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Weighted inequalities for commutators
of one-sided singular integrals

M. LORENTE, M.S. RIVEROS

Abstract. We prove weighted inequalities for commutators of one-sided singular integrals
(given by a Calderén-Zygmund kernel with support in (—oo, 0)) with BMO functions. We
give the one-sided version of the results in [C. Pérez, Sharp estimates for commutators
of singular integrals via iterations of the Hardy-Littlewood mazximal function, J. Fourier
Anal. Appl., vol. 3 (6), 1997, pages 743-756] and [C. Pérez, Endpoint estimates for
commutators of singular integral operators, J. Funct. Anal., vol 128 (1), 1995, pages
163-185]. We improve these results for one-sided singular integrals by putting in the
right hand side of the inequalities a smaller operator and a wider class of weights.

Keywords: one-sided weights, one-sided singular integrals

Classification: Primary 42B25

1. Introduction

In this paper we obtain non standard weighted inequalities for commutators of
singular integral operators given by a Calderén-Zygmund kernel K with support
in (—00,0). This estimates will reflect a higher degree of singularity compared
with the standard Calderén-Zygmund singular integral operators.

Let T denote a Calderén-Zygmund singular integral operator and M denote
the Hardy-Littlewood maximal operator. Coifman proved in [C] that T and M
satisfy

(1) Lrrresc [ s

for 0 < p < 00, w € Axo(R™) and f such that the left hand side is finite. This is
a very important estimate in weighted theory since it implies the boundedness of
T from LP(w) into LP(w), for p > 1, when w € A,.

Combining (1.1) with certain sharp two weighted inequalities for M one can
derive a two weighted estimate for 7" with no assumption on the weight w: If
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T is a Calderén-Zygmund singular integral operator, Pérez [P1] proves that for
1 <p<oo,

(12) / T fPw < C / FP ML,
Rn Rn

where MP¥ is the k-times iterated of the Hardy-Littlewood maximal operator. The
case 1 < p < 2 was first obtained in [W], but for singular integral operators with
much stronger conditions on the kernel, namely they must be of convolution type
with C*° kernel.

It is possible to generalize inequalities (1.1) and (1.2) for a large family of singu-
lar integral operators, i.e., the higher order commutators introduced by Coifman,
Rochberg and Weiss in [CRcW]. Let K be a Calderén-Zygmund kernel. For ap-
propriate b and f we define

T 1) = [ (o) = W) K (@ - ) w) do.

k =0,1,2... (in the principal value sense). For k = 1 the operator is usually
denoted by [My, T] = My oT — T o My, where My, is the operator Myf = bf, and
b is called the symbol of the operator. These generalizations were given by Pérez
in [P2]:

Theorem A ([P2]). Let 0 < p < 00, w € Aso and b € BMO. Then there exists
a constant C' such that

p
| ztare <l [ (1) .

for all f such that the left hand side is finite.

Theorem B ([P2]). Let1 < p < oo and b € BMO. Then for each weight w there
exists a constant C' such that

| mrre < Ol [ 1swat iy,
R Rn

Recently, Aimar, Forzani and Martin-Reyes [AFM] have studied singular inte-
gral operators associated to a Calderén-Zygmund kernel with support in (—oo, 0)
or (0,00). They prove that the maximal operators which control these singular
integrals are the one-sided Hardy-Littlewood maximal operators M+ and M~
defined for locally integrable functions f by

x+h T
M*f(z) = sup = / f| and M~ f(z) = sup > / I

h>0 N >0 Jz—n
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and the good weights for these operators are the one-sided weights introduced by
Sawyer [S]. Their result improves (1.1) for singular integrals with kernel supported
in (—o00,0) in two ways, by putting in the right hand side a smaller operator and
by allowing a wider class of weights for which the inequality holds. More precisely,
they prove that if T is a singular integral operator given by a kernel with support
in (—o00,0) then there exists C such that

(1.3) /R TfPw < C /R M f PP,

for 0 < p < 0o and w € AL (R) (see [MPT] for the definition of AT (R)).

