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Limit theorems for rank statistics

detecting gradual changes

Aleš Slabý

Abstract. The purpose of the paper is to investigate weak asymptotic behaviour of rank
statistics proposed for detection of gradual changes, linear trends in particular. The
considered statistics can be used for various test procedures. The fundaments of the
proofs are formed by results of Hušková [4] and Jarušková [5].

Keywords: gradual type of change, location model, rank statistics, weighted suprema,
limit theorems

Classification: 62E20, 62G20, 62G30

1. Introduction

The basic underlying problem is testing a sequence of i. i. d. (time ordered)
random observations X1, . . . , Xn having the same common continuous distribu-
tion against an alternative that at an unknown time point there is a beginning of
gradual type of change in location such that the trend after the change point is
linear. Namely, we test

H : Xi = θ + ei

against

A : Xi = θ + δ
i − m

n
I{i>m} + ei for some 1 ≤ m < n and δ 6= 0

where e1, . . . , en are i. i. d. with continuous distribution function F (x, 0) provided
that F (x, θ) = F (x − θ) = F (x). However, statistics studied in the sequel can be
used for testing other and more complicated alternatives, see Slabý [7].
Let R1n, . . . , Rnn be the ranks corresponding to the observations X1, . . . , Xn.

Consider two simple linear rank statistics

(1) S1k(a) =
k∑

i=1

(
a(Rin)− an

)
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and

(2) S2k(a) =

n∑

i=k+1

(
a(Rin)− an

) i − k

n

where k = 1, . . . , n, and a(1), . . . , a(n) are scores with properties

(3)
1

n

n∑

i=1

(
a(i)− an

)2 ≥ D1

and

(4)
1

n

n∑

i=1

∣∣a(i)− an
∣∣2+η ≤ D2

for some finite positive constants D1, D2 and η independent of n. Here

(5) an =
1

n

n∑

i=1

a(i).

Hušková [4] studied limit behaviour of weighted suprema and Lp-functionals
based on S1k(a) and, then, proposed corresponding testing procedures for abrupt
change in location model setup. Whereas S1k(a) is more suitable for testing
abrupt changes, analogous weighted suprema based on S2k(a) can be better em-
ployed to test gradual changes, particularly changes of linear trend in the location
model.
The crucial result of Hušková [4] is that limit behaviour of the treated statistics

is the same as the limit behaviour of the respective functionals of sums of certain
i. i. d. random variables. Limit theorems for i. i. d. random variables, see Csörgő
and Horváth [1], can be then extended to ranks. Hušková [4] shows that instead
of investigating behaviour of S1k(a), it is sufficient to check behaviour of

(6) Z1k(a) =
k∑

i=1

(
a(1 + [nUi])− an

)

where

(7) Ui = F (Xi), i = 1, . . . , n,

and [a] denotes the integer part of a. Notice that for k = 1, . . . , n we have

(8) ES1k(a) = EZ1k(a) = 0
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and

(9) Var S1k(a) =
n

n − 1 Var
{

Z1k(a)−
k

n
Z1n(a)

}
=

k(n − k)

n
σ2n(a)

where

(10) σ2n(a) =
1

n − 1

n∑

i=1

(
a(i)− an

)2
.

General formulae for expectation and variance of simple linear rank statistics can
be for example found in Hájek and Šidák [3], see Theorem c of Section 3.1.
A similar approach can be used in the case of statistics based on S2k(a), namely,

we consider

(11) Z2k(a) =

n∑

i=k+1

(
a(1 + [nUi])− an

) i − k

n

instead of S2k(a). There is a simple but very important relationship between
Z1k(a) and Z2k(a). Obviously

(12) Z2k(a) = − 1
n

n−1∑

i=k

Z1i(a) +
n − k

n
Z1n(a).

The same holds for S1k(a) and S2k(a), however, since S1n(a) = 0 the analog of
(12) can be simplified to

(13) S2k(a) = − 1
n

n−1∑

i=k

S1i(a).

