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A characterization of C2(q) where q > 5

A. Iranmanesh, B. Khosravi

Abstract. The order of every finite group G can be expressed as a product of coprime
positive integers m1, . . . , mt such that π(mi) is a connected component of the prime
graph of G. The integers m1, . . . , mt are called the order components of G. Some non-
abelian simple groups are known to be uniquely determined by their order components.
As the main result of this paper, we show that the projective symplectic groups C2(q)
where q > 5 are also uniquely determined by their order components. As corollaries of
this result, the validities of a conjecture by J.G. Thompson and a conjecture by W. Shi
and J. Be for C2(q) with q > 5 are obtained.

Keywords: prime graph, order component, finite group, simple group

Classification: 20D05, 20D60

1. Introduction

If n is an integer, π(n) is the set of prime divisors of n and if G is a finite
group π(G) is defined to be π(|G|). The prime graph Γ(G) of a group G is a
graph whose vertex set is π(G), and two distinct primes p and q are linked by an
edge if and only if G contains an element of order pq. Let πi, i = 1, 2, . . . , t(G)
be the connected components of Γ(G). For |G| even, π1 will be the connected
component containing 2. Then |G| can be expressed as a product of some positive
integers mi, i = 1, 2, . . . , t(G) with π(mi) = the vertex set of πi. The integers
mi’s are called the order components of G. The set of order components of G
will be denoted by OC(G). If the order of G is even, then m1 is the even order
component and m2, . . . , mt(G) will be the odd order components of G. The order

components of non-abelian simple groups having at least three prime graph com-
ponents are obtained by G.Y. Chen [8, Tables 1, 2, 3]. The order components of
non-abelian simple groups with two order components are illustrated in Table 1
according to [13], [20]. The following groups are uniquely determined by their or-
der components: Suzuki-Ree groups [6], Sporadic simple groups [3], PSL2(q) [8],
E8(q) [7], G2(q) where q ≡ 0 (mod 3) [2], F4(q) where q is even [12], PSL3(q)
where q is an odd prime power [11] and Ap where p and p− 2 are primes [10]. In
this paper, we prove that the projective symplectic groups C2(q) where q > 5 are
also uniquely determined by their order components. In other words we have:

The Main Theorem. Let G be a finite group, M = C2(q) where q > 5. If
OC(G) = OC(M) then G ∼=M .
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2. Preliminary results

Definition 2.1 ([9]). A finite group G is called a 2-Frobenius group if it has a
normal series G > K > H > 1, where K and G/H are Frobenius groups with
kernels H and K/H , respectively.

Lemma 2.2 ([20, Theorem A]). If G is a finite group with its prime graph having
more than one component, then G is one of the following groups:

(a) a Frobenius or 2-Frobenius group;
(b) a simple group;
(c) an extension of a π1-group by a simple group;
(d) an extension of a simple group by a π1-solvable group;
(e) an extension of a π1-group by a simple group by a π1-group.

Lemma 2.3 ([20, Lemma 3]). If G is a finite group with more than one prime
graph component and has a normal series 1 E H E K E G such that H and G/K
are π1-groups and K/H is simple, then H is a nilpotent group.

The next lemma follows from Theorem 2 in [1]:

Lemma 2.4. LetG be a Frobenius group of even order and letH ,K be Frobenius
complement and Frobenius kernel of G, respectively. Then t(Γ(G)) = 2, and the
prime graph components of G are π(H), π(K) and G has one of the following
structures:

(a) 2 ∈ π(K) and all Sylow subgroups of H are cyclic;
(b) 2 ∈ π(H), K is an abelian group, H is a solvable group, the Sylow sub-
groups of odd order of G are cyclic groups and the 2-Sylow subgroups
of G are cyclic or generalized quaternion groups;

(c) 2 ∈ π(H), K is an abelian group and there exists H0 ≤ H such that

|H : H0| ≤ 2, H0 = Z×SL(2, 5), (|Z|, 2.3.5) = 1 and the Sylow subgroups
of Z are cyclic.

