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Structure of the kernel of higher spin Dirac operators

Martin Plechšḿıd

Abstract. Polynomials on Rn with values in an irreducible Spinn-module form a nat-
ural representation space for the group Spinn. These representations are completely
reducible. In the paper, we give a complete description of their decompositions into irre-
ducible components for polynomials with values in a certain range of irreducible modules.
The results are used to describe the structure of kernels of conformally invariant elliptic
first order systems acting on maps on Rn with values in these modules.

Keywords: conformally invariant differential operators, generalized (higher-spin) Dirac
operators, representations of spin-groups, Littlewood-Richardson rule

Classification: 53A30, 53A55, 32A50, 43A65

0. Introduction

The spaces of solutions of invariant differential (systems of) equations are in
a natural way modules for the corresponding symmetry group. The detailed
study of conformally invariant equations, see e.g. [11], [20], [3] and references
therein (or more generally invariant operators with respect to a chosen parabolic
geometry, see [21], [10]) are being typical examples. It can be expected in general
that the representation theory will play an important role in the study of the
corresponding spaces of solutions.
The classical result of that type for the Laplace operator is a description of

the spaces of spherical harmonics on R
n. The space Hr of harmonic homoge-

neous polynomials of order r is, under the induced action of the Spinn group, an
irreducible representation with the highest weight (r, 0, . . . , 0). The well known
classical theorem is then saying that the space Pr of all homogeneous polynomi-
als of order r is the sum of irreducible modules of Spinn with highest weights
(p, 0, . . . , 0), where p ∈ {r, r− 2, r− 4, . . . , }, p ≥ 0. Each module is appearing in
the decomposition with multiplicity one.
Similarly, it is well known that the so called spherical monogenics, i.e. homo-

geneous solutions of the Dirac equation for spinor valued polynomials on R
n of

order r are again irreducible modules under the induced action of Spinn with the

highest weight (2r+12 , 12 , . . . ,
1
2 ) (see e.g. [22]).

The partial support by the grant GAČR No. 201/99/0675 and MSM 113200007 is gratefully
acknowledged.



666 M.Plechšmı́d

Recently, invariant first order differential systems of equations for maps on R
n

with values in more complicated representations of the Spinn group were consi-
dered. The first example was the case of the so called Rarita-Schwinger operator.
Its homogeneous polynomial solutions were described in [5]. The spaces of such
homogeneous solutions are no more irreducible but it is possible to understand
how they decompose into a sum of irreducible components and to find highest
weights of all irreducible components. This basic example was then generalized in
several various directions ([2], [4], [5], [6], [13], [14]). The methods used for such
a description were typically coming from the Clifford analysis ([9]), sometimes
combined with some geometrical tools ([7], [8]).
In the presented paper, we are going to extend the class of equations for which

the understanding of the structure of the space of polynomial solutions is possible.
Tools used for that are much simpler than those used in previous papers. All re-
sults are deduced just using recent result by P. Littelmann [16] on the decomposi-
tion of certain tensor products of irreducible modules into irreducible components
(the so called Littlewood-Richardson rules) together with the classical surjectivity
result for elliptic operators.

In the first part of the paper, we define a certain class of elliptic invariant
first order operators on R

n and we recall the classical surjectivity result. The
Littlewood-Richardson rule is described in Section 2. In the third part, this rule
is used for the decomposition of the space of spherical harmonics with values in
irreducible modules with highest weights (2k+12 , . . . , 2k+12 , 12 , . . . ,

1
2 ).

Up to know, the structure of the kernel of an elliptic invariant operator acting
on maps on R

n with values in irreducible modules was known for modules with
highest weights of types (2k+12 , 12 , . . . ,

1
2 ) or (

3
2 , . . . , 32 ,

1
2 , . . . ,

1
2 ). These results

are reproduced in Section 4 (together with the full treatment of the cases of small
homogeneities) and extended to cover the case of values in any irreducible modules

with highest weight of type (2k+12 , . . . , 2k+12 , 12 , . . . ,
1
2 ).

1. Higher spin Dirac operators

The operators of our interest will be the so called higher spin Dirac operators .
We state here only the basic properties that we shall use in the last section when
deriving the decomposition of their kernel. More detailed information can be
found e.g. in [4], [8]. Also, as we are going to make our definitions simple, we will
formulate them directly on R

n instead of on a general Riemannian spin-manifold.

Definition 1.1. Let S be a basic spinor representation of Spinn with the highest

weight λ = (12 , . . . ,
1
2 ) for n odd, or S = S

+⊕ S
− with λ± = (12 , . . . ,

1
2 ,±

1
2 ) in the

even dimensional case. On the space of spinor-valued polynomials P(Rn)⊗ S, we
can consider the standard Dirac operator D. Let Vµ be a representation of Spinn
with the highest weight µ, and let {vi} be a basis of this vector space. The twisted
Dirac operator is the operator DT acting on the polynomials P(R

n) ⊗ Vµ ⊗ S,
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with values in the representation space Vµ ⊗ S, which is defined by the formula

(1) DT :
∑

i

vi ⊗ si(x) −→
∑

i

vi ⊗Dsi(x)

where si(x) are S-valued polynomials.

