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Gradient estimates for elliptic systems

in Carnot-Carathéodory spaces

Giuseppe Di Fazio, Maria Stella Fanciullo

Abstract. Let X = (X1, X2, . . . , Xq) be a system of vector fields satisfying the Hörman-

der condition. We prove L2,λX local regularity for the gradient Xu of a solution of the
following strongly elliptic system

−X∗

α(aαβ
ij (x)Xβuj) = gi − X∗

αfα
i (x) ∀i = 1, 2, . . . , N,

where aαβ
ij (x) are bounded functions and belong to Vanishing Mean Oscillation space.

Keywords: elliptic systems, Morrey space regularity, Carnot-Carathéodory metric

Classification: 35J50

1. Introduction

In the last decades a considerable interest has been paid to the problem of local
gradient estimates for the solutions of elliptic equations and systems. Namely, let
us consider the uniformly elliptic system

(1) −Dα(a
αβ
ij (x)Dβuj) = gi − Dαfα

i (x), i = 1, 2, . . . , N,

where i, j = 1, 2, . . . , N and α, β = 1, 2, . . . , n. An interesting problem is to show
that there exists c ≥ 0 such that if Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω then

‖Du‖L2,λ(Ω′) ≤ c
(

‖Du‖L2(Ω′′) + ‖g‖L2Q/(Q+2),λQ/(Q+2)(Ω) + ‖f‖L2,λ(Ω)

)

.

The first remarkable contribution is due to Agmon, Douglis and Nirenberg,
(see [2] and [3]), at least in the case of elliptic systems with uniformly continuous
coefficients.
Later, Miranda ([39]) generalized the estimates in the case of a single equation

assuming aij ∈ W 1,n. At the same time (see [11]) Cordes obtained the same
result without any smoothness assumption. However he supposed a geometric
condition on the eigenvalues of the matrix of the coefficients aij to hold true.
The beginning of ’90 saw another approach to the problem. In [13], a new

hypothesis on the coefficients was introduced. In [13] it was assumed that the
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coefficients of the principal part belong to a class that may contain discontinuous
functions. This class was introduced in [41] for other reasons and it is known as
the class of the functions that have vanishing mean oscillation, i.e. VMO.
In [13] an equation in nondivergence form was studied but later the same

technique has been adapted to cover the case of divergence form equation. The
technique, introduced in [13], was based on an implicit representation formula for
the derivatives of highest order. In that representation formula the highest order
derivatives were expressed by particular integral operators. Using real analysis
results, Chiarenza, Frasca, Longo got the desired estimates.
Later, these assumptions and techniques were generalized to a more abstract

setting (e.g. [12], [14], [1], [20], [7], [17], [18], [19], [21], [32], [4], [6], [5]).
Huang in [33] was able to get similar estimates for uniformly elliptic systems

of the kind (1) applying Campanato’s technique ([9], [10], [29] and [30]).
We stress that all the previous results refer to uniformly elliptic systems. The

case of degenerate equations and systems is much more delicate (see [4], [6],
[5], [15], [16], [25], [42]). An approach that can overcome the difficulties in this
context is to introduce some new metrics in R

n such that the system is no longer
degenerate with respect to these metrics. One of these is the Carnot-Carathéodory
metric, that is generated by the sub-unit curves with respect to a given system of
vector fields X = (X1, X2, . . . , Xq).
The aim of this work is to show that the gradient estimates still hold true in the

very general setting of Carnot-Carathéodory spaces. We suppose that the system
X of vector fields satisfies the Hörmander condition in R

n; this means that the
vector fields and their commutators up to some order generate R

n as vector space
(e.g. [15], [16], [25], [31], [35], [42]).
More precisely we study the system