The aim of this paper is to study the results of C. Pérez for this kind of singular
integrals and to extend them in the double sense as in [AFM]. Our results are the
following:

Theorem 1. Let 0 < p < o0, k =0,1,..., w € A and b € BMO. Let K be

a Calderén-Zygmund kernel with support in (—o0,0) and let Tb+’k be defined
(in the principal value sense) by

[e.e]

T4 (@) = [ 0a) b)) K o~ )1 ) do

T

Then there exists C such that

+,k k p
[ sre < bl [ (art1s) e
R R
for all bounded functions f with compact support.

Corollary 1. Under the same hypotheses as in Theorem 1, if 1 < p < oo and
w e A;‘ then there exists C' such that

Tk k
/[R T fPw < CIBIER o /]R P

for all bounded functions f with compact support.

We also give a weak type result that generalizes the result in [P3] for this kind
of singular integrals:

Theorem 2. Let w € AL, b € BMO and Tb+’k be as in Theorem 1. Then there
exists C' such that

w({z T ()] > A})

< Conlllbuio) [ N (14108 (11N 31 00) d

for all bounded functions f with compact support, where ¢,(t) = t(1 + log™ t)k.
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Corollary 2. Under the same hypotheses as in Theorem 2, if w € Ai" then there
exists C' such that

w({ [T, f (@) > A))
< Conlllbuo) [ N (14 108" (@1 i) o

for all bounded functions f with compact support.

Theorem 3. Let 1 < p < oo, b € BMO and Tb+’k be as in Theorem 1. Then, for
each weight w there exists C' such that

(1.4 L < Clblihio [ 1)

for all bounded functions f with compact support.

The case k = 0, i.e., the generalization of the result in [P1] for these singular
integrals, can be found in [RRoT].
Clearly, every theorem has its analogue reversing the orientation of R.

2. Definitions and preliminaries

We introduce some definitions and tools that we need for proving the main
results.

Definition 2.1. We shall say that a function K in Llloc(R \ {0}) is a Calderén-
Zygmund kernel if the following properties are satisfied:
(a) there exists a finite constant B; such that

K(z)dx| < By,

e<|z|<N

for all € and all N with 0 < € < N and, furthermore,
o+ Jecipi<t K (x) dz exists;
(b) there exists a finite constant By such that

K (x)

| <
le

for all = # 0;
(c) there exists a finite constant Bs such that

K (z —y) — K(2)| < Bslyllz|

for all  and y with |z| > 2|y|.
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A one-sided singular integral T is a singular integral associated to a Calderén-

Zygmund kernel with support in (—oo,0); therefore, in that case,
o

THf(zr) = lim K(z —y)f(y)dy.

e—0t T+e€
Examples of such kernels are given in [AFM].
F.J. Martin-Reyes and A. de la Torre introduced the one-sided sharp functions
in [MT].
Definition 2.2. Let f be a locally integrable function. The one-sided sharp
maximal function is defined by

z+h x+2h +
MH#f(a) = sup 3 [ <f(y)—% / f) dy

h>0 N +h

It is proved in [MT] that

x+h x+2h
M) < supint & [* @ -atayg [0 @m0y < [ llmvio

See [MT] for other results and definitions.
We shall also need the following maximal operators:

MEF f@) = (DTS and M p() = (a7 )

Now we give definitions and results about Young functions. A function B :
[0,00) — [0,00) is a Young function if it is continuous, convex and increasing
satisfying B(0) = 0 and B(t) — oo as t — oo. The Luxemburg norm of a
function f associated to B is

||f||B:inf{)\>01/B(%> §1},

and so the B-average of f over I is

N 1 ]
|f|BJ—mf{A>o. m/IB(T) Sl}.