Finally note that for k = 1, . . . , n we obtain

(14) ES2k(a) = EZ2k(a) = 0

and

Var S2k(a) =
n

n − 1 Var
{

Z2k(a)−
(n − k)(n − k + 1)

2n2
Z1n(a)

}

= v(n, k)σ2n(a)

(15)

where

(16) v(n, k) =
(n − k)(n − k + 1)(2(n − k) + 1)

6n2
− (n − k)2(n − k + 1)2

4n3
.
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2. Limit theorems

The main results are summarized below in Theorem 1. These results have
been mentioned without any proof in Theorem 2 of [7] and employed there in
a comparative simulation study.

Theorem 1. Let X1, . . . , Xn be i. i. d. random variables with common conti-

nuous distribution function F . Let assumptions (3) and (4) hold.

(i) As n → ∞, for arbitrary y ∈ R,

(17)

P

{
√
2 log logn max

1≤k≤n−1

1√
v(n, k)

1

σn(a)

∣∣S2k(a)
∣∣

≤ y + 2 log logn+ log

√
3

4π

}
−→ exp(−2e−y)

where v(n, k) is defined in (16).
(ii) If moreover, as n → ∞,

(18)
n

G
−→ ∞ and

n2/(2+η) logn

G
−→ 0,

then for arbitrary y ∈ R, as n → ∞,
(19)

P

{√
2 log

n

G
max

G<k<n−G

1√
w(n, G)

1

σn(a)

∣∣S2,k+G(a)− 2S2k(a) + S2,k−G(a)
∣∣

≤ y + 2 log
n

G
+ log

√
3

4π

}
−→ exp(−2e−y)

where

(20) w(n, G) =
G(2G2 + 1)

3n2
− G4

n3
.

The theorem below is a result analogous to Theorem 1 but it assumes certain
i. i. d. variables instead of the ranks.

Theorem 2. Let X1, . . . , Xn be i. i. d. random variables with EX1 = 0,
VarX1 = 1 and E |X1|2+η < ∞ for some η > 0. For k = 0, . . . , n denote

(21) Ŝk =
n∑

i=k+1

Xi
i − k

n
.
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(i) As n → ∞, for arbitrary y ∈ R,

P

{
√
2 log logn max

1≤k≤n−1

1√
v̂(n, k)

∣∣Ŝk

∣∣

≤ y + 2 log logn+ log

√
3

4π

}
−→ exp(−2e−y)

(22)

where

(23) v̂(n, k) =
(n − k)(n − k + 1)(2(n − k) + 1)

6n2
.

(ii) If moreover condition (18) holds then for arbitrary y ∈ R, as n → ∞,

P

{√
2 log

n

G
max

G<k<n−G

1√
ŵ(n, G)

∣∣Ŝk+G − 2Ŝk + Ŝk−G

∣∣

≤ y + 2 log
n

G
+ log

√
3

4π

}
−→ exp(−2e−y)

(24)

where

(25) ŵ(n, G) =
G(2G2 + 1)

3n2
.

Corollary. Convergence (22) remains true if v̂(n, k) is replaced with v(n, k)
defined in (16). Similarly, convergence (24) remains true in the case that ŵ(n, G)
is replaced with w(n, G) defined in (20).

The following theorem, which can be considered to be an extension of Theo-
rem 3 in [4], poses the crucial step in the proof of Theorem 1. It is an interlink
between Theorem 1 and Theorem 2.

Theorem 3. Under assumptions of Theorem 1, as n → ∞,

(26) max
1≤k≤n−1

1√
v(n, k)

|Dk(a)| = OP

(
max

{
n−1/2, n−η/(2+η)

}
(1 + logn)

)

where

Dk(a) = S2k(a)−
(

Z2k(a)−
(n − k)(n − k + 1)

2n2
Z1n(a)

)
.

Moreover, if assumption (18) holds then

(27) max
G<k<n−G

1√
w(n, G)

|Dk+G(a)− 2Dk(a)+Dk−G(a)| = oP

(
(logn)−1/2

)
.
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Remarks.

1. Compare our Theorem 1 to Theorem 2 of [4] and notice that mutual rela-
tionship between behaviour of maxima of cumulative and moving sums is different
in our case. Also, note that a printing error occurred in Theorem 2 of [4] and
condition (1.17) should accord with our condition (18). The error was dragged
in [7] as well. In fact condition (18) can be slightly relaxed as follows

n

G
−→ ∞ and

n2/(2+η) log(n/G)

G
−→ 0.