(2) −X∗
α(a

αβ
ij (x)Xβuj) = gi − X∗

αfα
i (x), i = 1, 2, . . . , N,

where i, j = 1, 2, . . . , N , α, β = 1, 2, . . . , q (in the sequel repeated indices denote

summation) and coefficients aαβ
ij (x) ∈ L∞(Ω) ∩VMOX(Ω) (see Section 2 and [8]

for definition), and

gi ∈ L
2Q/(Q+2),λQ/(Q+2)
X (Ω), fα

i ∈ L2,λ
X (Ω), Q − n < λ < Q,

i = 1, 2, . . . , N, α = 1, 2, . . . , q,

where the space L
2,λ
X is the intrinsic Morrey space with respect to the Carnot-

Carathéodory metric (for the definition see Section 2).
We also assume the following strong ellipticity condition:

there exists ν > 0 such that,

aαβ
ij (x)ξ

i
αξj

β ≥ ν‖ξ‖2 a.e. x ∈ Ω and ∀ξ ∈ R
qN .
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We mean that a function u ∈ S1
X (Ω, RN ) (see Section 2 for the definition of

S1
X(Ω, RN )) is a solution of (2) if

∫

Ω
a
αβ
ij (x)XβujXαϕi dx =

∫

Ω
(giϕ

i + fα
i Xαϕi) dx ∀ϕ ∈ S1

X,0(Ω, RN ).

The goal of this paper is expressed in the following theorems:

Theorem 1.1. Let u ∈ S1
X(Ω, RN ) be a solution of (2). Then

Xu ∈ L2,λ
X,loc(Ω, RqN ),

and there exists c ≥ 0 such that if Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω then

‖Xu‖
L2,λX (Ω′)

≤ c

(

‖Xu‖L2(Ω′′) + ‖g‖
L
2Q/(Q+2),λQ/(Q+2)
X (Ω)

+ ‖f‖
L2,λX (Ω)

)

.

As an application of the results in Theorem 1.1 we get “global” Hölder conti-
nuity for solutions of the system (2).

Theorem 1.2. Let u ∈ S1
X(Ω, RN ) be a solution of (2). If Q− n < λ < 2, then

u ∈ C
0,α
X (Ω, RN ) with α = 1− λ

2 .

For definition of C
0,α
X (Ω, RN ) see Section 2.

2. Some preliminaries

Let us consider a system X = (X1, . . . , Xq), q ≤ n, of vector fields in R
n.

For every multi-index β = (β1, β2, . . . , βd) with 1 ≤ βi ≤ q, and |β| = d, set the
commutator of length d as

Xβ = [Xβd
, [Xβd−1

, . . . [Xβ2 , Xβ1 ]..]].

Definition 2.1. The system X = (X1, . . . , Xq) satisfies the Hörmander’s con-
dition of step s at some point x0 of R

n if {Xβ(x0)}|β|≤s spans R
n as vector

space.

Let X = (X1, . . . , Xq) satisfy the Hörmander condition in R
n, let us assume

X of the following kind:

Xj =

n
∑

k=1

bjk
∂

∂xk
, j = 1, . . . , q,

where bjk are locally Lipschitz continuous functions. From now on we shall denote

by X∗
j = −

∑n
k=1

∂
∂xk
(bjk) the formal adjoint of Xj .
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A piecewise C1 curve γ : [0, T ] → R
n is called sub-unit, with respect to the

system X , if whenever γ′(t) exists one has

〈γ′(t), ξ〉2 ≤

q
∑

j=1

〈Xj(γ(t)), ξ〉
2, ∀ξ ∈ R

n.

We set lS(γ) = T the sub-unit length of γ. Given x, y ∈ R
n, we denote by

Φ(x, y) the collection of all sub-unit curves connecting x to y. It results Φ(x, y) 6= ∅
∀x, y ∈ R

n. Then
d(x, y) = inf {lS(γ) : γ ∈ Φ(x, y)}

defines a distance, usually called the Carnot-Carathéodory distance generated
byX . We shall denote B(x, R) = {y ∈ R

n : d(x, y) < R} the metric ball centered
at x of radius R and whenever x is not relevant we shall write BR. We shall denote
by de(x, y) the usual Euclidean distance in R

n.

Now we introduce the relevant quantitative assumptions.