Similarly as the Dirac operator, the twisted Dirac operator is a Spinn-invariant
first-order differential operator with constant coefficients.

Definition 1.2. We know that the decomposition of the product Vµ ⊗ S into ir-

reducible components contains the representation Vλ+µ
1, with the highest weight

λ+ µ, with multiplicity one. Thus, we can write

P(Rn)⊗ (Vµ ⊗ S) = P(Rn)⊗ Vλ+µ ⊕ something .

By restricting the twisted Dirac operator DT to P(R
n)⊗Vλ+µ and by projecting

its range onto the same space we get a new operator D called the higher spin
Dirac operator :

(2) D : P(Rn)⊗ Vλ+µ −→ P(Rn)⊗ Vλ+µ.

The space Vλ+µ will be called a higher spin space or simply a spinor(-like) space.

Also, the higher spin Dirac operator is a Spinn-invariant first-order differential
operator and thus decreases the degree of higher-spin-valued polynomials by one.
It is known that the higher spin Dirac operator is elliptic (i.e. its symbol σ(D, ξ)
is an isomorphism for every vector ξ 6= 0), see [1]. A classical theorem of the
theory of differential equations states that any linear elliptic differential operator
is surjective in smooth category. In other words, the equation

(3) Df = g

has a solution for any C∞ right-hand side. Using the result in [17], we know that
for any polynomial right-hand side the corresponding solution is also analytic,
hence we can write its decomposition into the Taylor series on R

n. Using the
locally uniform convergence of the Taylor series and applying the Weierstrass
theorem, we get the following proposition:

Proposition 1.1. For any higher spin Dirac operator D, the equation

(4) Df = g

has a polynomial solution for every polynomial right-hand side.

1We shall denote Vλ+µ = Vλ++µ ⊕ Vλ−+µ in the even dimensional case.
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2. Young tableaux

We are looking for a decomposition of the products of the Spinn representations
with the highest weights (r, 0, . . . , 0) with a spinor-like representation S. The
approach that proved to be most powerful is the so called Littlewood-Richardson
rule. This method is based on the notion of a “standard Young tableau”. The
following definitions and theorems are adapted from [16].

2.1 Spin-standard Young tableaux.

Definition 2.1. Let p = (p1, . . . , pm) be a partition of a natural number n, that
is p1 ≥ · · · ≥ pm ≥ 0 are integers and n =

∑m
i=1 pi. With p we associate its

Young diagram, a figure consisting of m left justified rows of boxes, pi boxes in
the ith row from the top. By a Young tableau T of shape p we mean a filling of
the boxes with positive integers. A Young tableau is standard if the numbers in
the boxes are non-decreasing in the rows and strictly increasing in the columns
from the top to the bottom.

If we omit any column from a standard Young tableau T , we get a standard
Young tableau again. Let us number columns of Young tableaux from the right
hand side. It will be convenient to denote by T (k, l), k ≥ l, the Young tableau
consisting of the lth up to the kth column of a Young tableau T , and by T (k)
the tableau T (k, 1). If i is a positive integer, we define cT (i) to be the number of
boxes in T containing the number i.
To the dominant weight µ of a representation Vµ of a Lie algebra g we associate

a partition p(µ) = (p1, . . . , pm). The exact relation depends on the type of the
Lie algebra g, here we shall restrict ourselves only to the formulas for Lie algebras
of type Bm and Dm. The formulas for other types of Lie algebras can be found
in [16].

Definition 2.2. Let ωi be the ith fundamental weight of a Lie algebra g, and let
µ =

∑m
i=1 aiωi be the decomposition of the dominant weight µ of a representation

Vµ of g. Then we associate to µ the partition p(µ) = (p1, . . . , pm) with pi =
∑m−1

j=i 2aj + am for g of type Bm, and pi =
∑m−2

j=i 2aj + am−1+ am for g of type

Dm (void sums give 0).

Definition 2.3. Let h be a column of a standard Young tableau such that it
does not contain numbers i and 2m+ 1− i together. For i = 1, . . . , m we denote
by si(h) the columns defined as follows:

If i < m and both i+ 1 and 2m+ 1− i are entries of the column h, then
si(h) is the column obtained from h by replacing the entry i+1 by i and
2m+ 1− i by 2m − i. If i = m, g is of type Bm and h contains an entry
with value m+ 1, then si(h) is the column obtained from h by replacing
m+1 bym. If i = m, g is of type Dm and bothm+1 andm+2 are entries
of the column h, then si(h) is the column obtained from h by replacing
m+ 1 by m − 1 and m+ 2 by m. In all other cases we set si(h) = h.
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We say that a pair of columns (h,h′) is admissible, if there exists a sequence of
different columns (h0, . . . ,hk), k ≥ 0, such that

h = h0, h
′ = hk,

sij (hj−1) = hj for j = 1, . . . , k and some integers 1 ≤ ij ≤ m.

