /101 (X0)

and (63) follows from (15), (16) and (45). In the previous paragraph we used the
assumption that o > 5/4. (60) now follows now from (46), (61) and (63).
Due to (60) we have

(64)

e el / e (VERDP  IvOs D)l 1)) dix i

1+(p+r/2)2

to
5, / 1 + p 4 ,{/2 13/4 / 1+(P+n/2)2]

(p+r/2)2

( / Ip(x, )] dx)>/4 dt
Bptns2)/ig=t(¥0)
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=c(64/1+ (p+K/2)2) — 0, if § — 0.

Since
9 2 ptr/2
Qs(x0,t0 = 0%/(p+/2)7) C Vs

it follows from (64) that

1
2/ (v, + vl ) I, ) i
Qs (x0,t0—8%/(p+r/2)?)

2

to—%

65 1 (Hr72) 5/4

(65) + §13/4 / 5214 (p+r/2)?] (/ [p(x,1)] dx)>/* dt
to— (p+~/2)2 B(S(XO)

<1+ (p+K/2)21/8 ¢(54/1+ (p + K/2)2).

Choosing now ¢ so small that the right hand side of (65) is smaller than €1 from
Lemma 1, it follows from Lemma 1 that

(66) |V < Cof{[L+ (p+ /278 c(0y/1+ (p + K/2)2)}?/3 /6 = &(5) /9,

almost everywhere on Qs (p4r/2) (X0, t0 — 62/(p+r/2)?) with lims_,q, €(6) = 0.
Further, we use the fact that v(-,¢) is a smooth function for almost every ¢ and

obtain that for every such t = tg — % we have [v(x,to — 02/(p + r/2)?)| <
¢(6)/6 for every x € Bs/(ptx/2)(X0). As a result of this we get that for r > 0
sufficiently small

(67) [v(xt)] <el(p+r/2)Vio = 1)/((p + K/2)Vio — 1) = " (Vio = 1)/Vio — 1,

almost everywhere in V¥ and lim,_ . ¢*(s) = 0. Therefore, we can write

( /B vix, 1) dx)1/3

([ ROV 6918 = e (Vi ),
B, ji=t

which means that
(68) 1Vl Loos(viey < pc*(r/p).

for every r > 0 sufficiently small.
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It follows from (14), (15) and (68) that if ¢ is sufficiently small then v on Qé
can be written as the sum

v=vl + v2 + v3,
vie Lo%(Q3),

(69) ||V1HL0073(Q(15) can be made arbitrarily small by making
0 sufficiently small,

(70) vZe L2%QY), 2/a+3/b<1,a>3,b>3,

(71) v3e L8h(QY), 2/a+3/b<1,a>2 b>3.

We use the fact that (v,p) is a suitable weak solution to (1)—(4). Then as was
explained in detail in [5] there exist 1, d2 such that 6/2 < §; < d3 < ¢ and
the set (B, (x0) \ Bs, (x0)) x (0,T) does not contain any singular point of v. It
follows from [2] that if D = (Bg,(xq) \ B, (x0)) then

(72) Div € L™®(ty — 62, tg + 02, L®(D)),
(73) D30 Dip € L%ty — 8,10 + 8%, L2(D),

g &
for every multi-index v = (71,72,73), Dx = axﬁ%axgga 7] =71 +72 473 and

a € (1,2). Moreover, if Q = R3, then o can be taken from the interval (1,00). Let
93 € (61, 62). Multiplying (1) by —Av and integrating this equation over Bs, (xo)
we obtain for almost every t € (tg — 02, tg)

1d
(1) GalVvBeviavE< [ vvav] ix
55 (X0
ov
- (29 + pllAv]) ds.
8B53 X0
Obviously,

(75) /B »

3\X0

3
lv||Vv]|Av| dx < Z/ V|| Vv]|Av| dx
) i=1 7 B (x0)

and we will now estimate the terms on the right hand side of (75).

X0

8
(76) / Iv2||Vv]|Av] dx < 5|Av|§ + —/ Iv2|?|Vv|? dx
B53 X0 8 v

Bs,
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<Yiavig+ 3 / V2P )2/ / Vv dx) "5
8 V" JBs,4 (x0) Bsg (x0)
212 2b 3 6
< ZIavB+ oW RIVY], T Vg
2b 2(b—3) 6
212 6
<= |AV|27L |V l51Vvly * c17(|Av]g + c18)®

| /\

§|Av|%—|—clgc( )|v2|£ SIVVI2+ (IAvlz+c18)
1%
< 1AV + cr9c() [V §IV VI3 + c20-
Analogically,
vV -
(77) / V3| Vv||Av| dx < Z|Av|§ + c19c(W) VP2V V[ + 2.
53 (X0

Similarly,

/ V| Vv]|Av] dx| < —|AV|2 + - |V1|3|VV| Avi3
Bs(xo

(78) 8

8 v
+;|V1|§Cl7(|AVI2 +eis)? < Z|AV|§ + ca1.