The next lemma follows from Theorem 2 in [1] and Lemma 2.3:

Lemma 2.5. Let G be a 2-Frobenius group of even order. Then t(Γ(G)) ≥ 2
and G has a normal series 1 E H E K E G such that

(a) π1 = π(G/K) ∪ π(H) and π(K/H) = π2;
(b) G/K and K/H are cyclic, |G/K| divides |Aut(K/H)|, (|G/K|, |K/H |) =
1 and |G/K| < |K/H |;

(c) H is nilpotent and G is a solvable group.

Lemma 2.6 ([5, Lemma 8]). Let G be a finite group with t(Γ(G)) ≥ 2 and let N
be a normal subgroup of G. If N is a πi-group for some prime graph component

of G and m1, m2, . . . , mr are some order components of G but not a πi-number,

then m1m2 · · ·mr is a divisor of |N | − 1.
The next lemma follows from Lemma 1.4 in [4].
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Lemma 2.7. Suppose G and M are two finite groups satisfying t(Γ(M)) ≥ 2,
N(G) = N(M), where N(G) = {n | G has a conjugacy class of size n}, and
Z(G) = 1. Then |G| = |M |.
Lemma 2.8 ([4, Lemma 1.5]). Let G1 and G2 be finite groups satisfying |G1| =
|G2| and N(G1) = N(G2). Then t(Γ(G1)) = t(Γ(G2)) and OC(G1) = OC(G2).

Lemma 2.9. Let G be a finite group and let M be a non-abelian simple group

with t(M) = 2 satisfying OC(G) = OC(M).

(1) Let |M | = m1m2, OC(M) = {m1, m2}, and π(mi) = πi for i = 1 or 2. Then
|G| = m1m2 and one of the following holds:

(a) G is a Frobenius or 2-Frobenius group;
(b) G has a normal series 1 E H E K E G such that G/K is a π1-group, H
is a nilpotent π1-group, and K/H is a non-abelian simple group. More-
over OC(K/H) = {m′

1, m
′
2, . . . , m′

s, m2}, |K/H | = m′
1m

′
2 . . . m′

sm2 and
m′
1m

′
2 . . .m′

s | m1 where π(m′
j) = π′

j , 1 ≤ j ≤ s.

(2) |G/K| | |Out(K/H)|.
Proof: (1) follows from the above lemmas. Since t(G) ≥ 2, we have t(G/H) ≥ 2.
Otherwise t(G/H) = 1, so that t(G) = 1. Since 2 | |H | and H is a πi-group, we
arrive to a contradiction. Moreover, we have Z(G/H) = 1. For any xH ∈ G/H
and xH /∈ K/H , xH induces an automorphism of K/H and this automorphism
is trivial if and only if xH ∈ Z(G/H). Therefore, G/K ≤ Out(K/H) and since
Z(G/H) = 1, (2) follows. �

Lemma 2.10. Let M = C2(q). Suppose D(q) = q2+1
k , where k = (2, q − 1).

(a) If p ∈ π(M), then |Sp| ≤ q4 where Sp ∈ Sylp(M);
(b) If p ∈ π1(M), pα | |M | and pα − 1 ≡ 0 (mod D(q)), then pα = q4 or
(q, pα) = (3, 24).

(c) If p ∈ π1(M), pα | |M | and pα + 1 ≡ 0 (mod D(q)) then pα = q2 or
(q, pα) = (2, 32), (3, 22), (3, 26), (3, 32) or (5, 26).

Proof: (a) Observe that |M | = q4(q + 1)2(q − 1)2 (q
2+1)
k and (q − 1, q + 1) = 1

or 2. Thus if q is even, the factors are coprime and if q is odd and pα | |M |, thus
pα | q4 or pα | 4(q + 1)2 or pα | 4(q − 1)2 or pα | (q2 + 1). Therefore (a) follows.
(b) Let pα | |M | and p ∈ π1(M) with pα − 1 ≡ 0 (mod D(q)). Consider the

following two cases:

Case 1. q is even:

(1.1) If pα | q4 then pα − 1 ≥ q2 + 1 and hence q2 | pα. Since pα − 1 = t(q2 + 1),
we have q2 | t+ 1 or q2 − 1 ≤ t which means that pα = q4.

(1.2) If pα | (q + 1)2 then since (q+1)
2

2 < q2 + 1, pα must be equal to (q + 1)2.