Definition 2.4. Let T be a Young tableau of shape p(µ) that contains only
positive integers smaller or equal to 2m and that does not contain integers i and
2m+ 1− i in the same column together. Denote p̄1 = p1 − am for g of type Bm,
and p̄1 = p1 − am − am−1 for g of type Dm. T is called Spin-standard if all of
the following holds:

1. If g is of type Bm then T is standard. If g is of type Dm then we divide
T into three tableaux: T1 := T (p̄1), T2 := T (p1 − am, p̄1 + 1), and T3 :=
T (p1, p1 − am + 1). Then each of the tableaux T1, T2, T3 is standard.

2. Let ti be the ith column of T . The pair of columns (t2i−1, t2i) is admis-
sible for every i = 1, . . . , p̄1/2.

For g of type Dm there must be two further conditions satisfied:

3. In T2 (resp. T3) the number of integers in a column greater than m is odd
(resp. even). The condition for T1 reads as follows: Let 1 ≤ i ≤ p̄1/2− 1
and let the 2ith column t2i of T1 consists of entries (h1, . . . , hk) and the
(2i+ 1)st column t2i+1 = (j1, . . . , jl), k ≤ l. For any sequence of integers
1 ≤ i1 < · · · < iq ≤ k such that

m+ 1− q ≤ hi1< · · · < hiq ≤ m+ q

m+ 1− q ≤ ji1< · · · < jiq ≤ m+ q

there holds hi1+ · · ·+ hiq ≡ ji1+ · · ·+ jiq mod 2.

4. The last condition is needed only if either am−1 > 0 and am > 0, or
p1 > am−1 + am > 0. For a column h = (h1, . . . , hl) denote by H(h) the
set of mutually different positive integers {h1, . . . , hl, l1, . . . , lm−l} such
that 2m ≥ lj > m for 1 ≤ j ≤ m − l and numbers i and 2m + 1 − i
are not in the set together for any i. Further, for any set H of mutually
different positive integers that are smaller or equal to 2m denote by h(H)
the column consisting of the same integers as in H in increasing order
(from the top to the bottom).

Let h be the very left (the p̄1th) column of T1. Let us define by induction
an auxiliary collection of sets Hi, i ≥ 0. Set H0 := H(h). If Hi−1 is
already defined, find the least number x among all its elements bigger
than m and replace it with its “mirror” 2m+ 1 − x. Denote the new set
by Hi.
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Add one of the columns h(H0) or h(H1) as the very right (the 0th) column
to the tableau T2, according to which of them has odd number of elements
that are bigger than m, and denote the new tableau by T ′

2 . Then T ′
2 is

standard.

Similarly, denote by T ′
3 the tableau obtained from T3 by adding a new

0th column. The new column is equal to h(Ham−1) if H0 contains even
number of elements that are greater than m, and equal to h(Ham−1+1)

otherwise. Then T ′
3 is standard.

2.2 The Littlewood-Richardson rule.

Definition 2.5. Let µ be a dominant weight of a representation of g and let T be
a Spin-standard Young tableau of shape p(µ) = (p1, . . . , pm). Define the weight
of T as

(5) ν(T ) :=
1

2
[(cT (1)− cT (2m))ε1 + · · ·+ (cT (m)− cT (m+ 1))εm]

where (ε1, . . . , εm) is the standard weight basis of g.2 For 1 ≤ l ≤ p1 denote by
νl(T ) the weight 2ν(T (l)).
If λ is a dominant weight for g, then a Spin-standard Young tableau T of

shape p(µ) is called λ-dominant if all the weights 2λ+ν1(T ), . . . , 2λ+νp1(T ) are
contained in the dominant Weyl chamber of g.

Theorem 2.1. The decomposition of the tensor product Vλ ⊗ Vµ into a sum of

irreducible representations of g is given by the formula

(6) Vλ ⊗ Vµ =
⊕

T

Vλ+ν(T )

where T runs over all λ-dominant Spin-standard Young tableaux of shape p(µ).