(H1) i : (Rn, de)→ (Rn, d) is continuous.
(H2) (Doubling condition) For every open bounded set Ω ⊂ R

n there exist
constants CD, RD > 0 such that for x0 ∈ Ω and 0 < 2R < RD one has
|B(x0, 2R)| ≤ CD|B(x0, R)|.
(H3) (Weak-L1 Poincarè type inequality) Given Ω as in (H2), there exist po-

sitive constants CP and α ≥ 1 such that for any x0 ∈ Ω, 0 < R < RD and
u ∈ C1(B(x0, αR), RN ), one has

sup
λ>0
[λ|{x ∈ B(x0, R) : ‖u(x)− uB(x0,R)‖ > λ}|] ≤ CP R

∫

B(x0,αR)
‖Xu‖ dx,

where uB(x0,R) denotes the integral average |B(x0, R)|−1
∫

B(x0,R) ‖u(y)‖ dy.

Finally we put Q = log2 CD. It results Q ≥ n, and Q will be the homogeneous
dimension of Ω with respect to X .
We remark that, by doubling condition (H2), we have

(3) |BtR| ≥ CDtQ|BR| ∀R ≤ RD and ∀t ∈ (0, 1).

Let Ω be an open bounded subset of Rn, n ≥ 3, and u : Ω→ R
N , N ≥ 1.

Definition 2.2. Let X = (X1, X2, . . . , Xq) be a system of Lipschitz vector fields

in R
n, 1 ≤ p ≤ +∞, k a positive integer. We say that u ∈ Lp(Ω, RN ) belongs to

the Sobolev space Sk,p
X (Ω, RN ) if

(4) ‖u‖
Sk,p

X (Ω,RN )
≡ ‖u‖Lp(Ω,RN )

+

k
∑

h=1

q
∑

jh=1

‖Xj1Xj2 . . . Xjh
u‖Lp(Ω,RN ) < +∞.
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We also denote by S
k,p
X,0(Ω, RN ) the closure of C∞

X,0(Ω, RN ) in S
k,p
X (Ω, RN )

with respect to the norm (4), and by Sk
X(Ω, RN ) and Sk

X,0 the Sobolev spaces

S
k,2
X (Ω, RN ) and S

k,2
X,0 respectively.

In the sequel we shall use the following Sobolev embedding theorem.

Theorem 2.1. Let Ω be an open bounded subset of R
n with sufficiently smooth

boundary.

If 1 ≤ p < Q
k then

Sk,p
X (Ω, RN ) ⊂ Lp∗(Ω, RN ), where

1

p∗
=
1

p
−

k

Q
,

and

‖u‖Lp∗(Ω,RN ) ≤ c‖u‖
Sk,p

X (Ω,RN )
.

There are a lot of proofs of this theorem in literature. For what concerns
Sobolev embedding theorems in metric spaces the reader can refer to [34], [33],
[22], [23] and [43].

Now we define the Morrey spaces, the Campanato spaces, C
0,α
X , BMOX and

VMOX spaces with respect to the Carnot-Carathéodory metric ([37], [38]).

Definition 2.3. Let p ≥ 1. We say that u ∈ Lp
loc(Ω, RN ) belongs to

L
p,λ
X (Ω, RN ), for some λ > 0, if

‖u‖
Lp,λ

X (Ω,RN )
= sup

x0∈Ω,0<R<d0

(

Rλ

|Ω ∩ B(x0, R)|

∫

Ω∩B(x0,R)
‖u‖p dx

)
1
p

< +∞,

where d0 = min(diam(Ω), RD).

Definition 2.4. Let p ≥ 1. We say that u ∈ L
p
loc(Ω, RN ) belongs to Lp,λ

X (Ω, RN ),
for λ > −p, if

[u]
Lp,λ

X (Ω,RN )
= sup

x0∈Ω,0<R<d0

(

Rλ

|Ω ∩ B(x0, R)|

∫

Ω∩B(x0,R)
‖u − uR‖

p dx

)
1
p

< +∞,

where d0 = min(diam(Ω), RD).