Thus pα − 1 = q2 + 1 + 2q − 1, hence q2 + 1 = 2q − 1 which has no solution.
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(1.3) If pα | (q − 1)2 then pα < (q − 1)2 < q2 + 1, but pα − 1 ≥ q2 + 1, which is
a contradiction.

Case 2. q is odd:

(2.1) If pα | q4 then pα > q2+1
2 > q2

2 and hence q2 | pα. Since pα − 1 = t
(q2+1)
2 ,

we have q2 | t+2 or q2−2 ≤ t, therefore q2−2 ≤ t ≤ 2(q2−1) or t = (q2−2)+s,
where 0 ≤ s ≤ q2. Similarly to Case 1 we conclude that pα = q4.

(2.2) If pα | 4(q−1)2 then since 4(q−1)
2

8 −1 < q2+1
2 , p

α must be equal to
4(q−1)2

s
where 1 ≤ s ≤ 7, but s cannot be equal to 3, 5, 6, 7. Easy calculations show that

if s = 1 then (q, pα) = (3, 24) and in the other cases pα − 1 6≡ 0 (mod q2+1
2 ).

(2.3) If pα | 4(q+1)2 and pα −1 ≡ 0 (mod q2+1
2 ), then since

4(q+1)2

14 −1 < q2+1
2 ,

pα must be equal to
4(q+1)2

s where 1 ≤ s ≤ 13, but s can only be equal to 1, 2, 4,

8, 9. Again easy calculations show that if s = 4 then (q, pα) = (3, 24) and in the

other cases pα − 1 6≡ 0 (mod q2+1
2 ).

(c) Similar arguments show that (c) holds. �

Lemma 2.11. Let G be a finite group andM = C2(q) where q > 5 and OC(G) =
OC(M). Then G is neither a Frobenius group nor a 2-Frobenius group.

Proof: G is not a Frobenius group otherwise by Lemma 2.4, OC(G) = {|H |, |K|}
whereH andK are Frobenius kernel and Frobenius complement ofG, respectively.

If 2 | |H | then |K| = q2+1
k , and |H | = q4(q + 1)2(q − 1)2. Since 4(q − 1)2 > 1,

there exists a prime p such that pα | 4(q − 1)2. If P is a p-Sylow subgroup of

H , then since H is nilpotent, P ⊳ G and hence by Lemma 2.6, q2+1
k | |P | − 1.

By Lemma 2.10(b) this implies that pα = q4. But q4 ∤ 4(q − 1)2 which is a
contradiction. If 2 | |K| then |H | = q2+1

k and |K| = q4(q + 1)2(q − 1)2. Now if
P is a p-Sylow subgroup of H , then |P | < |K|, but |K| | (|P | − 1), which is a
contradiction. Therefore, G is not a Frobenius group.

Let G be a 2-Frobenius group and let q be odd. By Lemma 2.5 there is a normal

series 1 E H E K E G such that |K/H | = q2+1
k < 4(q+1)2 and |G/K| < |K/H |.

Thus there exists a prime p such that p | 4(q + 1)2 and p | |H |. If P is a p-Sylow
subgroup of H , since H is nilpotent, P must be a normal subgroup of K with

P ⊆ H and |K| = q2+1
k |H |. Therefore, q2+1

k | (|P | − 1) by Lemma 2.6 and hence
pα − 1 ≡ 0 (mod D(q)), so |P | = q4 which is impossible since q4 ∤ 4(q + 1)2. If q
is even, then we consider (q + 1)2 instead of 4(q + 1)2 and proceed similarly. �
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Lemma 2.12. Let G be a finite group andM = C2(q), where q > 5. If OC(G) =
OC(M), then G has a normal series 1 E H E K E G such that H and G/K are
π1-groups and K/H is a simple group. Moreover, the odd order component of M
is equal to an odd order component of K/H . In particular, t(Γ(K/H)) ≥ 2.
Proof: The first part of the lemma follows from the above lemmas since the
prime graph of M has two prime graph components. For primes p and q, if K/H
has an element of order pq, then G has one. Hence, by the definition of prime
graph component, the odd order component ofGmust be an odd order component
of K/H . �

