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Smooth, very smooth and strongly smooth
points in Musielak-Orlicz function spaces
equipped with the Luxemburg norm

H. Hupzik, L. WANG, T. WANG

Abstract. First, we extend the criteria for smooth points of S(Ljs) from [22] to the
whole class of Musielak-Orlicz spaces. Next, we present criteria for very smooth and
strongly smooth points of S(Lpys).
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1. Introduction

Let us start with some notations and definitions. In the whole paper X denotes
a real Banach space and X* denotes its dual space. N, R and Ry stand for the set
of natural numbers, the set of reals and positive reals, respectively. By (T, %, u)
we denote a measure space with p being monotonic and o-finite. The letter M
stands for a Musielak-Orlicz function, i.e. M is a mapping from 7 x R into [0, +00]
satisfying the following conditions:

(i) there is a null set A € ¥ such that for any ¢t € T\ A, M(¢,-) is an Orlicz
function, i.e. M(¢,0) = 0, M(t,-) is continuous at zero and left continuous
on (0,00), M(t,-) is convex and even on R and M (¢,u) — 0o as u — oo,
(ii) for any v € R, M (-, u) is a ¥-measurable function on 7.

Let us denote by L0 = LO(T, %, 1) the space of all (equivalence classes of)
3-measurable functions z : T" — R. Given any Musielak-Orlicz function M, we
define on L% a convex modular oy, by

n@) = [ Mt.a(e) d
and a Musielak-Orlicz space Lj; by

Ly ={z e L°: gpy(Az) < oo for some A > 0}.
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We denote by N the Musielak-Orlicz function complementary to M in the sense
of Young, i.e.
N(t7 U) = Sup{U"U' - M(t7 u)}
u>0

forallu e Rand t € T\ A. We define in Lj; two norms; the Luxemburg norm
[#[|ar = inf{A > 0: opr(x/A) < 1}

and the Amemiya-Orlicz norm

1
I3 = inf £(1+ eas (k).
For simplicity, we write Ly, and LY, in place of (Lyy, || - [lar) and (Las, | 19,),
respectively. Let us denote by K (z) the set of all k& > 0 such that the infimum in
the last formula is attained at k. L, is a Banach space under either of these two
norms (see [2], [15] and in the case of Orlicz spaces also [12], [13], [14] and [17]).

Let p_(t,u) and p(t,u) denote the left and right derivative of M(t,-) at u,
respectively, and let us denote for ¢t € T*

e(t) =sup{u>0:M(t,u) =0}, bt)=sup{u>0:M(tu) < oo},
é(t) =sup{v > 0: N(t,v) =0}, b(t) =sup{v >0: N(t,v) < 0},
Sp={teT:x(t)#0}, Oy={teT:z(t)=0} for zeL° and
Ey(z) =inf{c > 0: gpr(x/c) < 0} for = € Lyy.

We say that M satisfies the Ag-condition (M € Agy for short) if there are a
null set B € ¥, a constant KX > 2 and a nonnegative function h € L% such that
opm(h) < oo and M(t,2u) < KM(t,u) for all uw > h(t) (see [2] and [15]).

It is well known that between various smoothness properties of X and respec-
tive rotundity properties of X* there is an one-side duality. Namely, if X™* is
rotund (weakly locally uniformly rotund) [locally uniformly rotund] then X is
smooth (very smooth) [strongly smooth].

Let us recall these six notions. X is said to be rotund if for any =z € S(X)
(= the unit sphere of X) if y,z € S(X) and 22 =y + 2z, then y =z =2. X is
said to be weakly locally uniformly rotund (locally uniformly rotund) if for any
z € S(X) and (xy) in S(X) such that ||zp + z|| — 2 there holds z, — = weakly
(zn, — x for short), respectively z,, — = strongly, i.e. ||z, — z|| — 0.

X is said to be smooth if for any x € S(X) there is only one support functional
x* at z. Recall that z* € X* is said to be a support functional at x if ||z*|| =1
and z*(z) = ||z||. We denote by Grad(x) the set of all support functionals at x.
X is said to be strongly (very) smooth if it is smooth and for any = € S(X) and
(zn) in S(X) the condition ||z, — x| — 0 implies that z}, — z* strongly (weakly),
where {2*} = Grad(z) and {«},} = Grad(zp) forn =1,2,... .

Smoothness properties of Orlicz spaces and Musielak-Orlicz spaces were con-
sidered in [1], [3]-[5], [7]-[11], [18]-[19] and [22]-[23].
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2. Results

We start with a criterion for smooth points of S(Ljs). Analogous criterion has
been obtained in [22] but only for Musielak-Orlicz functions which are smooth at
zero. Note that smoothness of M at zero is equivalent to the fact that é(t) = 0
for p-a.e. t €T.