3. Spinor-valued polynomials

Spinor-valued polynomials are Spin-group representations of the form P⊗S, where
P ≡ P(Rn) are the ordinary scalar valued polynomials and S is a “spinor-like

space” — (2s+12 , 12 , . . . ,
1
2 ) or a similarly simple representation of Spinn. We know

that the space of polynomials P decomposes into irreducible components with the
highest weights (r, 0, . . . , 0). Hence it is sufficient to consider products of S with
the irreducible representations (r, 0, . . . , 0) only. Here and below, the highest

2We suppose that the relation between the fundamental and the standard weight basis is
the following: In the case of Bm we have ε1 = ω1, εi = ωi − ωi−1 for i = 2, . . . , m − 1 and
εm = 2ωm − ωm−1; In the case of Dm we have ε1 = ω1, εi = ωi − ωi−1 for i = 2, . . . , m − 2, m
and εm−1 = ωm + ωm−1 − ωm−2.
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weight will be used to denote at the same time the corresponding irreducible
module.
In the foregoing section, the representations (r, 0, . . . , 0) will play the role of

Vµ from Theorem 2.1. It follows that all our Spin-standard Young tableaux will
have only one row, of length 2r. Our task (of finding all Spin-standard Young
tableaux) will be simplified by this fact a lot. Also, most of the conditions for the
standard Young tableaux either will not apply, or will be fulfilled automatically.
Let us rephrase the previous definitions for this much simpler case:

Proposition 3.1. Let µ = (r, 0, . . . , 0). Then all Young tableaux of shape
p(µ) = (2r, 0, . . . , 0) have only one row that is of length 2r. Such a Young tableau
T is Spin-standard iff all of the following holds:

1. T is standard and contains integers between 1 and 2m only.

2. If we write T = t2r, . . . , t1 then t2i = t2i−1 for all 1 ≤ i ≤ r, or if g is of

type Bm, there can also be t2i = m, t2i−1 = m+ 1 for some i.

3. For g of type Dm, T does not contain both m and m+ 1.

Proof: We have to compare Definition 2.4. (1) only rephrases condition 1 from
the definition. Note that, in case g being of type Dm, T1 = T , and T2, T3 are
empty. (2) expresses the “admissibility” condition. Finally, (3) corresponds to
condition 3 from the definition. Condition 4 from the definition is void in our
case. �

Turn now to the question of decomposing the tensor product of two very special
representations — a polynomial one with a “spinor-like” one. In the following, it
will be easier to write the weights in the coordinates of the fundamental weight
basis.3 Also, for convenience, we will not distinguish in notation between a
representation and its highest weight.
We will see that there is actually a very little difference between the Bm and

Dm cases. In the next paragraphs we will develop a notation that will enable us
to formulate the basic results in a common language for both cases.

3.1 The product [r, 0, . . . , 0]⊗ [s, 0, . . . , 0, 1].

3.1.1 The case g of type Dm.

First, let us examine the case [r, 0, . . . , 0]⊗ [s, 0, . . . , 0, 1], µ = [r, 0, . . . , 0] and
λ = [s, 0, . . . , 0, 1].4 The twisted case [r, 0, . . . , 0] ⊗ [s, 0, . . . , 0, 1, 0] is similar.

3 Square brackets will suggest that the coordinates are relative to the fundamental weight
basis. We shall use ordinary round brackets for weights in standard notation.
A weight lies in the dominant Weyl chamber iff all its coordinates relatively to the fundamental
basis are nonnegative.

4 In agreement with the footnote 2 we suppose that [1, 0, . . . , 0] = (1, 0, . . . , 0), . . . ,

[0, . . . , 0, 1, 0, 0] = (1, . . . , 1, 0, 0), [0, . . . , 0, 1, 0] = ( 1
2
, . . . , 1

2
,− 1
2
), [0, . . . , 0, 1] = ( 1

2
, . . . , 1

2
). The

last two weights correspond to the spinor representations S
−

1/2
and S

+

1/2
respectively.
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According to Proposition 3.1, all Spin-standard tableaux are composed of pairs
of equal numbers, segments . Looking at the formula (5) we see that each of the
segments in T adds or removes from ν(T ) exactly one of the εi’s.
The decomposition theorem 2.1 requires not only the dominance of the final

λ + ν(T ), but also the dominance of the “partial” weights 2λ + νl(T ). In other
words, we must not get out of the dominant Weyl chamber with 2λ+ νl(T ) when
changing l. This condition determines the set of those segments that T can consist
of in order to be λ-dominant. We shall assign to them letters A, C, D, E, the
corresponding weights are those with which the segments contribute to ν(T ):

(7)

1, 1 [1, 0, . . . , 0] A

2, 2 [−1, 1, 0, . . . , 0] C

m+ 1, m+ 1 [0, . . . , 0, 1,−1] D

2m, 2m [−1, 0, . . . , 0] E

From the same reason as above it follows that the number of the segments 2, 2

and 2m, 2m altogether cannot exceed the number s— otherwise λ+ν(T ) would

not lie in the dominant Weyl chamber. Note, that it is important how the seg-
ments are ordered in T , and that it does not suffice to require the dominance of
λ+ ν(T ) alone.
Note also, that the weights corresponding to the four segments (7) are linearly

independent, hence to different λ-dominant tableaux there correspond different
weights ν(T ). Therefore all components in the decomposition of the product
[r, 0, . . . , 0]⊗ [s, 0, . . . , 0, 1] occur with multiplicity one.