3. Proof of the main theorem

By Lemma 2.12, G has a normal series 1 E H E K E G such that H and G/K
are π1-groups, K/H is a non-abelian simple group, t(Γ(K/H)) ≥ 2 and the odd
order component of M is an odd order component of K/H . We summarize the
relevant information in Tables 1–3 below:

Table 1
The order components of simple groups1 with t(G) = 2

Group Orcmp 1 Orcmp 2

Ap, p 6= 5, 6 3 · 4 · · · (p − 3)(p − 2)(p − 1) p
p and p − 2 not both prime

Ap+1, p 6= 4, 5 3 · 4 · · · (p − 2)(p − 1)(p + 1) p
p − 1 and p + 1 not both prime

Ap+2, p 6= 3, 4 3 · 4 · · · (p − 1)(p + 1)(p + 2) p
p and p+ 2 not both prime

Ap−1(q), (p, q) 6= (3, 2), (3, 4) q
p(p−1)
2 Πp−1

i=1 (q
i − 1) qp

−1
(q−1)(p,q−1)

Ap(q), q − 1 | p+ 1 q
p(p+1)
2 (qp+1 − 1)Πp−1

i=2 (q
i − 1) qp

−1
q−1

2Ap−1(q) q
p(p−1)
2 Πp−1

i=1 (q
i − (−1)i) qp+1

(q+1)(p,q+1)

1 p is an odd prime number.



14 A. Iranmanesh, B.Khosravi

Table 1 (continued)

Group Orcmp 1 Orcmp 2

2Ap(q), q + 1|p+ 1 q
p(p+1)
2 (qp+1 − 1)Πp−1

i=2 (q
i − (−1)i) qp+1

q+1

(p, q) 6= (3, 3), (5, 2)
2A3(2) 26 · 34 5

Bn(q), n = 2m ≥ 4, q odd qn2 (qn − 1)Πn−1
i=1 (q

2i − 1) qn+1
2

Bp(3) 3p
2
(3p + 1)Πp−1

i=1 (3
2i − 1) 3p

−1
2

Cn(q), n = 2m ≥ 2 qn2 (qn − 1)Πn−1
i=1 (q

2i − 1) qn+1
(2,q−1)

Cp(q), q = 2, 3 qp2(qp + 1)Πp−1
i=1 (q

2i − 1) qp
−1

(2,q−1)

Dp(q), p ≥ 5, q = 2, 3, 5 qp(p−1)Πp−1
i=1 (q

2i − 1) qp
−1

q−1

Dp+1(q), q = 2, 3
1

(2,q−1)
qp(p+1)(qp + 1) qp

−1
(2,q−1)

×(qp+1 − 1)Πp−1
i=1 (q

2i − 1)
2Dn(q), n = 2m ≥ 4 qn(n−1)Πn−1

i=1 (q
2i − 1) qn+1

(2,q+1)
2Dn(2), n = 2m + 1 ≥ 5 2n(n−1)(2n + 1) 2n−1 + 1

×(2n−1 − 1)Πn−2
i=1 (2

2i − 1)
2Dp(3), p 6= 2m + 1, p ≥ 5 3p(p−1)Πp−1

i=1 (3
2i − 1) 3p+1

4
2Dn(3), n = 2m + 1 6= p, m ≥ 2 1

2
3n(n−1)(3n + 1) 3n−1+1

2
×(3n−1 − 1)Πn−2

i=1 (3
2i − 1)

G2(q), q ≡ ǫ(mod 3), ǫ = ±1, q > 2 q6(q3 − ǫ)(q2 − 1)(q + ǫ) q2 − ǫq + 1
3D4(q) q12(q6 − 1)(q2 − 1)(q4 + q2 + 1) q4 − q2 + 1

F4(q), q odd q24(q8 − 1)(q6 − 1)2(q4 − 1) q4 − q2 + 1
2F4(2)′ 211 · 33 · 52 13

E6(q) q36(q12 − 1)(q8 − 1)(q6 − 1)(q5 − 1) q6+q3+1
(3,q−1)

×(q3 − 1)(q2 − 1)
2E6(q), q > 2 q36(q12 − 1)(q8 − 1)(q6 − 1)(q5 + 1) q6−q3+1

(3,q+1)