However, (27) then holds with oP

(
(log(n/G))−1/2

)
on the right-hand side.

2. Of course, convergence (19) and (24) also remains true if w(n, G) and
ŵ(n, G) is replaced with (2/3) · (G3/n2).

3. Corollary of Theorem 2 can be further extended to

(28) S̃k =

n∑

i=k+1

(
Xi − Xn

) i − k

n

where Xn = n−1∑n
1 Xi. The assumption of zero mean can be relaxed in this

case. The limit behaviour in question holds as well if the assumption of unit
variance is relaxed and (21) or (28) is standardized by appropriate estimate of
variance. See [5] for the discussion. Note in this context that the problem of
estimation of mean and variance does not arise in the case of ranks because (5)
and (10) are known.

4. The use of the above functionals of S2k(a) for testing changes in the loca-
tion model as well as applicability of the limit theorems is — besides others —
discussed in [7].

3. Proofs

Proof of Theorem 3. Using (12) and (13) we can write

Dk(a) = − 1
n

n−1∑

i=k

∆i(a)

where

∆i(a) = S1i(a)−
(

Z1i(a)−
i

n
Z1n(a)

)
.
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It follows that

(29) max
1≤k≤n−1

1√
v(n, k)

|Dk(a)| =
1

n
max

1≤k≤n−1

1√
v(n, k)

∣∣∣∣∣

n−1∑

i=k

∆i(a)

∣∣∣∣∣

≤ 1
n

max
1≤k≤n−1

√
(n − k)3

v(n, k)
max

1≤i≤n−1

√
n

i (n − i)
|∆i(a)|

and

(30) max
G<k<n−G

1√
w(n, G)

|Dk+G(a)− 2Dk(a) +Dk−G(a)|

= max
G<k<n−G

1√
w(n, G)

1

n

∣∣∣∣∣∣

k−1∑

i=k−G

∆i(a)−
k+G−1∑

i=k

∆i(a)

∣∣∣∣∣∣

≤ 1√
w(n, G)

2G√
n
max

1≤i≤n−1

1√
n
|∆i(a)|.

Theorem 3 in [4] implies that

(31) max
1≤i≤n−1

√
n

i (n − i)
|∆i(a)| = OP

(
max

{
n−1/2, n−η/(2+η)

}
(1 + logn)

)

and

(32) max
1≤i≤n−1

1√
n
|∆i(a)| = OP

(
max

{
n−1/2, n−η/(2+η)

})
.

Since

v(n, k)

(n − k)3
=
1

n2

(
1 +

1

n − k

)(
1

3
+

1

6(n − k)
− n − k + 1

4n

)

we can easily see that v(n, k)/(n − k)3 is increasing in k independently of n. It
follows that v(n, k)/(n − k)3 = O

(
n−2

)
for arbitrary 1 ≤ k ≤ n − 1 and hence

max
1≤k≤n−1

√
(n − k)3

v(n, k)
= O (n) .

This along with (29) and (31) yields behaviour (26).
By condition (18) we have

1√
w(n, G)

2G√
n
= O

(
(n/G)1/2

)
= o

(
n1/2−1/(2+η)(log n)−1/2

)
.

This along with (30) and (32) yields (27).
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Proof of Theorem 2. Assertion (i) of Theorem 2 coincides with Theorem 1
in [5]. The corollary presents a result which is half a step to Theorem 2 of the

paper and is proven ibidem. Theorem 2 of [5] shows the convergence for S̃k defined

in (28) and standardized by
√

v(n, k).
To prove assertion (ii) assume at first that X1, . . . , Xn are normally distributed

and define a zero-mean standardized Gaussian process

ξn(t) =
1√

ŵ(n, G)
Y[G(t+1)], 0 ≤ t ≤ n

G
− 2,

where

(33) Yk = Ŝk+G − 2Ŝk+ Ŝk−G =

k∑

i=k−G+1

Xi
i − k +G

n
+

k+G−1∑

i=k+1

Xi
k +G − i

n
.

