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A β-normal Tychonoff space which is not normal

Eva Murtinová

Abstract. α-normality and β-normality are properties generalizing normality of topo-
logical spaces. They consist in separating dense subsets of closed disjoint sets. We
construct an example of a Tychonoff β-normal non-normal space and an example of
a Hausdorff α-normal non-regular space.

Keywords: α-normal, β-normal, closed unbounded

Classification: 54A05, 54D15, 03E75

The notions of α and β-normality have been introduced recently by A.V. Ar-
hangel’skii and L. Ludwig in [AL].

Definition. A topological space X is called α-normal (β-normal) whenever for
each pair of closed disjoint subsets A, B ⊂ X there are open sets U, V ⊂ X such
that A ∩ U = A, B ∩ V = B and U ∩ V = ∅ (U ∩ V = ∅, respectively).

Arhangel’skii and Ludwig presented several examples of Tychonoff not α-
normal and of α-normal not β-normal spaces. They made observations we recall
in Propositions 1 and 2.

Proposition 1. A space X is β-normal if and only if for every A closed and U
open, A ⊂ U ⊂ X , there exists an open V ⊂ X such that A ∩ V = A and V ⊂ U .

Proposition 2.

(a) Every α-normal T1-space is Hausdorff.
(b) Every β-normal T1-space is regular.

This leads naturally to the following questions:

1. Does there exist a Hausdorff α-normal non-regular space? ([AL], Question 1).
2. Does there exist a regular β-normal non-Tychonoff space? We shall return to
this topic in Remark 4.

3. Does there exist a Tychonoff β-normal not normal space? ([AL], Question 4).

The aim of the present paper is to answer them in the affirmative. Another
ZFC example of a Hausdorff α-normal non-regular space was found independently
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by D. Burke. And there is a consistent example of a Tychonoff β-normal not
normal space due to Ludwig and Szeptycki [LS].
Let us observe that a positive answer to the third question yields a positive

answer to the first one:

Proposition 3. Suppose X is a regular β-normal not normal space. Let A, B
be closed disjoint subsets of X that cannot be separated by open neighborhoods.
Then the quotient space Y = X/A obtained by identifying A with a point is
Hausdorff, α-normal and not regular.

Proof: Let q : X → Y be the canonical quotient map, {a} = q[A]. It is easy to
see that Y is a Hausdorff space and that q[B] and a cannot be separated.
Choose closed disjoint subsets F , H of Y . If a /∈ F ∪ H then dense parts of

F and H can be separated using α-normality of X . Assume that a ∈ F , i.e.
A ⊂ q−1[F ] and A ∩ q−1[H ] = ∅. The space X is β-normal, hence there is O

open in X such that q−1[H ] ∩ O = q−1[H ] and q−1[F ] ∩ O = ∅. Put U = q[O],
V = Y \ U . As O ∩ A = ∅, U is an open subset of Y and U = q[O]. But
H ∩ U = H , V ⊃ F . �

Note that the previous argument is not valid, if α-normality is assumed instead
of β-normality.
We give an affirmative answer to the third question in ZFC now.

Example 1. A β-normal Tychonoff space which is not normal.
We shall keep the notation S = {α < ω2 : cf α = ω1}.
Consider the set

X =
{

(α, β) : β ≤ α ≤ ω2 & (α, β) 6= (ω2, ω2)
}

and its partition into

A =
{

(α, α) : α < ω2
}

,

B =
{

(ω2, β) : β < ω2
}

,

D =
{

(α, β) : β < α < ω2
}

.

Topologize X in this way: let each (α, β) ∈ D be isolated, let an open base in
(α, α) ∈ A consist of all sets of the type

{

(γ, γ) : α0 < γ ≤ α
}

∪
⋃

{

{γ} × Cγ : α0 < γ ≤ α & γ ∈ S
}

,

where α0 < α and every Cγ is a closed unbounded (club) subset of γ, and let the
base in (ω2, β) ∈ B consist of all the sets

{

(α, γ) : β0 < γ ≤ β & αγ < α ≤ ω2
}

,
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where β0 < β and β ≤ αγ < ω2 for each γ.
All above defined basic open neighborhoods are closed, i.e. X is a zero-dimen-

sional (in particular, Tychonoff) space.
Let us disprove normality of X . Consider closed disjoint sets A, B and an open