We will denote by B the complementary function associated to B (see [BS]). Then
the generalized Holder’s inequality

o 1791 < 1ms ol 1
holds. There is a further generalization that turns out to be useful for our purposes
(see [O]). If A, B, C are Young functions such that

AT OB < 07,
then

If9llcr <20 flla gl
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Definition 2.3. For each locally integrable function f, the one-sided maximal
operators associated to the Young function B are defined by

M) =5 5 ey end M f(2) = 502 1115 001

Definition 2.4. Let B be a Young function. We say that B satisfies the B
condition, or that B € By, p > 1, if there exists ¢ > 0 such that

, -1
/°° B(t) dt /00 # \"7 at
.t ). \Be /

The B, condition appears for the first time in [P4]. The point of Definition 2.4

is that it implies the boundedness of Mg from LP(R) into LP(R) for 1 < p < oc.
In fact one has

Theorem C ([RRoT]). Let 1 < p < oo, w be a weight and B be a Young
function. Then the following statements are equivalent:

(a) B € By;
(b) there exists C' such that /(Mgf)pw < C/ [fIPM ™ w.

We will be working most of the time with B(t) = t(1 + log® t)¥, k > 0 and for
this B, it is proved in [RRoT] that

(2.1) MEf~ (MTYHLY,

3. Proofs
To prove Theorem 1 we need the following lemma:

Lemma 1. Let 0 < § < 1. Then
(a) there exists C' = Cs > 0 such that

MP#(THf) (2) < CM* f(o);

(b) for each b € BMO, 6 < e <1 andk =1,2,..., there exists C = Cs5, > 0
such that

k-1
ME#(THEF) (@) < O3 Iblio Me (T 1)) + Clbll o (M) f(2).
7=0
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PROOF: We start by proving (b). Let A be an arbitrary constant. Then b(z) —
by) = (b(z) = A) — (b(y) — A) and

(3.1)
T, 5(a) = [ () =) Ko = )7 ) dy
k
= Y Cinlbla) = N [ 0) = NI~ ) fw) dy
j=0 R

where m = k — j —s. Let us fix z and h > 0 and let I = [z, + 8h]. Then we
write f = f1 + f2 where fi = fx;. Taking into account (3.1), for all a € R, we
have the following:

(3.2)

1
1 z+h i 5 1 r+2h &
(5 [t rwr - el )+ (5 [ mrswP - ] dy
x z+h
1
1 [z+h i s 1 [z+2h k
(E [ m e -l ) (5 [ ) - ol dy
T z+h

k—1 1 [+2h 3 Sitm s 3
> (5 [ ) = NI ) dy>

m=0

x+2h %
+<%/x+ |T+((b—A)kf)(y)—al‘5dy> ]

=

INA
Sl

IN
Q
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&1 et f—m)S |t 5 ;
<c|> (ﬁ/ [b(y) — N[BT £ ()| dy)
m=0 z

1

z+2h 3
+ (% / |T+<<b—A)’ff1)<y)|‘5dy>

x+2h
+ <% / ITH((b— N f2)(y) — al® dy)

=)+ (II)+ (III).

|

Let A = bI =35 fx+8h (y)dy. Since 0 < 6 < € < 1, we can choose ¢ such that
1 < ¢ < §. Then, using Holder’s inequality for ¢ and q, we get

7

x+2h , %
)<C Z < / |b(y) — by|E—m)%a dy) x
1 z+2h im 5 %
Ga x5 [ mr@Pay
k—m

1
k-1 ST (b—m)
1 r+8h B , 5q" (k—m)
<02 (E [ ) = bal o x
m=0 z

1
1 z+2h 8q
’ <E/ T, F ()| dy
xT

<C Z bl Enio My (T, ) (@)

k—1
<C Y bllgnioMe (T, ) ).

m=0

Using that 7" is of weak type (1,1), Kolmogorov’s inequality gives that

1 z+2h K
=cg [ bl dy
x

And by the generalized Hélder’s inequality for B(t) = t(1 4 logT t)¥ and B(t) ~
etl/k we get,

(1) <Clb—brllg I x1llB,1-



Weighted inequalities for commutators of one-sided singular integrals 91

Now if D(t) = €!, using the John-Nirenberg’s inequality, we have

(3.4) (I1) < CIb = byl I fxrllsr < ClolEpoME f(2)
< C|bllEao M HEFL f(2).

