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A new rank formula for idempotent

matrices with applications

Yongge Tian, George P.H. Styan

Abstract. It is shown that

rank(P ∗AQ) = rank(P ∗A) + rank(AQ)− rank(A),

where A is idempotent, [P,Q] has full row rank and P ∗Q = 0. Some applications of the
rank formula to generalized inverses of matrices are also presented.

Keywords: Drazin inverse, group inverse, idempotent matrix, inner inverse, rank, tripo-
tent matrix

Classification: 15A03, 15A09

A complex square matrix A is said to be idempotent, or a projector, whenever
A2 = A; when A is idempotent, and Hermitian (or real symmetric), it is often
called an orthogonal projector, otherwise an oblique projector. Projectors are
closely linked to generalized inverses of matrices. For example, for a given matrix
A the product PA = AA+ is well known as the orthogonal projector on the range
(column space) of A, where A+ is the Moore-Penrose inverse of A; which is the
unique solution of the following four Penrose equations

(i) AA+A = A, (ii) A+AA+ = A+, (iii) (AA+)∗ = AA+, (iv) (A+A)∗ = A+A.

In addition, the products AA#, AAD and AA− are also idempotent matrices,
where A#, AD and A− are the group inverse, the Drazin inverse, and an inner
inverse of A, respectively. In a recent paper by Drury, Liu, Lu, Puntanen and
Styan [1], a rank formula for the orthogonal projector PA is established as follows

(1) rank(P ∗AA+Q) = rank(AP ) + rank(AQ)− rank(A),

where A ∈ Cn×n is Hermitian nonnegative definite, P ∈ Cn×p and Q ∈ Cn×q such
that [P, Q ] has full row rank and P ∗Q = 0. This formula can help to establish
several useful rank equalities for block matrices and orthogonal projectors when X

and Y are properly chosen, see Drury et al. [1] and Tian [2]. This work motivates
us to consider in general the rank of P ∗AQ and various related topics, where A

is idempotent, [P, Q ] has full row rank and P ∗Q = 0. To do so, we need the
following result.
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Lemma 1. Let A ∈ Cm×n, B ∈ Cn×k and C ∈ Ck×l be given. Then

(2) rank(ABC) = rank(AB) + rank(BC)− rank(B)

holds if and only if there are matrices X and Y such that BCX + Y AB = B.

In fact it is well known that the equation AX + Y B = C is consistent if and
only if

rank

[

C A

B 0

]

= rank

[

0 A

B 0

]

.

Applying this result to the equation BCX + Y AB = B, we obtain Lemma 1.
Our main results are given below.

Theorem 2. Let A ∈ Cm×m be an idempotent matrix, and let P ∈ Cm×p and

Q ∈ Cm×q be any two matrices such that [P, Q ] has full row rank and P ∗Q = 0.
Then

(3) rank(P ∗AQ) = rank(P ∗A) + rank(AQ)− rank(A).

Proof: Since [P, Q ] has full row rank and P ∗Q = 0, it follows that

[P, Q ]+ =

[

P+

Q+

]

and [P, Q ][P, Q ]+ = PP+ +QQ+ = Im.

Let X = Q+A and Y = A(P+)∗. Then we have

AQX + Y P ∗A = AQQ+A+A(P+)∗P ∗A = A( Im − PP+ )A+APP+A = A.

Applying Lemma 1 to this equality yields (3). �

Now let P =

[

Im

0

]

and Q =

[

0
Ik

]

. Then [P, Q ] is of full row rank and

P ∗Q = 0. We derive from (3) the following result.

Corollary 3. Suppose that

(4) A =

[

A11 A12
A21 A22

]

, A11 ∈ C
m×m, A12 ∈ C

m×k, A21 ∈ C
k×m, A22 ∈ C

k×k

is an idempotent matrix. Then the rank of A satisfies the following two rank

equalities

(5) rank(A) = rank

[

A12
A22

]

+ rank[A11, A12 ]− rank(A12),
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and

(6) rank(A) = rank

[

A11
A21

]

+ rank[A21, A22 ]− rank(A21).

Moreover, if

(7) A =











A11 A12 · · · A1p
A21 A22 · · · A2p
...

...
. . .

...

Ap1 Ap2 · · · App











, Aij ∈ C
ti×tj , 1 ≤ i, j ≤ p

is idempotent, then the rank of A satisfies the rank equalities

(8) rank(A) = rank(Q1i) + rank(Qi+1,p)− rank(Qi+1,i), i = 1, 2, . . . , p − 1,

where

Qij =







Ai1 · · · Aij

...
. . .

...

Ap1 · · · Apj






, 1 ≤ i, j ≤ p.

The rank formulas in (8) are derived from (6). If the matrix A in (4) is an
orthogonal projector, then (5) becomes

rank(A) = rank(A11) + rank(A22)− rank(A12).