Lp,λ
X (Ω, RN ) and Lp,λ

X (Ω, RN ) are called Morrey space and Campanato space
respectively.
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Definition 2.5. Let α ∈ (0, 1[. C0,α
X (Ω, RN ) is the Banach space of the functions

u : Ω→ R
N α-Hölder continuous with the norm

‖u‖
C0,αX (Ω,RN )

= sup
Ω

‖u‖+ sup
Ω

‖u(x)− u(y)‖

[d(x, y)]α
.

We say that u ∈ C0,α
X (Ω, RN ) if u ∈ C0,α

X (K, RN ) for every K compact subset
of Ω.

Definition 2.6. We say that u ∈ L1
loc(Ω, RN ) belongs to BMOX(Ω, RN ) if

‖u‖BMOX(Ω,RN ) = sup
x0∈Ω,0<R<d0

1

|Ω ∩ B(x0, R)|

∫

Ω∩B(x0,R)
‖u − uR‖ dx < +∞.

If u ∈ BMOX (Ω, RN ) we say that u belongs to VMOX (Ω, RN ) when

η(R) = sup
x0∈Ω,0<ρ<R

1

|Ω ∩ B(x0, ρ)|

∫

Ω∩B(x0,ρ)
‖u − uρ‖ dx → 0

as R → 0.
We observe that the spaces Lp,λ

X (Ω, RN ) and Lp,λ
X (Ω, RN ), for λ > Q, are

essentially the spaces Lp
loc(Ω, RN ). Moreover, the following theorem holds (see

[37] and [27]).

Theorem 2.2. If λ > 0, the Campanato space Lp,λ
X (Ω, RN ) is isomorphic to the

Morrey space Lp,λ
X (Ω, RN ). If −p < λ < 0, the Campanato space Lp,λ

X (Ω, RN ) is

isomorphic to C
0,α
X (Ω, RN ) with α = −λ

p .

3. Gradient estimates

Let us start by studying the following homogeneous system:

(5) −X∗
α(a

αβ
ij (x)Xβuj) = 0 i = 1, 2, . . . , N,

with variable coefficients aαβ
ij ∈ L∞(Ω) ∩ VMOX (Ω) satisfying the strong ellip-

ticity condition:
there exists ν > 0 such that,

aαβ
ij (x)ξ

i
αξj

β ≥ ν‖ξ‖2 a.e. x ∈ Ω and ∀ξ ∈ R
qN .

We shall use the following energy estimate known as Caccioppoli inequality
(see [42]).
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Theorem 3.1. Let u ∈ S1
X(Ω, RN ) be a solution of (5). Then there exists c such

that ∀ρ < R < d0

∫

Bρ

‖Xu‖2 dx ≤
c

(R − ρ)2

∫

BR

‖u‖2 dx.

Theorem 3.2. Let u ∈ S1
X(Ω, RN ) be a solution of the system

(6) −X∗
α(a

αβ
ij Xβuj) = 0 i = 1, 2, . . . , N,

where aαβ
ij ∈ R and satisfy the strong ellipticity condition. Then there exist two

positive constants C and R0 such that for every x0 in Ω and Bρ = B(x0, ρ), with
0 < ρ < R0, we have

(7)

∫

Bρ

‖Xu‖2 dx ≤ c

(

ρ

R0

)Q ∫

BR0

‖Xu‖2 dx.

For the proof of the last theorem see [44, Theorem 3.2].

In order to study the system (5) we recall one more definition ([28] and [30]).

Definition 3.1. Given a functional F : S1
X (Ω, RN ) → R we call u a spherical

quasi-minimum for F iff

F (u;BR) ≤ cF (u+ ϕ;BR) ∀ϕ ∈ S1
X,0(BR, RN ) and ∀BR ⊂ Ω.