Theorem 1. A point x € S(Lpy) is a smooth point if and only if:

(8) Earl@) <1,
(b) p{t € Op : &(t) > 0} =0,
(&) nft € So: p— (L)) < plt,J2(®)])} = 0.

PROOF: Assume without loss of generality that x(¢) > 0 for py-a.e. t € T.

Necessity. The necessity of (a) can be proved in the same way as in [22]. Since
(a) must be true we have that Grad(z) = RGrad(z), where RGrad(z) denotes
the set of all regular, i.e. order continuous functionals. Recall that z* € (Lys)*
is said to be order continuous if z*(xy) — 0 whenever 0 < z, \, 0 and that
every such functional =* is represented by some y € L0 (see [17]). We will prove
that if y € Grad(z), then k(y) # 0, ie. ||ly||% = (1 + on(ky)) for some k > 0.
Otherwise

L= ol = tim 20+ ow (b)) = [ uuOdu= [ o) de

Sy
- / £(t)y(t) dp.
SU

Since z(t) < b(t) p-a.e. in T, we have x(t) = b(t) p-a.e. in Sy.
It follows from &7(z) < 1 that there exists A > 1 such that £;(Az) < oo.
Thus
oo > & (M) > / M(t,  x(t)) dp = M (t, b(t)) du = oo.
Sy Sy
This is a contradiction, which proves that k(y) # 0.

Now, we are ready to prove the necessity of (b). Assume that = is a smooth
point of S(Lys) and (b) is not true. Then Ty = {t € Oy : é(t) > 0} is a set in
S with 44(Tp) > 0. Assume that y € Grad(z) and [|y[|% = £(1 + on(ky)). Take
2 € LY such that 2(t) = y(t) for t ¢ Ty, kz(t) < é(t) and z(t) # y(t) for t € Tp.
Then

0% < 2+ ow(k2) = 21+ [ NGt ky(t) dw) < 2(1+ on (k)

T\Ty k

=~
NN

=lyI% =1

and
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So, Hz||9v = 1 and z € Grad(z). But z # y, whence = is not a smooth point,
a contradiction.

Assume that = € S(Ljys) is a smooth point and (c¢) is not true, then 77 =
{t € Sz : p—(t,x(t)) < p(t,z(t))} has positive measure. We may assume that
0 < u(Th) < w(T). Take y € RGrad(z) with [jy[|% = %(1 + on(ky)) for some
k > 0. It can be proved in the same way as for Orlicz spaces in [2, Theorem 1.78]
that

/ N(t,p—(t,z(t))) du < / N(t,ky(t))duy =k —1 < oc.
T T

Let
p—(t, z(t)) for te S,
n=4, ¢
or te Ox

and yz be a measurable function with yo(t) = p—(¢,z(t)) for t € Sz \ To and
y2(t) € (p=(t,z(t)),p(t,x(t))) for ¢t € Tp and satisfying on(y2) < oo. Then
y1,y2 € L?v. Let 21 = y1/||y1|\9v and z9 = y1/||y2|\9v Then 21 # 29 and
21,29 € S(L?V). Furthermore

1> (o) = () = /T £(t)p—(t, x(t)) dp

[ [

B ﬁ /T(M(t’ (t)) + N(t, p-(t, 2(1)))) du
N
= —(1+on(y)) = ;0(1 +on(wllz) = Izl = 1,
ol ly1llx

whence we conclude that ||21H9V =1 = (z1,21). So, z1 € Grad(z). Similarly,
z9 € Grad(z), which means that z is not a smooth point, a contradiction.

Sufficiency. Let f =y + ¢ € Grad(z), where y and ¢ denote the regular and
the singular part of f, respectively. By condition (a), ¢ = 0 and 1 = [|y||Q =

%(1 + on(ky)) for some k > 0 (see the beginning of the proof of the necessity).
It can be proved in the same way as in [4, Theorem 1.5] for Orlicz spaces that

(1) p—(t,z(t)) < ky(t) < p(t,z(t)) for t € Sy.

Moreover, by ||z|lasr = 1 and &ys(x) < 1, we have gpr(z) = 1. Therefore, the
equality
[ Oy = [ O(e.0) + Nt yte)) d

yields that N (¢, ky(t)) = 0 for t € Oz. By condition (b), y(t) = 0 for t € Oz and
by condition (c), ky(t) = p(t, z(t)) for t € S, i.e. ky is unique. By
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k= lkyl% = lkyxs, I = [p(2())xs, %

we obtain k = L Therefore

Pz (I

p(t,z(t))
y(t) = { IpCoz())xse 1% for t € S,
0 for t €0y,

which means that y is unique and so x is a smooth point, which finishes the proof.
O

Corollary 1. The space L), is smooth if and only if:
(a) M € Ao,
(b) é(t) =0 for uy-a.e. t €T,
(c) p(t,-) is continuous function on R for p-a.e. t € T.