For k ≥ G and k + l ≤ n − G we have

Cov(Yk , Yk+l) = Cov(YG, YG+l) = Rn,G(l).

Hence, if n/G → ∞ then ξn(t) converges to a zero-mean standardized stationary
Gaussian process {ξ(t), t ≥ 0} with autocovariance function

(34) ρ(t) = lim
n/G→∞

Rn,G([Gt])

ŵ(n, G)
.

Now investigate properties of ρ(t). For 0 ≤ l ≤ G − 2 we get

Rn,G(l) =

G∑

i=l+1

i

n
· i − l

n
+

G+l∑

i=G+1

2G − i

n
· i − l

n
+

2G−1∑

i=G+l+1

2G − i

n
· 2G+ l − i

n

=
1

n2

(
G−l∑

i=1

(i+ l) i+

l∑

i=1

(G − i)(i+G − l) +

G−l−1∑

i=1

(G − l − i)(G − i)

)
.

Plugged in (34) it implies

ρ(t) =
3

2

(∫ 1−t

0
(s+ t) s ds+

∫ t

0
(1− s)(1 + s − t) ds+

∫ 1−t

0
(1− s)(1 − s − t) ds

)

= 1− 3
2

t2 +
3

4
t3

for t ∈ 〈0, 1). Further if l ≥ 2G then Rn,G(l) = 0 and hence ρ(t) = 0 for t > 2.
Realize that

max
t≥0

{
ξn(t)− ξ(t)

}
= oP (1)
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and apply Lemma 1 of [5] or the original Theorem 12.3.5 of [6] for ξ(t) to obtain
convergence (24) for normally distributed X1, . . . , Xn.

By virtue of results of Einmahl [2] there are i. i. d. random variables X
(N)
k with

standard normal distribution such that

max
1≤k≤n

k−1/(2+η)

∣∣∣∣∣

k∑

i=1

(
Xi − X

(N)
i

)
∣∣∣∣∣ = OP (1) .

Hence, by (33) and (25) and according to condition (18) we have

max
G<k<n−G

1√
ŵ(n, G)

∣∣Yk − Y
(N)
k

∣∣ ≤ 1√
ŵ(n, G)

2G

n
max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(
Xk − X

(N)
k

)
∣∣∣∣∣

= OP

(
n1/(2+η)

√
G

)
= oP

((
log

n

G

)−1/2)

(35)

where Y
(N)
k are obtained by replacing Xi with X

(N)
i in (33). It concludes the

proof of assertion (ii). Its extension in the corollary is straightforward since (34)
and (35) hold true for w(n, G) as well.

Proof of Theorem 1. According to (3), (4) and (7)

(36)
a(1 + [nUi])− an

σn(a)
, i = 1, . . . , n,

are i. i. d. random variables with zero mean, with essentially unit variance, and
with finite absolute moment of order 2+η, η > 0. Thus, by Corollary to Theorem 2
we have

(37) max
1≤k≤n−1

1√
v(n, k)

1

σn(a)

∣∣Z2k(a)
∣∣ = OP

(√
log logn

)

and the rate in (37) cannot be improved.
It can be easily seen that 4n4(n − k)−2(n − k + 1)−2v(n, k) is decreasing for

0 < k < n and

max
1≤k≤n−1

1√
v(n, k)

(n − k)(n − k + 1)

2n2
= O

(
n−1/2

)

that is attained for k = 1. Thus, by central limit theorem we have

max
1≤k≤n−1

1√
v(n, k)

1

σn(a)

(n − k)(n − k + 1)

2n2
|Z1n(a)| = OP (1) .
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This along with (37) implies that

(38) max
1≤k≤n−1

1√
v(n, k)

1

σn(a)

∣∣∣∣Z2k(a)−
(n − k)(n − k + 1)

2n2
Z1n(a)

∣∣∣∣

= OP

(√
log logn

)

and properly standardized l. h. s. in (37) has the same limit distribution as the
standardized l. h. s. in (38). Now apply Theorem 3 to show convergence (17).
Proof of convergence (19) is analogous.
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