×(q3 + 1)(q2 − 1)
M12 26 · 33 · 5 11
J2 27 · 33 · 52 7
Ru 214 · 33 · 53 · 7 · 13 29
He 210 · 33 · 52 · 73 17
Mcl 27 · 36 · 53 · 7 11
Co1 221 · 39 · 54 · 72 · 11 · 13 23
Co3 210 · 37 · 53 · 7 · 11 23
F i22 217 · 39 · 52 · 7 · 11 13

F5 = HN 214 · 36 · 56 · 7 · 11 19
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Table 2
The order components of simple groups1 with t(G) ≥ 3

Group Orcmp 1 Orcmp 2 Orcmp 3 Orcmp 4

Ap, p and p − 2 3 · 4 · · · (p − 3)(p − 1) p − 2 p
are primes

A1(q), 4 | q + 1 q + 1 q (q − 1)/2
A1(q), 4 | q − 1 q − 1 q (q + 1)/2

A1(q), 2 | q q q + 1 q − 1
A2(2) 8 3 7
A2(4) 26 5 7 9
2A5(2) 215 · 36 · 5 7 11
2B2(q) q2 q −√

2q + 1 q +
√
2q + 1 q − 1

q = 22n+1 > 2
2Dp(3) 2 · 3p(p−1)(3p−1 − 1) (3p−1 + 1)/2 (3p + 1)/4

p = 2n + 1, n ≥ 2 ×Πp−2
i=1 (3

2i − 1)
2Dp+1(2) 2p(p+1)(2p − 1) 2p + 1 2p+1 + 1

p = 2n − 1, n ≥ 2 ×Πp−1
i=1 (2

2i − 1)
E7(2) 263 · 311 · 52 · 73 73 127

·11 · 13 · 17 · 19 · 31 · 43

F4(q) q24(q6 − 1)2(q4 − 1)2 q4 + 1 q4 − q2 + 1
2 | q, q > 2
2F4(q) q12(q4 − 1)(q3 + 1) q2 −

p
2q3 q2 +

p
2q3

q = 22n+1 > 2 ×(q2 + 1)(q − 1) +q −√
2q + 1 +q +

√
2q + 1

G2(q), 3 | q q6(q2 − 1)2 q2 + q + 1 q2 − q + 1
2G2(q), q = 32n+1 q3(q2 − 1) q −√

3q + 1 q +
√
3q + 1

223 · 363 · 52 · 73
E7(3) ·112 · 133 · 19 · 37 · 41 757 1093

·61 · 73 · 547
2E6(2) 236 · 39 · 52 · 72 · 11 13 17 19
M11 24 · 32 5 11
M22 27 · 32 5 7 11

M23 27 · 32 · 5 · 7 11 23
M24 210 · 33 · 5 · 7 11 23
J1 23 · 3 · 5 7 11 19
J3 27 · 35 · 5 17 19

1 p is an odd prime number.
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Table 2 (continued)

Group Orcmp 1 Orcmp 2 Orcmp 3 Orcmp 4 Orcmp 5 Orcmp 6

J4 221 · 33 · 5 · 7 · 113 23 29 31 37 43
HS 29 · 32 · 53 7 11
Sz 213 · 37 · 52 · 7 11 13
ON 29 · 34 · 5 · 73 11 19 31
Ly 28 · 37 · 56 · 7 · 11 31 37 67
Co2 218 · 36 · 53 · 7 11 23

F23 218 · 313 · 52 · 7 · 11 · 13 17 23
F ′

24 221 · 316 · 52 · 73 · 11 · 13 17 23 29
F1 =M 246 · 320 · 59 · 76 · 112 · 133 41 59 71

·17 · 19 · 23 · 29 · 31 · 47
F2 = B 241 · 313 · 56 · 72 · 11 · 13 31 47

·17 · 19 · 23
F3 = Th 215 · 310 · 53 · 72 · 13 19 31

Table 3
The order components of E8(q)

Group E8(q), q ≡ 0, 1, 4 (mod 5)

Orcmp 1 q120(q18 − 1)(q14 − 1)(q12 − 1)2(q10 − 1)2(q8 − 1)2(q4 + q2 + 1)
Orcmp 2 q8 + q7 − q5 − q4 − q3 + q + 1
Orcmp 3 q8 − q7 + q5 − q4 + q3 − q + 1
Orcmp 4 q8 − q6 + q4 − q2 + 1
Orcmp 5 q8 − q4 + 1