For (I11) we take a = T ((b — by)¥ f2)(x 4+ 2h). Then, by Jensen’s inequality,

1 z+2h
65) <0y [ IO b)) - O - ) )+ 20 dy

For j >3, let I; = [z+2/h, 2 +2/1h] and f] = [z, 24 27F1h]. Using property (c)
of the kernel K, for every y € [z, z + 2h], we have

ITH((b = b)* f2)(y) = TH((b = bp)* f2) (z + 2h)|

o0 x+2h—y ok
< [ T b0l

0 x42it1p Ib(t) — b1|k

(3.6) <cny [ 5P at

o ar2in (t — (z +2h))

9j+1

o0
ony s J, M0~ o)

Observe that by the generalized Holder’s inequality and using again the John-
Nirenberg’s inequality, we obtain

r ) MUORUIRHOIE

c k c k
< — ro— T - T
. < srerylbr, — b1 /I NOE—— /I () — bz 17 (0) e
< CIF IllroM* F(a) + Cllb— by g 7 17 5 7
< C@IM oM £(2) + Clblaro (MY £(2).

So inequalities (3.5), (3.6) and (3.7) give

(I11) < Z @ 2@ ¥ (lblEnoM ™ f(2)

(38) 0 2j+1
+ C;mlblﬁmowﬂk“ﬂw)

< CbllEao(MT)F L f ().
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Putting together inequalities (3.2), (3.3), (3.4) and (3.8), we obtain that

k—1
ME# (THRF) () < Ol (M 1) + C 3 bl ME (T, ) ().

m=0

The proof of part (a) follows the same pattern as the proof of (b) but it is
easier and therefore we omit it. g

We will now prove Theorem 1.

PROOF OF THEOREM 1: Observe that the case k = 0 is the inequality for singular

integrals with support in (—o0,0) (see [AFM]). We will proceed by induction on

k. So assume that the theorem is true for all 7 < k and let us see how it follows

the case k + 1. Since w € AZL, there exists r > 1 such that w € A}. Observe

that for all § > 0 small enough, we have that r < % and thus, w € AZ. To apply
5

Theorem 4 in [MT] we need ||M;' (Tb""k+1f)||Lp(w) to be finite. Suppose this for
the moment. Then, by Lemma 1, for all € with 4 < € < 1, we have

k41 k+1
1T, oy < 1M ) o)
) 7k 1
< OIMETF (TR P Lo

k
kt+1—j R
<O blgao” 1ME (T H)ll o)
=0

+ Cllio | MY 2 £ o -

We choose ¢ > 0 such that 7 < 2. Then w € A} and we obtain

€

T Dy = [ OIHIT 1
< [ (T 19% 0 = UL I
Then, by recurrence
k
1Tl o) < C S IIto 17577 £1| o )

j=0

+ OBl ALY 2 £ o)
k

<O Ibllgnto 1ol )L Loy
j=0

+ CollEo | LD 2 £l Lo )
< ClIblEH T2 1l Lo -
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If w is bounded, then

+,k+1 +,k+1
1M (T D e ) < CIHMG (T N Le(da)
+,k+1 k+1
< Ol Fllo(da) < Clblgnioll fll Loz < oo
Then the theorem is proved if w is bounded. For the general case, we consider

wy = min{w, N}. It is not hard to prove that wy € AL (A} is a lattice) with
constant independent of N. Therefore, we have

k k p
| sy < Ol [ (0 4s) .

Now, we obtain the desired result after applying the monotone convergence the-
orem.

O

To prove Theorem 2 we need the following two lemmas.