If we replace the idempotent matrix A in (5) by the idempotent matrix Im+k−A,
and note that rank(Im+k − A) = m+ k − rank(A), then (5) becomes

rank(A) = m+ k + rank(A12)− rank[ Im − A11, A12 ]− rank

[

A12
Ik − A22

]

.

The Drazin inverse AD of a square matrix A with index(A) = k is defined to
be the unique solution of the three matrix equations

(i) AkXA = Ak, (ii) XAX = X, (iii) AX = XA.

When index(A) = 1, i.e., rank(A2) = rank(A), AD is called the group inverse

of A and denoted by A#. From ADAAD = AD we see that AADAAD = AAD.
Thus AAD is idempotent. In addition, rank(AD) = rank(AAD) = rank(Ak). In

this case, applying Theorem 2 to P ∗AADQ and P ∗AA#Q, we get the following
corollary.
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Corollary 4. Let A ∈ Cm×m be given with index(A) = k, let P ∈ Cm×p and

Q ∈ Cm×q be any two matrices such that [P, Q ] has full row rank and P ∗Q = 0.
Then

(9) rank(P ∗AADQ) = rank(P ∗Ak) + rank(AkQ)− rank(Ak).

In particular,

(10) rank(P ∗AA#Q) = rank(P ∗A) + rank(AQ)− rank(A).

Let P =

[

Im

0

]

and Q =

[

0
Ik

]

in (10). We also have the following corollary.

Corollary 5. Let

A =

[

A11 A12
A21 A22

]

, A11 ∈ C
m×m, A12 ∈ C

m×k, A21 ∈ C
k×m, A22 ∈ C

k×k

with index(A) = 1, and denote by (AA#)12 the upper-right m × k block of the

projector AA#. Then the rank of (AA#)12 is

(11) rank[(AA#)12] = rank

[

A12
A22

]

+ rank[A11, A12 ]− rk(A).

A square matrix A is called tripotent if A3 = A. For the tripotent matrix A,
its group inverse is A# = A. Now applying (9) to a tripotent matrix A and noting
that

(AA#)12 = (A
2)12 = [A11, A12 ]

[

A12
A22

]

,

we obtain the following result.

Corollary 6. Suppose that

A =

[

A11 A12
A21 A22

]

, A11 ∈ C
m×m, A12 ∈ C

m×k, A21 ∈ C
k×m, A22 ∈ C

k×k

is a tripotent matrix. Then the rank of A satisfies the following two rank equalities

(12) rank(A) = rank[A11, A12 ] + rank

[

A12
A22

]

− rank

(

[A11, A12 ]

[

A12
A22

])

,

and

(13) rank(A) = rank[A21, A22 ] + rank

[

A11
A21

]

− rank

(

[A21, A22 ]

[

A11
A21

])

.

Finally, we present a result for a triangular inner inverse of an idempotent
matrix. We will use the following result due to Tian [3, Corollary 4.3].
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Lemma 7. The block matrix

A =











A11 A12 · · · A1p
A21 A22 · · · A2p
...

...
. . .

...

Ap1 Ap2 · · · App











, where Aij ∈ C
si×tj , 1 ≤ i, j ≤ p,

has an inner inverse with the upper triangular block form

A− =











S11 S12 · · · S1p
S22 · · · S2p

. . .
...

Spp











, Sij ∈ C
ti×sj , 1 ≤ i, j ≤ p

if and only if

rank(A) = rank(Q1i) + rank(Qi+1,p)− rank(Qi+1,i), i = 1, 2, . . . , p − 1,

where

Qij =







Ai1 · · · Aij

...
. . .

...

Ap1 · · · Apj






, 1 ≤ i, j ≤ p.

Applying this lemma to the idempotent block matrix A in (7) under (8), we
immediately see that

Theorem 8. If the block matrix

A =











A11 A12 · · · A1p
A21 A22 · · · A2p
...

...
. . .

...

Ap1 Ap2 · · · App











, where Aij ∈ C
ti×tj , 1 ≤ i, j ≤ p,

is idempotent, then it must have an inner inverse with the upper triangular block

form

A− =











S11 S12 · · · S1p
S22 · · · S2p

. . .
...

Spp











, Sij ∈ C
ti×tj , 1 ≤ i, j ≤ p.

In particular, if

A =

[

A11 A12
A21 A22

]

, where A11 ∈ C
m×m, A12 ∈ C

m×k, A21 ∈ C
k×m, A22 ∈ C

k×k,
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is idempotent, then it must have an inner inverse with the upper triangular block

form

A− =

[

G11 G12
0 G22

]

, G11 ∈ C
m×m, G12 ∈ C

m×k, G22 ∈ C
k×k.

For more rank equalities for idempotent matrices, see the authors’ recent pa-
per [4].
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