If u ∈ S1
X(Ω, RN ) is a solution of the system (5) then u is a spherical quasi-

minimum for the functional F (u; Ω) =
∫

Ω ‖Xu‖2 dx. In fact, let BR ⊂ Ω and

ϕ ∈ S1
X,0(BR, RN ). Setting v = u+ ϕ, using Definition 3.1 and Cauchy-Schwarz

inequality, we have,
∫

BR

‖Xu‖2 dx ≤
1

ν

∫

BR

aαβ
ij (x)XαuiXβuj dx

≤
1

ν

∫

BR

aαβ
ij (x)XαuiXβvj dx

≤ c

(
∫

BR

‖Xu‖2 dx

)
1
2
(
∫

BR

‖Xv‖2 dx

)
1
2

.

Then
∫

BR

‖Xu‖2 dx ≤ c

∫

BR

‖Xv‖2 dx,

and the result follows.
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Theorem 3.3. Let u ∈ S1
X(Ω, RN ) be a solution of the system (5). Then there

exists p > 2 such that

u ∈ S1,p
X,loc(Ω, RN ).

Moreover ∀BR ⊂⊂ Ω

(
∫

B R
2

‖Xu‖p dx

)
1
p

≤ c

(
∫

BR

‖Xu‖2 dx

)
1
2

,

where c does not depend on R.

Proof: For fixed BR ⊂⊂ Ω and ρ < R, let η be a radial cutoff function, i.e. η ∈
C∞

0 (BR), 0 ≤ η ≤ 1, η = 1 in Bρ, and ‖Xη‖ ≤ c
R−ρ (for the existence of this

function see [5]). Since u is a spherical quasi-minimum for
∫

Ω ‖Xu‖2 dx, taking
ϕ = −η(u − uR) we have

∫

Bρ

‖Xu‖2 dx ≤

∫

BR

‖Xu‖2 dx ≤ c

∫

BR

‖X(u − η(u − uR))‖
2 dx

≤ c

∫

BR

(1− η)2‖Xu‖2 dx+ c

∫

BR

‖Xη‖2‖u − uR‖
2 dx

≤ c

∫

BR\Bρ

‖Xu‖2 dx+
c

(R − ρ)2

∫

BR

‖u − uR‖
2 dx,

from which

(8)

∫

Bρ

‖Xu‖2 dx ≤
c

c+ 1

∫

BR

‖Xu‖2 dx +
c

(R − ρ)2

∫

BR

‖u − uR‖
2 dx.

Applying Lemma 5.1 in [30] we obtain

∫

Bρ

‖Xu‖2 dx ≤
c

(R − ρ)2

∫

BR

‖u − uR‖
2 dx.

Now we choose ρ = R
2 and apply Poincaré inequality (see [42]) to get

(9)

∫

B R
2

‖Xu‖2 dx ≤
c

R2

∫

BR

‖u − uR‖
2 dx

≤
c

R2

(
∫

BR

‖Xu‖2∗ dx

)
2
2∗

, where
1

2∗
=
1

2
+
1

Q
.
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Making use of (9), the doubling condition (H2) and Lemma 7 in [40], it follows

(
∫

B R
2

‖Xu‖2 dx

)
1
2

≤
c

R|BR
2
|
1
2

(
∫

BR

‖Xu‖2∗ dx

)
1
2∗

≤ c
|BR

2
|
1
Q

R

(
∫

BR

‖Xu‖2∗ dx

)
1
2∗

≤ c

(
∫

BR

‖Xu‖2∗ dx

)
1
2∗

,

where c does not depend on R.
To get the conclusion we make use of Lemma 3 in [24] taking f = ‖Xu‖2∗,

s = 2/2∗ > 1. �

Lemma 3.1. Let u ∈ S1
X(Ω, RN ) be a solution of system (5), suppose aαβ

ij ∈

L∞(Ω) ∩ VMOX (Ω) and the strong ellipticity condition holds true. Then there
exists 0 < R0 ≤ d0 such that ∀ 0 < µ < Q

∫

B(x0,ρ)
‖Xu‖2 dx ≤ c

( ρ

R

)µ
∫

B(x0,R)
‖Xu‖2 dx,

for any ρ ≤ R ≤ min(R0, dist(x0, ∂Ω))/2.