Lemma 2. Let f € L}OC(R) and A > 0. Then for every weight w there exists
C > 0 such that

k
wife e ®: () fw) > ap < ¢ [ L0 <1+log+ ﬁf)') M= w(y) dy.

PRrOOF: This lemma is a consequence of (2.1) and Theorem 2.5 in [RRoT] with
B(t) = t(1 4 log™ t)¥, since (w, M~ w) € AT O
Lemma 3. Let ¢} (t) = t(1 +logT t)¥, k = 0,1,..., b € BMO and w € A%.
Then there exists C > 0 such that

sup w{z eR: |Tb'|_’kf(ac)| > t})

>0 dp(1)
1
< Cop(IblBno) sup —rw{e € R (MT)*H f(2) > t})
>0 r(7)
for all bounded functions f with compact support.

PRrROOF: We first suppose that ||b]|gpmo = 1. We shall prove the following,

sup w({z € R: T, Ff(2)] > t})

>0 dp(1)

< C'sup w({z e R: (MH)FLr() > ).

1
>0 dp(3)
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Now, set by, = bif —-m <b<m, by, =mifb>m and b, = —m if b < —m.
Also, set wy = inf{w, N}. As we have said before, wy € AZ with constant
independent of N. On the other hand |by| Mo < C'|bllBMo = €7 with C’
independent of m. In order to simplify notation, rename b = b,, and w = wy.
Observe that for all § > 0 we have

w({z € R: T, Ff(2)] > 1)) <w({z e R: MF(T;VFf)(2) > t}).

Let us consider the functional

Lhuunaf) = Ls(f) = sup ﬁ w({z €R: MFTFf) (@) > 1)),

We claim that for some v > 0 and every 0 < ¢ < 1 we have

(3.9)  Ls(f) <€'CLs(f) + Csup —= ! w({z € R: (M) f(z) > t}).
>0 o (%)

If Ls(f) < oo then the result (for by, and wy) follows from (3.9), choosing € small
enough.

In what follows we prove that Lg(f) < oo. In [MT] it was proved that if
w € AL, and M f € LPo(w) for some py, then

(3.10) w({z e R: MY f(z) > t, MT7 f(x) < te})
<COw({z eR: MTf(x) > %})

for some v > 0. Observe that we have Mg' (T;"kf) € LPo(w) for some pg since f
is bounded with compact support, w < N and [b] < m. Then

w(fe € R: My (T, f)(@) > 1)
= w({z e R: MT(T, P f10) (@) > 0, ME#(T £19) (@) < #e})
+w({z e R: ML f19) (@) > 0, ME#(TFR 110 (@) > £e))
< COw({x € R: My (T, F f)(x) > t/27})

+w({z e R: M H(TF f)(2) > te'/0})
=I1+1I.

(3.11)

Using Lemma 1 for e = dr and 1 <r < %, we have

k—1 3
IT<w({zeR: Z(O/)k_ng(T;_7jf)(I) > t2€_é )
(3.12) 7=

w({z € R: (MM f(z) >



Weighted inequalities for commutators of one-sided singular integrals

Bearing in mind (3.11) and (3.12) we obtain

Sy € RN @) > 1)
t
< ¢i<i> (€ R M 1) > 7
7 4
(3.13) St R: M (TH tes
"G SRR o)

1 teé
b oo € R OrY @) > s

=I'+I1I'+1IIT.

Observe that there exists C' such that ¢ (2t) < Coi(t) for all t > 0 (i.e. ¢y is
doubling). Let I € N be such that 2% < 2L Using that ¢ is non-decreasing, we

get
1
23 2! 1
— | < — 1 < - .
¢k( t>_¢k(t> _C¢k<t)
Then Cer ;
€
I's ———w(fe € R: M (1,7 ))(@) > —}) < CLs(f).
¢k(26) 2
Now let a; = % and h € Z be such that a; < 2" for all j. Therefore
€3

o (%) <o (%) <ca ().