Group E8(q), q ≡ 2, 3 (mod 5)

Orcmp 1 q120(q20 − 1)(q18 − 1)(q14 − 1)(q12 − 1)(q10 − 1)(q8 − 1)(q4 + 1)
×(q4 + q2 + 1)

Orcmp 2 q8 + q7 − q5 − q4 − q3 + q + 1
Orcmp 3 q8 − q7 + q5 − q4 + q3 − q + 1
Orcmp 4 q8 − q4 + 1

We now proceed with the proof in the following steps:
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Step 1. LetK/H ∼= An where n = p, p+1, p+2 and p ≥ 5 is a prime number. If
k = 1 and q2+1 = p then |C2(q)| = p(p−1)2(p−2)2, and hence (p−3, |C2(q)|) | 2
which is a contradiction. If q2 + 1 = p − 2 then |C2(q)| = (p − 2)(p − 3)2(p − 4)2
and hence p ∤ |C2(q)| which is a contradiction. If k = 2 and q2+1

2 = p then

(p − 2, |C2(q)|) | 9 which implies that p = 5 or 11 which is impossible. If q2+1
2 =

p − 2 then p ∤ |C2(q)| which is a contradiction.
Step 2. If K/H ∼= Ar(q

′) then we distinguish the following 6 cases:

2.1. K/H ∼= Ap′−1(q′) where (p′, q′) 6= (3, 2), (3, 4). Then q′p
′

−1 ≡ 0 (modD(q))

which implies that q′p
′

= q4. Since p′ is an odd prime, if p′ > 3, then K/H has a
Sylow subgroup of size greater than q4, which is a contradiction by Lemma 2.10(a).

If p′ = 3, then we have q′3 = q4 and (q′ − 1)(3, q′ − 1) = (q2 − 1)(2, q − 1). But
easy calculations show that these two equations have no common solution.

2.2. K/H ∼= Ap′(q
′) where (q′ − 1) | (p′ + 1), then similarly to 2.1, K/H has a

Sylow subgroup of size greater than q4, and it is a contradiction by Lemma 2.10(a).

2.3. K/H ∼= A1(q
′), where 4 | (q′ + 1). If D(q) = q′−1

2 then q′ = q4. But
q2+1
(2,q−1) =

q′−1
2 and so q2− 1 = 1 or 2 which is impossible. If D(q) = q′ and k = 1

then q′ = q2 + 1 but 4 ∤ q2 + 2. If k = 2 then

|K/H | = |A1(q′)| =
q2 + 1

2
· q2 + 3

2
· q2 − 1
4

,

but this is a contradiction since q2+3
4 ∤ |G|.

2.4. K/H ∼= A1(q
′) where 4 | (q′ − 1). If D(q) = q′+1

2 then q′ = q2. But q′

is odd so q is odd and hence k = 2. Therefore, |A1(q2)| = q2(q2 − 1)(q2 + 1)/2
and so |G/K| · |H | = q2(q2 − 1). But |G/K| | |Out(A1(q2))| by Lemma 2.9(3),
and if q = p′n then |Out(A1(q2))| = 4n ([19]), which implies that |H | 6= 1. Thus
we can consider a p-Sylow subgroup P of H . Since H is nilpotent, P ⊳ G and
hence D(q) | (|P | − 1), but |P | | q2 or |P | | q2 − 1. If |P | | q2 then |P | = q2 or

|P | ≤ q2

3 . But
q2+1
2 ∤ q2−1 and q2+1

2 ≥ q2

3 −1 ≥ |P |−1 which are contradictions.
Similarly |P | | q2 − 1 is not possible. If D(q) = q′ then similarly to 2.3, we get
a contradiction.

2.5. K/H ∼= A1(q
′) where 4 | q′. IfD(q) equals q′−1, then q′ = q4 and |A1(q′)| =

q4(q4−1)(q4+1), which is impossible. If D(q) = q′+1, by Lemma 2.10(c), q′ = q2

and since q′ is even, q is even. SinceK/H ∼= A1(q
2), we get a contradiction similar

to 2.4.