Proof: Let B(x0, R) = BR ⊂⊂ Ω be a ball and let v, w be solutions of the
following problems:

{

−X∗
α((a

αβ
ij )RXβvj) = 0 in BR,

v − u ∈ S1
X,0(BR, RN ),

{

−X∗
α((a

αβ
ij )RXβwj) = −X∗

α[((a
αβ
ij )R − a

αβ
ij (x))Xβuj ] in BR,

w ∈ S1
X,0(BR, RN ).

Trivially we have u = v + w. Concerning the function v, it is solution of a
system with constant coefficients, then, for any 0 < ρ < R, we have

(10)

∫

Bρ

‖Xv‖2 dx ≤ c
( ρ

R

)Q
∫

BR

‖Xv‖2 dx.

On the other hand, the function w satisfies the following estimate

(11)

∫

BR

‖Xw‖2 dx ≤ c

∫

BR

|(aαβ
ij )R − aαβ

ij (x)|
2‖Xu‖2 dx.
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Merging now (10) and (11), by Hölder inequality and Theorem 3.3 it follows,
for any 0 < ρ < R,

∫

Bρ

‖Xu‖2 dx ≤ 2

∫

Bρ

‖Xv‖2 dx+ 2

∫

BR

‖Xw‖2 dx

≤ c
( ρ

R

)Q
∫

BR

‖Xu‖2 dx

+c|BR|

(
∫

BR

|(aαβ
ij )R − a

αβ
ij (x)|

2p
p−2

)
p−2

p
(
∫

BR

‖Xu‖p
)2/p

≤ c

[(

ρ

R

)Q

+

(
∫

BR

|(aαβ
ij )R − a

αβ
ij (x)|

2p
p−2

)
p−2

p
]
∫

B(2R)
‖Xu‖2 dx.

Now the VMOX assumption on the coefficients plays a role. Namely since

aαβ
ij ∈ VMOX(Ω) making use of Lemma 1.III, Chapter I in [10], we obtain that

there exists R0 ≤ d0 such that ∀ρ < R ≤ min(R0, dist(x0, ∂Ω))/2 and ∀0 < µ < Q
∫

Bρ

‖Xu‖2 dx ≤ c
( ρ

R

)µ
∫

BR

‖Xu‖2 dx.

�

Now we can study the variable coefficients system

(12) −X∗
α(a

αβ
ij (x)Xβuj) = gi(x)− X∗

αfα
i (x), i = 1, 2, . . . , N,

where

a
αβ
ij ∈ L∞(Ω) ∩VMOX(Ω),

gi ∈ L
2Q/(Q+2),λQ/(Q+2)
X (Ω), fα

i ∈ L2,λ
X (Ω), with Q − n < λ < Q

and the strong ellipticity condition holds true.

Theorem 3.4. Let u ∈ S1
X(Ω, RN ) be a solution of (12). Then

Xu ∈ L
2,λ
X,loc(Ω, RqN ).

More precisely there exists R0 ≤ d0 such that ∀ρ < R ≤ R0 and B(x0, R) ⊂ Ω,
we have
∫

B(x0,ρ)
‖Xu‖2 dx ≤ c

|B(x0, ρ)|

ρλ
·

·

[

Rλ

|B(x0, R)|

∫

B(x0,R))
‖Xu‖2 dx+ ‖g‖2

L
2Q/(Q+2),λQ/(Q+2)
X (Ω)

+ ‖f‖2
L2,λX (Ω)

]

,
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where c does not depend on ρ.

Proof: For x0 ∈ Ω fixed, we stress that by Lemma 7 in [40] there exists R ≤
min(R0, dist(x0, ∂Ω))/2 (R0 appears in Lemma 3.1) such that |BR| ≤ 1.
Let v and w be the solutions of the following systems

{

−X∗
α(a

αβ
ij (x)Xβvj) = 0 in BR,

v − u ∈ S1
X,0(BR, RN ),

{

−X∗
α(a

αβ
ij (x)Xβwj) = gi − X∗

αfα
i in BR,

w ∈ S1
X,0(BR, RN ).