Let us summarize.

Lemma 3.2. It holds

(8) [r, 0, . . . , 0]⊗ [s, 0, . . . , 0, 1] =
⊕

T

[s, 0, . . . , 0, 1] + ν(T ),

where T runs over all standard Young tableaux of the form

T = ir, ir, . . . , i2, i2, i1, i1 , ik = 1, 2, m + 1 or 2m, that contain at most 2s

elements with value either 2 or 2m, and at most two elements with value m+ 1.

3.1.2 The case g of type Bm.

Set µ = [r, 0, . . . , 0], λ = [s, 0, . . . , 0, 1].5 According to Proposition 3.1, all
Spin-standard tableaux are composed of pairs (segments) of equal numbers and

5 For g of type Bm we have [1, 0, . . . , 0] = (1, 0, . . . , 0), . . . , [0, . . . , 0, 1, 0] = (1, . . . , 1, 0),

[0, . . . , 0, 1] = ( 1
2
, . . . , 1

2
), according to the footnote 2.
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of the segment m, m+ 1 . In the same way as in the case of Dm, it can be

shown that a λ-dominant standard Young-tableau can contain only the following
segments:

(9)

1, 1 [1, 0, . . . , 0] A

2, 2

{

[−1, 1, 0, . . . , 0] if m > 2

[−1, 2] if m = 2

}

C

m, m+ 1 [0, . . . , 0] D

2m, 2m [−1, 0, . . . , 0] E

As before, we assigned to each segment a letter, but note that this time the
segments and the weights differ a little from those in the case ofDm. In particular,

though the segment m, m+ 1 contributes to ν(T ) with the zero weight, we have

to check that λ + ν(T (l)) + [0, . . . , 0,−1] lies in the dominant Weyl chamber

whenever m, m+ 1 is at the end (i.e. on the left hand side) of T (l).

3.1.3 Reformulation in the language of letters.

Instead of stating an analogue of Lemma 3.2 for the Bm case in terms of ele-
ments of Young-tableaux, we rephrase both versions of the lemma in the language
of the letters we have assigned to the segments.

Proposition 3.3. It holds

(10) [r, 0, . . . , 0]⊗ [s, 0, . . . , 0, 1] =
⊕

T

[s, 0, . . . , 0, 1] + ν(T ),

where T runs over all non-decreasing sequences of length r of letters A, C, D, E
that contain at most s letters C and E altogether, and at most one letter D. For
simplicity we will express these conditions as C + E ≤ s and D ≤ 1.

Proof: According to Lemma 3.2 and its analogue for the Bm case, the con-
tributing tableaux are glued from segments of the form (7) and (9). The condition
C+E ≤ s was derived for the Dm case before Lemma 3.2, the case of Bm is quite
similar. The segment D cannot occur in T more than once because: (Dm case)
otherwise λ+ ν(T ) would not lie in the dominant Weyl chamber; (Bm case) the
numbers in any row of a standard Young-tableau T cannot decrease. �

It is easy now to count the number of components into which the product (10)
decomposes.

Proposition 3.4. The product (10) decomposes into

(11)
(r + 1)2 for 0 ≤ r ≤ s

(s+ 1)(s+ 2) for r > s ≥ 0
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irreducible components, all with multiplicity 1.

Proof: The proof is a simple exercise in basic combinatorics. �

Example 3.1. Let us decompose the product [r, 0, . . . , 0] ⊗ [0, . . . , 0, 1] using the
technique described in Proposition 3.3. We consider all non-decreasing sequences
of letters A, C, D, E of length r with D ≤ 1 and C + E ≤ 0. There are only
two such sequences, A . . . AA and A . . . AD, for r > 0. The corresponding ν(T )’s
are then [r, 0, . . . , 0] and [r − 1, 0, . . . , 0] in the Bm case, and [r, 0, . . . , 0] and
[r − 1, 0, . . . , 1,−1] in the Dm case. So,

[r, 0, . . . , 0]⊗ [0, . . . , 0, 1] =

{

[r, 0, . . . , 0, 1]⊕ [r − 1, 0, . . . , 0, 1] for Bm case

[r, 0, . . . , 0, 1]⊕ [r − 1, 0, . . . , 1, 0] for Dm case

Example 3.2. Case Bm. There are 6 sequences contributing to [r, 0, . . . , 0] ⊗
[1, 0, . . . , 0, 1] for r > 1:

A . . . AAA [r, 0, . . . , 0]

A . . . AAC [r − 2, 1, 0, . . . , 0]

A . . . AAD [r − 1, 0, . . . , 0]

A . . . AAE [r − 2, 0, . . . , 0]

A . . . ACD [r − 3, 1, 0, . . . , 0]

A . . . ADE [r − 3, 0, . . . , 0]

The corresponding weights ν(T ) are for m > 2. Therefore, for r > 1, m > 2,

[r, 0, . . . , 0]⊗ [1, 0, . . . , 0, 1] = [r + 1, 0, . . . , 0, 1]⊕ [r, 0, . . . , 0, 1]⊕

[r − 1, 1, 0, . . . , 0, 1]⊕ [r − 1, 0, . . . , 0, 1]⊕

[r − 2, 1, 0, . . . , 0, 1]⊕ [r − 2, 0, . . . , 0, 1].