2.6. K/H ∼= A2(2) or A2(4) then D(q) must be equal to 3, 5, 7, 9, none of which
is possible.
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Step 3. If K/H ∼= 2Ar(q
′) then we consider 2 cases:

3.1. K/H ∼= 2Ap′−1(q′) or 2Ap′(q
′) where (q′ + 1) | (p′ + 1) and (p′, q′) 6=

(3, 3), (5, 2). Then q′p
′

+ 1 ≡ 0 (mod D(q)). By Lemma 2.10(c), q′p
′

= q2.
Since

q′p
′

+ 1

(q′ + 1)(q′ + 1, p′)
=

q2 + 1

(2, q − 1) ,

so (2, q − 1) = (q′ + 1)(q′ + 1, p′), which is impossible.

3.2. K/H ∼= 2A3(2) or 2A5(2). Then D(q) must be equal to 5, 7, 11, none of
which is possible.

Step 4. If K/H ∼= Br(q
′) then we consider 2 cases:

4.1. K/H ∼= Br(q
′) where r = 2t ≥ 4 and q′ is odd. Then q′r+1 ≡ 0 (mod D(q)).

By Lemma 2.10(c), q′r = q2. But since r ≥ 4, we have q′r
2

> q4, which is a
contradiction by Lemma 2.10(a).

4.2. K/H ∼= Bp(3). Then 3
p = q4, which is impossible since 3p is not a square

number.

Step 5. If K/H ∼= Cr(q
′) then we consider 2 cases:

5.1. K/H ∼= Cr(q
′) where r = 2t ≥ 2. Then q′r = q2. Since q′r

2

≥ q4, we
conclude that r = 2 and hence q = q′, so K/H = C2(q). Then |G| = |C2(q)| =
|K/H | = |K|/|H | which implies that |H | = 1 and |K| = |G| = |C2(q)|. Therefore,
K = C2(q) and hence G = C2(q).

5.2. K/H ∼= Cp′(q
′) where q′ = 2, 3. Then q′p

′

= q4, which is a contradiction

since q′p
′

is not a square number.

Step 6. If K/H ∼= Dr(q
′) where (r, q′) = (p′, q′) (with p′ ≥ 5, q′ = 2, 3, 5) or,

(r, q′) = (p′ + 1, q′) (with q′ = 2, 3). Thus q′p
′

= q4 and since p′ is an odd prime,
K/H has a Sylow subgroup of size greater than q4, which is a contradiction by
Lemma 2.10(a).

Step 7. Let K/H ∼= 2B2(q′) where q′ = 22t+1 > 2.

If D(q) = q′ − 1 then q′ = q4 which is a contradiction since q′2 > q4.

If D(q) = q′ ±
√

2q′ + 1. Then q′2 + 1 ≡ 0 (mod D(q)). Therefore, q2 = q′2 and
hence q = q′. But q2 + 1 = q ±√

2q + 1, which is impossible.

Step 8. If K/H ∼= 2Dr(q
′) then we consider 6 cases:

8.1. K/H ∼= 2Dr(q
′) where r = 2t > 2. Then q′r = q2. Since r − 1 ≥ 3 we have

q6 | |G| which is a contradiction by Lemma 2.10(a).



A characterization of C2(q) where q > 5 19

8.2. K/H ∼= 2Dr(2) where r = 2t+1 ≥ 5. Then 2r−1 = q2. Since r ≥ 5 we have
q10 | |G|, which is a contradiction by Lemma 2.10(a).

8.3. K/H ∼= 2Dp(3) where 5 ≤ p 6= 2r + 1. Then 3p = q2, but 3p is not a square
number.

8.4. K/H ∼= 2Dr(3) where r = 2t + 1 6= p, t ≥ 2. Then 3r−1 = q2. But

3r(r−1) > q4, which is a contradiction by Lemma 2.10(a).

8.5. K/H ∼= 2Dp(3) where p = 2t + 1, t ≥ 2. Then we proceed similarly to 8.3
and 8.4.

8.6. K/H ∼= 2Dp+1(2) where p = 2r − 1, r ≥ 2 then 2p = q2 or 2p+1 = q2, but
similarly to last cases they are impossible.

Step 9. If K/H ∼= G2(q
′) then we consider 3 cases:

9.1. K/H ∼= G2(q
′) where 2 < q′ ≡ 1 (mod 3). Then D(q) = q′2 − q′ + 1 and

hence q′3 + 1 ≡ 0 (mod D(q)), so q′3 = q2, and thus (2, q − 1) = q′ + 1 which is
a contradiction.