As a consequence,

t
cz w(le € R MEI @) > L)
J
(3.14)
<C sup —=—w xER:M+ T+’jf x) > t}).
Zt>0 o %) { or (T 7)) > t})
Now for each j = 0,1...,k — 1, let us estimate sup;g ﬁl—)w({x € R :
k%

MG (T f)(@) > t}).

95
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Using that ¢j, is doubling and non-decreasing, it follows from (3.10) and
Lemma 1(a) that, for all 0 < e < 1,

w{z : MF(T* f)(@) > 1}) < sup —w({z: MDF(TTf)(@) > t})

§>0 ¢k(%) >0 ¢k(%)
u w1 @ T
SO§>8 k(% ({z: M7 f(x) > t})
u w1 @ k+1 X .
<O§>g k(%) ({z: (MT)"T2 f(z) > t})

Fix J < k — 1 and suppose that, for every 0 < j < J and for all 0 < € < 1, there
exists C' such that

sup———w({xr €eR: M I ’jf x

(3'15) =0 k(%) ({ € ( b )( )>t})
su w(qx : k+1 x .
Ct>g k(%) {xeR:(M™) f(z) >t})

We will prove, that (3.15) holds for j = J + 1. Using again that ¢ is doubling,
non-decreasing, (3.10) and Lemma 1(b) we obtain

sup w({z : MG ) (@) > 1))

>0 dp(3)

w({z : MEF(T7H ) (@) > 1))

< C'sup

>0 ¢k(%)

<C Zsup 1 ——w({z: MI(T,7 (@) > 1)) + w({z - (M) f(2) > 1))
=10 ok(3)

CZsup 1 w({z : (ML f(2) > t})

o t>0 ¢k t
+ Csup —~w({z : (M) f(z) > t})
>0 ¢k( )
SCi>g¢k(%) ({z: (M) f(z) > t}),

where € < ¢ < 1. As a consequence, for € = dr, (3.15) together with (3.14) gives

w{z e R: (MT)FLf(2) > }).

Ir < C'sup
>0 dp(3)
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1

Finally, let a = %. Then
117 < k(%)w({x eR: (M 1f(z) > at})
< Csup ——uw({z € R: (MT)F+1f(z) > 1}).
>0 ¢x(%)

Putting all these estimates together we get (3.9).
Therefore if we prove that Ly ,, 4, 5f < 00, using (3.9) we obtain

w{z e R: (MHF1r@) > ).

1
L, .,6(f) < Csup
7w7¢)k7 >0 (bk( )

Assume now that supp f C (—R, R), for some R > 0. Then for z < —2R we have
k
(3.10 it <o [0 MO0 ),

< 2omt / F)ldy

||

< CmPMTf().

Using that 0 < § < 1, the fact that M ™ is of weak type (1, 1) with respect to the
pair (w, M~w) € Af, Lemma 2 and (3.16), we get

ﬁw({x ER: M;(Tb—i_’kf)(x) > t})
7

< ﬁ%)w({x eR: M;(X(—QR,QR)T;_’kf)(:E) > /2))

* ¢kt%)w<{w € R: M (x(—oom2m) Ty " D)) > £/2))
| _

< m?/—ﬂ% T, f(@)| M~ w(z)dx

w({z € R: (MY f(2) > Cpt})

L1
oe($)

1 2R : C f _
< C4ANR (E/_m'Tzf’kf(w”zdx) +¢k(%)/ﬂﬁ¢k<|6’(jil>M w(z) da

R % R
< CANR (;} /_le(x)l2dfc> +ON/_R¢k(|f(x)l)dI

97
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Since f is bounded and with compact support the last expression is finite.
Then, we have obtained the following:

sup wy({z € R: T f(a)] > 1))

_
>0 dp(1)

< C'sup wy({z eR: (MHF1f() > t}).

t>0 Ok

1
(+)