Example 3.3. Case Dm. When trying to decompose the same product as above,
[r, 0, . . . , 0] ⊗ [1, . . . , 0, 1], we get the same contributing sequences of letters, but
different corresponding weights (and therefore a different decomposition; r > 1):

A . . . AAA [r, 0, . . . , 0]

A . . . AAC [r − 2, 1, 0, . . . , 0]

A . . . AAD [r − 1, 0, . . . , 1,−1]

A . . . AAE [r − 2, 0, . . . , 0]

A . . . ACD [r − 3, 1, 0, . . . , 1,−1]

A . . . ADE [r − 3, 0, . . . , 1,−1]
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Hence, for r > 1,

[r, 0, . . . , 0]⊗ [1, . . . , 0, 1] = [r + 1, 0, . . . , 0, 1]⊕ [r, 0, . . . , 1, 0]⊕

[r − 1, 1, 0, . . . , 0, 1]⊕ [r − 1, 0, . . . , 0, 1]⊕

[r − 2, 1, 0, . . . , 1, 0]⊕ [r − 2, 0, . . . , 1, 0]

3.2 The product [r, 0, . . . , 0]⊗ [0, . . . , 0, s, 0, . . . , 0, 1].
Our examination will continue with the product

[r, 0, . . . , 0] ⊗ [0, . . . , 0, js, 0, . . . , 0, 1], s being on the jth place, j > 1. Instead of
stating analogs of Lemma 3.2, we shall focus directly on formulation of the results
in the language of letters. As all the calculations here go in the way indicated in
Section 3.1, no further comments should be needed.

3.2.1 The case g of type Dm.

Similarly as in the paragraph 3.1.1, all the Spin-standard Young tableaux con-
tributing to the sum (6) can be decomposed into pairs of equal numbers — we
shall call them segments again. There are five possible segments — to each one
we assign a letter and quote the weight with which it contributes to ν(T ) in (5).

(12)

1, 1 [1, 0, . . . , 0] A

j, j [0, . . . ,−1, j1, 0, . . . , 0] B

j + 1, j + 1

{

[0, . . . , 0, j−1, 1, 0, . . . , 0] if j<m−2

[0, . . . , 0,−1, 1, 1] if j=m−2
C

m+ 1, m+ 1 [0, . . . , 0, 1,−1] D

2m+1−j, 2m+1−j [0, . . . , 1, j−1, 0, . . . , 0] E

3.2.2 The case g of type Bm.

In the Bm-case, all the segments that contribute to a λ-dominant Spin-standard
Young tableau are listed below:

(13)

1, 1 [1, 0, . . . , 0] A

j, j [0, . . . ,−1, j1, 0, . . . , 0] B

j + 1, j + 1

{

[0, . . . , 0, j−1, 1, 0, . . . , 0] if j<m−1

[0, . . . , 0,−1, 2] if j=m−1
C

m, m+ 1 [0, . . . , 0] D

2m+1−j, 2m+1−j [0, . . . , 1, j−1, 0, . . . , 0] E
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Similarly as in Section 3.1.2: the segment m, m+ 1 contributes to ν(T ) with

the zero weight, but in 2λ+ νl(T ) it is treated as if it corresponded to the weight
[0, . . . , 0,−1]. Because a standard Young tableau can contain only E-segments
on the right hand side of a D-segment, and because λ = [0, . . . , 0, s, 0, . . . , 0, 1] is
such a special weight, it follows that a D-segment can occur in a standard Young
tableaux at most once. A different argument for the inequality D ≤ 1 is in the
proof of Proposition 3.3.

3.2.3 Results formulated in the language of letters.

Proposition 3.5. It holds

(14) [r, 0, . . . , 0]⊗ [0, . . . , 0, s, 0, . . . , 0, 1] =
⊕

T

[0, . . . , 0, s, 0, . . . , 0, 1] + ν(T ),

where T runs over all non-decreasing sequences of length r of letters A to E that
satisfy inequalities B ≤ E, C + E ≤ s and D ≤ 1.

Proof: The proof of Proposition 3.5 is similar to the proofs of Lemma 3.2 and
of Proposition 3.3. �

Proposition 3.6. The product (14) decomposes into

(15)

1

6
(r + 1)(r + 2)(r + 3) for 0 ≤ r ≤ s

1

3
(s+1)(s+2)(s+3)−

1

6
(2s+1− r)(2s+2− r)(2s+3− r)

for 2s ≥ r ≥ s ≥ 0

1

3
(s+ 1)(s+ 2)(s+ 3) for r > 2s ≥ 0

irreducible components, all with multiplicity 1.