Let Q − n < µ < Q. From Lemma 3.1 we get

(13)

∫

Bρ

‖Xu‖2 dx ≤ c

∫

Bρ

‖Xv‖2 dx+ c

∫

Bρ

‖Xw‖2 dx

≤ c
( ρ

R

)µ
∫

BR

‖Xv‖2 dx+ c

∫

BR

‖Xw‖2 dx lec
( ρ

R

)µ
∫

BR

‖Xu‖2 dx

+c

∫

BR

‖Xw‖2 dx.

Now we estimate the last integral in (13). By definition of solution, Hölder and
Sobolev inequalities, one has

∫

BR

‖Xw‖2 dx ≤ c

∫

BR

‖w‖‖g‖ dx+ c

∫

BR

‖Xw‖‖f‖ dx

≤ c

(
∫

BR

‖w‖2∗
)1/2∗(∫

BR

‖g‖2Q/(Q+2) dx

)
Q+2
2Q

+ c

(
∫

BR

‖Xw‖2 dx

)1/2(∫

BR

‖f‖2 dx

)1/2

≤ c

(
∫

BR

‖Xw‖2 dx

)1/2[(∫

BR

‖g‖2Q/(Q+2)
)

Q+2
2Q

+

(
∫

BR

‖f‖2 dx

)1/2]

,

from which

∫

BR

‖Xw‖2 dx ≤ c

(
∫

BR

‖g‖2Q/(Q+2)
)

Q+2
Q

+ c

∫

BR

‖f‖2 dx.

Then we obtain
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∫

Bρ

‖Xu‖2 dx ≤ c
( ρ

R

)µ
∫

BR

‖Xu‖2 dx

+ c

(
∫

BR

‖g‖2Q/(Q+2)
)

Q+2
Q

+ c

∫

BR

‖f‖2 dx

≤ c
( ρ

R

)µ
∫

BR

‖Xu‖2 dx +
|BR|

Q+2
Q

Rλ
‖g‖2

L
2Q/(Q+2),λQ/(Q+2)
X (Ω)

+
|BR|

Rλ
‖f‖2

L2,λX (Ω)

≤ c
( ρ

R

)µ
∫

BR

‖Xu‖2 dx+
|BR|

Rλ
[‖g‖2

L
2Q/(Q+2),λQ/(Q+2)
X (Ω)

+ ‖f‖2
L2,λX (Ω)

].

SinceQ−n < µ < Q, we can use Proposition 2.1 in [36] with β = µ, F (ρ) =
|Bρ|
ρλ

and Q − λ < γ < µ. We observe that ργ

F (ρ)
is almost increasing: in fact from (3),

since γ > Q − λ, it follows that ∀t ∈ (0, 1)

tγ+λ

|Btρ|
≤ CD

tγ+λ−Q

|Bρ|
≤

CD

|Bρ|
.

Finally, we obtain ∀ρ < R, by Proposition 2.1 in [36]

∫

Bρ

‖Xu‖2 dx

≤ c
|Bρ|

ρλ

[

Rλ

|BR|

∫

BR

‖Xu‖2 dx+ ‖g‖2

L
2Q/(Q+2),λQ/(Q+2)
X (Ω)

+ ‖f‖2
L2,λX (Ω)

]

.

The last inequality ensures us that Xu belongs to the space L
2,λ
X,loc(Ω, RqN ). �

From the last theorem, Poincaré inequality (see [42]) and Theorem 2.2 we can
obtain the following Hölder continuity result for the solution of the system (12).

Theorem 3.5. Let u ∈ S1
X(Ω, RN ) be a solution of (2). If Q− n < λ < 2, then

u ∈ C
0,α
X (Ω, RN ) with α = 1−

λ

2
.
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