9.2. K/H ∼= G2(q
′) where 2 < q′ ≡ −1 (mod 3). Then q′3 = q4, and hence

q8 | |G| which is a contradiction.

9.3. K/H ∼= G2(q
′) where 3 | q′. Then D(q) = q′2 ± q′ + 1. This is similar to

Cases 9.1 and 9.2.

Step 10. If K/H ∼= E7(2) or E7(3) or
2E6(2) or

2F4(2)
′ then D(q) must be

equal to 13, 17, 19, 73, 127, 757, 1093, none of which has a solution in Z.

Step 11. If K/H ∼= 3D4(q′) then D(q) = q′4 − q′2 + 1, and hence q′6 + 1 ≡ 0
(mod D(q)) which implies that q′3 = q, and this implies that q′2 + 1 = 1 or 2
which is impossible.

Step 12. If K/H ∼= F4(q
′) then we consider 2 cases:

12.1. If D(q) = q′4 − q′2 + 1 then we proceed similarly to Step 11.

12.2. If D(q) = q′4 + 1, then q′4 = q2 and q12 | |G| which is again impossible.

Step 13. If K/H ∼= 2F4(q′) where q′ = 22r+1 > 2 then q′6 = q2 and hence

q = q′3 and q is even. But q′6+1 cannot be equal to q′2±
√

2q′3+ q′±
√

2q′+1.

Step 14. If K/H ∼= 2G2(q′) where q′ = 32r+1 then D(q) = q′ ±
√

3q′ + 1. If
D(q) = q′ −

√

3q′ + 1 then q′3 = q2 and q is odd. But q′ −
√

3q′ + 1 cannot be

equal to q′3+1
2 . If D(q) = q′ +

√

3q′ + 1 then q′3 = q4 but q′3 is not a square
number and we have a contradiction.
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Step 15. If K/H ∼= E6(q
′) then q′9 = q4 and hence q16 | |G|, which is impossible.

Step 16. If K/H ∼= 2E6(q′) then q′9 = q2. But D(q) cannot be equal to (q′9 +
1)/(2, q′ − 1), and we have a contradiction.
Step 17. If K/H is a sporadic simple group then D(q) must be equal to 5, 7, 11,
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 59, 67, 71. There is a solution greater than
5 in the form of power of a prime number if D(q) =41 and q = 9. By the table
of sporadic simple groups, 41 is an odd order component of F1. But 29 | |F1| and
29 ∤ |C2(9)| which is a contradiction.
The proof of the main theorem is now completed. �

Remark 3.1. It is a well known conjecture of J.G. Thompson that if G is a finite
group with Z(G) = 1 and M is a non-abelian simple group satisfying N(G) =
N(M), then G ∼=M .

We can give a positive answer to this conjecture for the groups under discussion
by our characterization of these groups.

Corollary 3.2. Let G be a finite group with Z(G) = 1, M = C2(q) where q > 5
and N(G) = N(M), then G ∼=M .

Proof: By Lemmas 2.7 and 2.8, if G and M are two finite groups satisfying the
conditions of Corollary 3.2, then OC(G) = OC(M). So the main theorem implies
this corollary. �

Remark 3.3. Wujie Shi and Bi Jianxing in [17] put forward the following con-
jecture:

Conjecture. Let G be a group, M a finite simple group, then G ∼= M if and

only if

(i) |G| = |M |, and,
(ii) πe(G) = πe(M), where πe(G) denotes the set of orders of elements in G.

This conjecture is valid for sporadic simple groups ([14]), groups of alternating
type ([18]), and some simple groups of Lie type ([15], [16], [17]). As a consequence
of the main theorem, we prove the validity of this conjecture for the groups under

discussion.

Corollary 3.4. LetG be a finite group andM = C2(q) where q > 5. If |G| = |M |
and πe(G) = πe(M), then G ∼=M .

Proof: By assumption we must have OC(G) = OC(M). Thus the corollary
follows by the main theorem. �
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