O containing A. Then O ∩ B 6= ∅. Indeed, S is a stationary subset of ω2 and
as {(α, α) : α ∈ S} ⊂ A ⊂ O, for each α ∈ S there is a Cα club in α such that
{α} × Cα ⊂ O. But by Fodor‘s Pressing Down Lemma, there is an unbounded
R ⊂ S and a β ∈ ω2 such that (∀α ∈ R) β ∈ Cα. It follows that (ω2, β) ∈ O.
Using Proposition 1 we shall prove β-normality of X .
Assume that F ⊂ O ⊂ X , F is closed, O open. We are looking for an open U

such that F ∩ U = F and U ⊂ O. Note that the only interesting cases are when
F ⊂ A or F ⊂ B. Indeed, for a general F , denote FA = F ∩ A, FB = F ∩ B,
FD = F ∩ D (FA and FB are closed). If there are open sets U1, U2 such that

FA ∩ U1 = FA & U1 ⊂ O,

FB ∩ U2 = FB & U2 ⊂ O,

then U = U1 ∪ U2 ∪ FD is open, F ∩ U ⊃ (FA ∩ U1) ∪ (FB ∩ U2) ∪ FD = F ,
U = U1 ∪ U2 ∪ FD ⊂ O ∪ F = O.
As A ≃ B ≃ ω2, A∪D and B∪D are (open) normal subspaces of X . Therefore

we can assume that O = X \ B in case of F ⊂ A and O = X \ A if F ⊂ B.
Moreover, for each β0 < ω2

{

(α, β) ∈ X : β ≤ β0
}

is a clopen normal subspace. It follows that if F ⊂ A (F ⊂ B, respectively) and
|F | ≤ ℵ1, we are done.
Let F ⊂ A (or F ⊂ B) be unbounded (i.e. |F | = ℵ2). The set F is = F \ F ′ is

open dense in F , so there is an open subset V of A (of B, respectively) such that
F ∩ V = F is. As F ′ ∩ V = ∅, V is isomorphic to a nonstationary set in ω2.
Suppose that F ⊂ A. The set N = {α ∈ S : (α, α) ∈ V } is nonstationary.

Hence there is a nondecreasing regressive function f : N → ω2 such that

∀β<ω2

∣

∣{α ∈ N : f(α) = β}
∣

∣ ≤ ℵ1.

For each α ∈ N put Cα = {γ : f(α) < γ < α}. Thus

U = V ∪
⋃

{

{α} × Cα : α ∈ N
}

is an open subset of X , F ∩ U = F ∩ V = F is = F and by the choice of f ,
U = V ∪

⋃

{{α} × Cα : α ∈ N} does not intersect B, i.e. U ⊂ O.
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Now, assume that F ⊂ B. The set C = ω2 \ {β : (ω2, β) ∈ V } is club in
ω2, M = S \ C′ = {α ∈ S : sup(C ∩ α) < α} is nonstationary. Fix a regressive
nondecreasing function f :M → ω2 such that

∀β<ω2

∣

∣{α ∈ M : f(α) = β}
∣

∣ ≤ ℵ1.

For α ∈ S define

Cα =

{

C ∩ α, if α ∈ C′,

{γ : f(α) < γ < α}, otherwise (i.e. if α ∈ M).

Thus, G = A∪
⋃

{

{α}×Cα : α ∈ S
}

is an open neighborhood of A and G∩V = ∅.
Indeed, for any (ω2, β) ∈ V , {α ∈ S : β ∈ Cα} is bounded: the set is equal to

{

α ∈ S ∩ C′ : β ∈ Cα

}

∪
{

α ∈ M : f(α) < β
}

,

while the first summand is empty and the second one is bounded.

Put U = X \ G. Clearly, U is open and F = F ∩ V ⊂ F \ G = F ∩ U .

Moreover, U ∩ A = (X \ G) ∩ A = ∅. Hence U ⊂ O. �

Remark 4. A construction of F.B. Jones that produces a non-Tychonoff space
Y starting from a non-normal space X (see [Jo]) was used by Arhangel’skii and
Ludwig to find, under CH, an example of a non-Tychonoff α-normal regular space
([AL, Example 3.3]). It is not hard to prove that if X is regular and β-normal,
then so is Y . Hence, starting withX from Example 1, Y is a T3, non-T3 1

2

β-normal
space.