Observe that {bﬁn f } converges to bJ f in Ll(dx), since f is bounded with compact

support and b € BMO implies that b is locally in LP(dz) for all p > 1. Then,
taking into account that T is of weak type (1,1) with respect to the Lebesgue

measure, we obtain that {T""(bgnf)} converges to T (b f) in measure. This
implies that, for a subsequence, we have almost everywhere convergence. On the
other hand, {bﬁnT"" f } converges to b TT f almost everywhere. As a consequence,

a subsequence of {|T;;n’k f |} converges to |Tb+ ok f| almost everywhere. We shall

continue denoting this subsequence by {|Tb+m’k fl } Then, by Fatou’s lemma,

x T T
igg%(%)wjv({ ER: T f(2)| > t})

= o5 o O ey

r ... +,k
< sup liminfwy({x e R: |1, f(z)| >t
up oo it (e € R 1) > 1)

1
< C‘QZEE mw]v({x eR: (ML r() > t}).

Letting IV go to infinity we obtain the desired result.

Now, for general b € BMO (||b||pmo > 0), we consider h = m. Then,
since Tf‘:"kf = ||b||]} Tb""kf and taking into account that ¢ is submultiplicative,
o
we have o
sup —w({z € R: T, Ff(2)| > t})
>0 ¢r(7)
+.k t
=sup —gw({z e R: [T f(2)] > —7—1})
>0 ¢k ($) I8l150m0
1 k t
< dr(llbllmo) sup —w({r e R T () > )
t>0 é (”I)”]?MQ> H HBMO
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< Cop(bIEno) sup ——w({z € R M*1f(z) > 1}).
>0 ¢r(7) 0

PrROOF OF THEOREM 2: It suffices to consider the case A = 1. (For A > 0 the

result follows by considering %) By Lemma 3, the fact that ¢y, is submultiplicative

and by Lemma 2 we get,

w({e € R: (1470 > 1)) < sup — w({o € R (1 ()] > 1)

>0 ¢ (%)
< Cor([Blfo)sup ﬁ(l)wux ER: (MT)EHLf(x) > 1})
t
< Con{Ibllaro) p x5 ou () [ (M () do
t

= C¢k(llb||]1§Mo)/R|f($)l(1 +log™ |f())* M~ w(x) dx.

PROOF OF THEOREM 3: By duality, (1.4) is equivalent to
—k / _ ./ ’ )
/ T,k fE (v )[(k+1)p}+1w)1 v < C/ |FIP wi? .
R R
Observe that ((M~)[(k+Dpl+1)1-p" ¢ AZ,, and by Theorem 1, we get

!

R T e
< [ ()L ()
R
Therefore it suffices to prove that
I K e e e
Now observe that proving (3.17) is equivalent to
(3.18) /]R (M) (fum )P () DR 12 < /[R 17

If ¢y, (t) = t(1 4 log™T t)¥, then (3.18) is equivalent to

“\(Fwr W (M) [P+ 1= g
G19) [ uh () <o g
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t
For large t, (b];l(t) ~ ———. Then, for € > 0,

" log(t)
1
-1 tv % blte ~1 ~1
log(t P
7
where A(t) ~ tPlog(t)*ktDp—1+¢ and B(t) ~ ————————. Then, by the

log(t)l—i-(p’—l)e
generalized Holder’s inequality, we have

(M, )(fw?) < CMp ()M (wF) < CM (F)(Mp (w))7,

where D(t) = t(logt)F+1)P=1+¢ We choose € such that (k+1)p—1-+€ = [(k+1)p).
Then

/((M(;k)(fw%))pl((M_)[(k+1)p]+1w)l—p’
R
< C/R(Mg(f))”'((Mg(w))%((M—)Kk+1>p1+1w)1—p'

<C /]R (Mg (/)P (Mp (w))P "L (M (w) 7P

< C/ s
R

where the last inequality follows from Theorem C, since B € B,y . O
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