Proof: The proof is only a combinatorial calculation. �

4. Decomposition of kerD

Now we have come to the point, where we are able to describe the structure of
the kernel of the higher spin Dirac operator D.

Theorem 4.1. As earlier, denote the highest weight of the spinor-like represen-

tation S by λ = [s, 0, . . . , 0, 1], resp. λ = [0, . . . , 0, s, 0, . . . , 0, 1]. Then6

(16) kerD|Pr
=

⊕

T

λ+ ν(T )

6Here D|Pr
means restriction of D to Pr ⊗ S.
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where T runs over all those sequences of letters from formulas (10), resp. (14)
that do not contain letter D. In more detail,

(17) kerD =
⊕

T

λ+ ν(T )

where T runs over all finite non-decreasing sequences of letters A, C, E that
satisfy C + E ≤ s, resp. over all finite non-decreasing sequences of letters A, B,
C and E that satisfy C + E ≤ s and B ≤ E.

Proof: The proof is based on the observation that omitting the letter D from
a sequence that contains it, or adding it to a sequence that does not contain it,
either does not change the corresponding weight at all (in the odd dimension, the
Bm case), or changes only its “polarity” (i.e. the sign of the last coordinate in the
standard weight basis; in the even dimension, Dm case). In this way we establish
a natural correspondence between sequences contributing to the decomposition of
Pr ⊗ S and sequences contributing to Pr+1 ⊗ S. To each sequence from Pr ⊗ S =
⊕

M [i, 0, . . . , 0]⊗ S, M containing every other number from r down to 0, we can
assign a unique sequence from Pr+1 ⊗ S. What remains unassigned in Pr+1 ⊗ S

are all the sequences of length r+1 that do not contain the letter D. We have to
proof that this assignment somehow reflects the behaviour of the operator D.
In order to simplify the notation in the rest of the proof, let us denote S± = S

in the odd dimension, and S
+ = S, S

− corresponding to the “twisted” weight λ
in the even case.
Clearly, as D is a first-order differential operator, it maps Pr+1⊗S

+ into Pr ⊗
S
−. Because D is invariant, any component in the decomposition of Pr+1⊗S

+ is
mapped either to a component with the same highest weight in the decomposition
of Pr ⊗ S

−, or to zero. From Proposition 1.1 we know that D maps Pr+1 ⊗ S
+

onto Pr⊗S
−. Hence, the complement of the kernel of D|Pr+1

must consist exactly

of those components that contribute to the decomposition Pr ⊗ S
− — we have

identified these components using the sequence-of-letters assignment. Thus the
components corresponding to the remaining sequences must form the kernel of
the operator D. �

Remark 4.1. Note that in order to derive the formula (17) we did not need any
special knowledge about the nature of the higher spin Dirac operator — the
information about its conformal invariance and its ellipticity was completely suf-
ficient. The result was deduced purely by representation theoretical methods
without using other geometrical or analytical properties of solutions, as it was in
the approach to solving certain special cases in [8], [9].

Remark 4.2. Let again λ = [s, 0, . . . , 0, 1], resp. λ = [0, . . . , 0, s, 0, . . . , 0, 1]. To
every component κ of the decomposition of kerD there corresponds a unique
sequence of letters π that does not contain the letters A and E, resp. letters
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B and E together. Denote by C(π) and E(π) the number of letters C and E
contained in the sequence π. Then, clearly, the multiplicity of the component κ
in the decomposition of kerD is equal to

(18) s+ 1− (C(π) + E(π)).

Note that the other sequences contributing with the same component can be
obtained from π by gradually adding the couples of letters A, E, resp. B, E to it
while the inequality C + E ≤ s is satisfied.

Example 4.1. As an example let us decompose kerD for the case
λ = (52 ,

1
2 , . . . ,

1
2 ) = [2, 0, . . . , 0, 1] in odd dimension (the Bm case). The following

sequences contribute to (17) with the corresponding ν(T )s (r ≥ 2 is the length of
the sequence, when used):

empty sequence [0, . . . , 0]

A [1, 0, . . . , 0]

C [−1, 1, 0, . . . , 0]

E [−1, 0, . . . , 0]

A . . . AAA [r, 0, . . . , 0]

A . . . AAC [r − 2, 1, 0, . . . , 0]

A . . . AAE [r − 2, 0, . . . , 0]

A . . . ACC [r − 4, 2, 0, . . . , 0]

A . . . ACE [r − 4, 1, 0, . . . , 0]

A . . . AEE [r − 4, 0, . . . , 0]

Hence, using the more common standard weight notation:

(19)

kerD|P0 = (52 ,
1
2 , . . . ,

1
2 )

kerD|P1 = (72 ,
1
2 , . . . ,

1
2 )⊕ (

5
2 ,
3
2 ,
1
2 , . . . ,

1
2 )⊕ (

3
2 ,
1
2 , . . . ,

1
2 )

kerD|Pr≥2
= (2r+52 , 12 , . . . ,

1
2 )⊕ (

2r+3
2 , 32 ,

1
2 , . . . ,

1
2 )⊕ (

2r+1
2 , 12 , . . . ,

1
2 )⊕

(2r+12 , 52 ,
1
2 , . . . ,

1
2 )⊕ (

2r−1
2 , 32 ,

1
2 , . . . ,

1
2 )⊕ (

2r−3
2 , 12 , . . . ,

1
2 )

Note, that there are no multiplicities in kerD|Pr
, while the complete kernel

has many:

kerD =[0, . . . , 0, 1]⊕ [0, 1, 0, . . . , 0, 1]⊕

∞
⊕

i=0

[i, 2, 0, . . . , 0, 1]

⊕ 2 · [1, 0, . . . , 0, 1]⊕

∞
⊕

i=1

2 · [i, 1, 0, . . . , 0, 1]

⊕
∞
⊕

i=2

3 · [i, 0, . . . , 0, 1]

(20)
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Example 4.2. Let λ = (52 ,
5
2 ,
1
2 , . . . ,

1
2 ) = [0, 2, 0, . . . , 0, 1] in even dimension 2m ≥

10 (the Dm case). The following sequences contribute to (17):

empty sequence,

A, C, E,

AA, AC, AE, BE, CC, CE, EE,

AAA, AAC, AAE, ABE, ACC, ACE, AEE, BCE, BEE,

A . . . AAAA, A . . . AAAC, A . . . AAAE, A . . . AABE, A . . . AACC,

A . . . AACE, A . . . AAEE, A . . . ABCE, A . . . ABEE, A . . . BBEE.

Thus the kernel of the higher spin Dirac operator consists of the following parts:

(21)

kerD|P0 = (52 ,
5
2 ,
1
2 , . . . ,

1
2 ),

kerD|P1 = (72 ,
5
2 ,
1
2 , . . . ,

1
2 )⊕ (

5
2 ,
5
2 ,
3
2 ,
1
2 , . . . ,

1
2 )⊕ (

5
2 ,
3
2 ,
1
2 , . . . ,

1
2 ),

kerD|P2 = (92 ,
5
2 ,
1
2 , . . . ,

1
2 )⊕ (

7
2 ,
5
2 ,
3
2 ,
1
2 , . . . ,

1
2 )⊕ (

7
2 ,
3
2 ,
1
2 , . . . ,

1
2 )

⊕ (52 ,
5
2 ,
1
2 , . . . ,

1
2 )⊕ (

5
2 ,
5
2 ,
5
2 ,
1
2 , . . . ,

1
2 )

⊕ (52 ,
3
2 ,
3
2 ,
1
2 , . . . ,

1
2 )⊕ (

5
2 ,
1
2 , . . . ,

1
2 ),

kerD|P3 = (112 , 52 ,
1
2 , . . . ,

1
2 )⊕ (

9
2 ,
5
2 ,
3
2 ,
1
2 , . . . ,

1
2 )⊕ (

9
2 ,
3
2 ,
1
2 , . . . ,

1
2 )

⊕ (72 ,
5
2 ,
1
2 , . . . ,

1
2 )⊕ (

7
2 ,
5
2 ,
5
2 ,
1
2 , . . . ,

1
2 )⊕ (

7
2 ,
3
2 ,
3
2 ,
1
2 , . . . ,

1
2 )

⊕ (72 ,
1
2 , . . . ,

1
2 )⊕ (

5
2 ,
5
2 ,
3
2 ,
1
2 , . . . ,

1
2 )⊕ (

5
2 ,
3
2 ,
1
2 , . . . ,

1
2 ),

kerD|Pr≥4
= (2r+52 , 52 ,

1
2 , . . . ,

1
2 )⊕ (

2r+3
2 , 52 ,

3
2 ,
1
2 , . . . ,

1
2 )

⊕ (2r+32 , 32 ,
1
2 , . . . ,

1
2 )⊕ (

2r+1
2 , 52 ,

1
2 , . . . ,

1
2 )

⊕ (2r+12 , 52 ,
5
2 ,
1
2 , . . . ,

1
2 )⊕ (

2r+1
2 , 32 ,

3
2 ,
1
2 , . . . ,

1
2 )

⊕ (2r+12 , 12 , . . . ,
1
2 )⊕ (

2r−1
2 , 52 ,

3
2 ,
1
2 , . . . ,

1
2 )

⊕ (2r−12 , 32 ,
1
2 , . . . ,

1
2 )⊕ (

2r−3
2 , 52 ,

1
2 , . . . ,

1
2 ).

Acknowledgment. I would like to express here my great gratitude to Vladimı́r
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