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A generalization of the Schauder fixed

point theorem via multivalued contractions

Paolo Cubiotti, Beatrice Di Bella

Abstract. We establish a fixed point theorem for a continuous function f : X → E, where
E is a Banach space and X ⊆ E. Our result, which involves multivalued contractions,
contains the classical Schauder fixed point theorem as a special case. An application is
presented.
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1. Introduction

The aim of this short note is to point out the following result.

Theorem 1. Let E be a Banach space, X a nonempty closed convex subset

of E, f : X → E a continuous function, G : X ×X → 2E a multifunction with
non-empty values. Moreover, assume that:

(i) f(f(X) ∩X) ⊆ X ;

(ii) f(f−1(X)) is relatively compact;
(iii) for every x ∈ X , one has G(x, x) = {0E} and the multifunction G(x, · ) is

upper semicontinuous and with convex graph;

(iv) the multifunction FG : X → 2X defined by putting

FG(x) =
{

y ∈ X :
[

G(x, y) + f(x)
]

∩X 6= ∅
}

for all x ∈ X , is a multivalued contraction.

Then, f admits at least one fixed point.

The proof of Theorem 1 will be given in Section 2. When X is compact and
f(X) ⊆ X , each assumption of Theorem 1 is satisfied. In particular, it suffices
to take G(x, y) ≡ {0E}. Hence, the classical Schauder fixed point theorem is a
particular case of Theorem 1.
As an application of Theorem 1, in Section 2 we shall also prove the following

result.
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Theorem 2. Let E be a Banach space, and let X = B(x0, R) be the closed ball
centered at x0 ∈ E with radius R > 0. Let f : X → E be a continuous function

satisfying conditions (i) and (ii) of Theorem 1. Moreover, assume that:

(iii)′ α := supx∈X ‖x− f(x)‖ < 2R;
(iv)′ the function x ∈ X → x− f(x) is a contraction with constant L < ψ(α),

where

ψ(t) :=

{ 1
2 if t ∈ [0, R]

1− t
2R if t ∈ ]R, 2R[ .

Then, f admits at least one fixed point.

2. The proofs

This section is devoted to the proofs of Theorems 1 and 2. For the basic facts
and definitions about multifunctions, we refer to [1], [4].

Proof of Theorem 1: If we put Fix(FG) := {x ∈ X : x ∈ FG(x)}, by (iii) we
have

Fix(FG) = f
−1(X).

On the other hand, for every x ∈ X we have

FG(x) =
{

y ∈ X : G(x, y) ∩ (X − f(x)) 6= ∅
}

.

Hence, by (iii), it follows that the set FG(x) is closed and convex. Consequently,
by (iv) and Theorem 1 of [5], the set Fix(FG), endowed with the relative norm
topology, is a non-empty absolute extensor for paracompact spaces. Hence, in
particular, it is an absolute retract (see [2, p. 92]). On the other hand, (i) is
equivalent to the fact that f(f−1(X)) ⊆ f−1(X). At this point, our conclusion
follows from Theorem 10.8 at page 94 of [2]. �

If A and D are nonempty subsets of the Banach space E and x ∈ E, we put

d(x,D) := inf
v∈D

‖x− v‖, d∗(A,D) := sup
u∈A

d(u,D).

Moreover, we denote by dH(A,D) the Hausdorff distance between A and D,
namely we put

dH (A,D) := max {d
∗(A,D), d∗(D,A)}.

Proof of Theorem 2: We want to apply Theorem 1 by takingG(x, y) = {y−x}.
Of course, condition (iii) of Theorem 1 is satisfied. We now prove that assumption
(iv) is also satisfied. To this aim, we first observe that for each x ∈ X one has

(1) FG(x) = X ∩B(x− f(x) + x0, R).
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Now we claim that, for each z ∈ X and each v ∈ E, with ‖v‖ < 2R, one has

(2) d(z,X ∩B(v + x0, R)) ≤ ψ(‖v‖)−1 d(z,B(v + x0, R)).

To prove (2), fix z and v as above. We distinguish two cases.

(a) ‖v‖ ≤ R. Since x0 ∈ X ∩B(v + x0, R), we have

d∗(X ∩B(v + x0, R), E \X) ≥ d(x0, E \X) = R.

Consequently, by Lemma 1 of [3] we have that the inequality

d(z,X ∩B(v + x0, R)) ≤
2R

ρ
d(z,B(v + x0, R))

holds for all ρ ∈ ]0, R[ . Of course, this implies

d(z,X ∩B(v + x0, R)) ≤ 2 d(z,B(v + x0, R)),

as desired.

(b) ‖v‖ > R. Since

u := x0 + v
(

1−
R

‖v‖

)

∈ X ∩B(v + x0, R)

and B(u, 2R− ‖v‖) ⊆ X , we get

d∗(X ∩B(v + x0, R), E \X) ≥ d(u,E \X) ≥ 2R− ‖v‖.

Again by Lemma 1 of [3], the inequality

d(z,X ∩B(v + x0, R)) ≤
2R

ρ
d(z,B(v + x0, R))

holds for all ρ ∈ ]0, 2R− ‖v‖[ . This implies

d(z,X ∩B(v + x0, R)) ≤
2R

2R− ‖v‖
d(z,B(v + x0, R)),

as desired. Hence, (2) holds.

At this point, fix x, y ∈ X . By (1) and (2) we have

d∗(FG(y), FG(x)) ≤ ψ(‖x− f(x)‖)−1 d∗(FG(y), B(x − f(x) + x0, R))

≤ ψ(‖x− f(x)‖)−1 dH(B(y − f(y) + x0, R), B(x− f(x) + x0, R)).

Since ψ decreases in [0, α], by assumption (iv)′ and by the previous inequality we
get

dH (FG(y), FG(x)) ≤
L

ψ(α)
‖x− y‖,

hence FG is a multivalued contraction. By Theorem 1 our claim follows. �
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Remark. When E is an Hilbert space, the more precise estimation given in
Lemma 1 of [3] allows us to take the function ψ(t) in the statement of Theorem 2
in the following better way:

ψ(t) :=

{

1 if t ∈ [0, R]

2R
t − 1 if t ∈ ]R, 2R[ .
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