Let us turn attention to the first question in a particular case.

Proposition 5. Every first countable Hausdorff α-normal space is regular.

Proof: We shall assume that X is a first countable Hausdorff non-regular space
and prove that it is not α-normal.
There is an x ∈ X and a closed F ⊂ X such that x /∈ F but x, F cannot

be separated by disjoint open sets. Let {On : n ∈ ω} be an open base in x,
On ⊃ On+1 (∀n).
Pick, inductively, xn ∈ On ∩F ; as X is Hausdorff, at each step we can assume

that xn /∈ On+1. Note that, then,

xn ∈ Om ⇔ m ≤ n.

Define A = {xn : n ∈ ω}. Then A′ = ∅. Indeed, for a y 6= x there is an open set
U andm ∈ ω such that y ∈ U and U∩Om = ∅. Therefore U∩A ⊂ {x0, . . . , xm−1}
and y /∈ A′.
We conclude that A is closed and has no proper dense subset, while x /∈ A. As

{x} and A cannot be separated, they refute α-normality of X . �
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The space from the following example is first countable at each point except
one. In fact, cardinality of local basis in ω1 ∈ X is equal to the character of Club
filter on ω1. In particular, ℵ2 ≤ bω1 ≤ χ(ω1, X) ≤ dω1 , see, e.g., [BS] (5.23–5.25).

Example 2. An α-normal Hausdorff space which is not regular.
Let X denote the space with underlying set ω1 + 1 and topology τ such that:

ω1 with ordinal topology is an open subspace and a base in the point ω1 consists
of all sets of the type

OC = {ω1} ∪ {α+ 1 : α ∈ C},

where C ⊂ ω1 is closed unbounded.
The topology τ is stronger than the order topology on ω1+1, in particular, X

is Hausdorff.
The space is not regular: consider club C ⊂ {α < ω1 : α is a limit ordinal}.

Then OC ∩C = ∅, therefore ω1 /∈ C and C is a closed subset of X . But for every
club D,

OD ∩ C ⊃ D′ ∩ C 6= ∅,

hence ω1 and C cannot be separated.
It remains to prove that X is α-normal. Pick closed disjoint A, B ⊂ X . If

A, B ⊂ ω1 then they can be separated in the open normal subspace ω1. Let
B = C ∪{ω1} with C ⊂ ω1. It is easy to separate A and B, if A is bounded in ω1.
Suppose A is unbounded. This implies that C is bounded, in particular ω1 /∈ C.

Fix open disjoint U1, V1 ⊂ ω1 such that A ⊂ U1, C ⊂ V1. We shall separate ω1
from Ais = A \ A′.
Let A = {aα : α < ω1} be an increasing enumeration. In this notation

Ais = {a0} ∪ {aα+1 : α < ω1} and it is dense in A. Put

G−1 = 〈0, a0〉,

Gα =

{

{aα+1}, if aα+1 = aα + 1,

(aα + 1, aα+1〉, if aα+1 > aα + 1,

G =
⋃

−1≤α<ω1

Gα.

Then G is an open neighborhood of Ais.
As ω1 /∈ A = A, there is a club D such that OD ∩ A = ∅, or, equivalently,

β ∈ D ⇒ β +1 /∈ A. Moreover, note that aα +1 ∈ G iff aα+1 = aα +1. It is now
easy to check that

G ∩ OD∩A = {aα + 1 : α < ω1 & aα ∈ D & aα+1 = aα + 1}

= {β + 1 : β ∈ D ∩ A & β + 1 ∈ A} = ∅.
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Put U = U1 ∩ G, V = V1 ∪ OD∩A. We have shown that U ∩ V = ∅, B ⊂ V and
U ∩ A = A. �

Referring to Proposition 2, we have constructed an example of an α-normal,
not β-normal space.
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118 00 Praha 1, Czech Republic

E-mail : emur4296@menza.mff.cuni.cz

(Received May 28, 2001)


		webmaster@dml.cz
	2012-04-30T20:57:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