The last inequality follows from (69) for ¢ sufficiently small and the fac~t that
c17 does not depend on 6. Denote hi(t) = 2c19c(v)(|v2(t)%[§ + |V3(t)|g) and

ha(t) = 2f535 (x0) (| 7 |V V| +[pl|Av]) dS+2c0 +2c21. Using (74)—(78) we have
for almost every t € (tg — 62, tp)

d
(79) ZIVVE < MOV + ha(0),

from which we get
d 2
(80) — IVVI2hs()) < ha(t)hs(t),

— ftto—az hi(s) ds

where we denoted h3(t) = e . Then for every t1 € (tg — 02, t)

(81)
Vv(t1)[3hs(t1) — |Vv(to — 6%)[3hs(to — 62)

= (IVv(x, t1)[Phs(t1) — |Vv(x, to — 6%)[*hs(to — 6%)) dx
Bsg (x0)

637
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:/ / (1Vv(x, 8)[2hs (b)) dt dx
B53(x0 to—02 8t

/ / —(|vv(x, )2hs(t)) dx di
to—62 J Bs, (x0) ot

_/t i( Vv (x,t)[2h3(t) dx) dt :/

o—o2 dt Bs, (x0) to—

t1

g vvBha(o) de.

We used the fact that for every x € Bg,(xo) the function ¢ — D3v(x,t) is
absolutely continuous (see [2]), then (72) and (73) and Fubini theorem. (80) can
now be integrated over (ty — 62,t1) and using (81) we get

t1

2 242 ft1,52 hi(s) ds ftl hi(s) ds
(82) |Vv(t)3 < [Vv(ty — 62)[3e Yo ha(t)el? dt
to—62

for every t1 € (tg — 02,t). Since h1, ho € LY (tg — 6%, t9), (82) gives that
(83) v € L®(tg — 62,19, W1?(Bs, (x0))).

The proof of Theorem 6 is almost complete now. It suffices to prove that if
Q = R3 then (xq, tg) is a regular point of v. Let 64 € (61,03). Let 5 be an infinitely
differentiable function on R? with its values in (0,1), n = 1 on Bg, (xq) and 1 = 0
outside By, (x0). Set V(-,t) = R(Vn-v(-,t)) for every t € (to — 62, to+62), where
R is the operator from Lemma 2. Put w = nv—"V. It follows from (83), reflexivity
of W12(Bs, (x0)) and the weak continuity of w as a function from (tg— 42, tg+42)
to L%(Bs,(x0)) that w(-,t9) € W()1’2(353(x0)) and V- w(-,t9) = 0 in Bs,(x0).
Further, w is a weak solution to the following system in By, (xo) x (to —62,tg+02):

%_v: —vAw +w-Vw+ V(np) =g,
w=0 on 0Bs,(x0) x (to — 02, to + 62),
Wlt:to = W('u tO)a
where
g=—vAnv —2vVn-Vv+v-Vnv —pVp
(85) A%

—8—+VAV—V VV +[(n—=1)v—V]-Vw.

It follows from the definition of w and V, Lemma 2 and (72) and (73) that

(86) g € L®(tg — 62, tg + 62, L>(Bs, (x0)))
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and due to [9, Chapter III., Theorem 3.11] there exists (1 € (0,62) such that

(87) w € L™ (to, to + (1, W2 (Bs, (%0)))-

It gives together with (83) and the definition of w that

(88)

v € L% (tg — 6%, tg + C1, WH2(Bj, (x0)))-

The regularity of (xq, tg) now follows from the standard Prodi-Serrin’s conditions.
The proof of Theorem 6 is complete. (|

Remark 2. Theorem 5 can also be proved if we consider b= 3 or § = 3/2 in (12)
and (13) and the appropriate norms are sufficiently small. Similarly, Theorem 6
can also be proved if b=3 or b= 3 or 3 = 3/2 in (14)~(16) and the appropriate
norms are sufficiently small.

(1]
(2]

(9]
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