PROOF: This result follows from Theorem 1. We need only to show the necessity
of condition (b) because the rest can be proved in the same way as in [22].
Assume that condition (b) is not satisfied, that is, theset A = {t € T : é(t) > 0}
has positive measure. Then we can easily build x € S(Lj) with u(Oz N A) > 0.
By Theorem 1, x is not a smooth point, which finishes the proof of the necessity
of condition (b). O

In the proof of the next theorem the following result will be useful.

Proposition 1. Let M be a Musielak-Orlicz function and N be its comple-
mentary function in the sense of Young. Let N € Ag, x € S(Lyy), yn € L?v,
k(yn) #0, (n=1,2,...), and (z,yn) — 1 as n — oo. Then for every ¢ > 0 there
is T; € ¥ with pT. < oo such that sup,, on(ynX7\7.) < €-

ProoF: Take T1 C To C ... C T; C Tj41 C ... with puT; < oo for each i € N
and |J;7; = T. We will prove that for any ¢ > 0 there is i € N such that
sup,, ON (YnXx1\7,.) < €. Otherwise, there is € > 0 such that for any i € N there

is n; € N such that oy (yn,x7\7,,.) > €. We may assume that n; — 0o as i — oo
because (n;) is unbounded by the fact that the assumption N € Ag yields that

sup o(YnX7\T,,,) — 0 as i — o0
n€Ny ¢

for any finite subset Ny of N. Choose k; € k(yn,). From &r(z) < 1 it follows that
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there is A > 1 satisfying ops7(Ax) < oo. This yields that for ¢ — oo there holds

1

ki
1
— ([ s Ok O+ [ a0 d)
i JT; T\T;
1 1 1
< 4 (emlaxry) + en(kiynixr,) + s emAaxm) + 5 on (kiynixr\7;))
(2
1 1 1
< E(QM(x) + on (kiyn;) — (1 — X)QN(kimeT\Ti) + X@M()\SCXT\TZ-))
(]
1 1 1
< =@+ on(kiyn,) — (1= Pen (kiynixrvr) + yem Qexnr,)
(]
1 1 1
< Myl = (= e+ soaxpyg) — 1 - (1= Fe,
a contradiction finishing the proof. O

Theorem 2. Let x € Sp,,,. Then the following assertions are equivalent:
(1) « is a strongly smooth point,
(2) «x is a very smooth point,
(3) x is a smooth point and N € A,.

PrOOF: We still assume without loss of generality that x > 0. The implication
(1) = (2) is obvious. Let us prove that (2) = (3). We need only to prove
that (2) = N € Ag. Assume that condition (2) holds and N ¢ Ay. There is
z € LS’V with on(2) < 0o and {n(y — £) =: A > 0, where y defines the unique
support functional for x and k£ > 0 satisfies 1 = ||y||?v = %(1 + on(ky)). Indeed,
if En(y) = 0, we take z € L?V \ EJOV; if £ (y) > 0, we take z = 0. Divide T into
Ty, T} with u(Ty) = u(T;) = “T0 Ty N T] = 0. Lemma 1.67 from [2] is also true
for Musielak-Orlicz spaces (without any change of the proof). Namely, for any
partition {73} ; of T" and any x € L?V, En(z) = max; {n(zxr,). So, we may
assume that {n (y — ) = En((y — Z)xmy)-

Divide Ty into Ty, Tj with u(Tz) = w(Ty) = “F Ty N T) = 0. We may
assume that

z z z

En(y — E) =én((y k)XTl) =én((y k)XTz)'

Continuing this process by induction one can find a sequence (77,)72; of measur-
able sets in T'such that T D71 DT D - DT D ..., u(Ty) = zlnu(T), and

2(t)
p(ty=4 & PorteIn gy
y(t) for te T\ Ty,
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Then

| =

(1+on(kyn)) <

Enl

ol < (1+ o (ky) + / Nt 2(6)) dp)) — ly]% = 1.
Tn

On the other hand

(x,yn) = /T\Tn x(t)y(t) dt —|—/ xz(t)z(t)dt — {z,y) = 1.

n

But

z z

3 _— . — = - — ) = A
v(min fy —vil) = Env((y = 2xg, ) = vy = 3)
Since Theorem 1.68 from [2] holds also for Musielak-Orlicz spaces, that is if (xy,)
is a sequence in LY, then (zn, ) — 0 for any singular functional ¢ € (LQ;)* if
and only if limy, oo & (minj<y, |y;]) = 0 for each subsequence (y;) of (z), we
conclude from the last condition that yn, 4 y weakly. This contradicts the fact
that z is a very smooth point.

(3) = (1). Assume that (3) holds. Since x is a smooth point, by Theorem 1
we conclude that jr(x) < 1 and for y € L?V determining the unique support
functional at z there is k& > 0 such that 1 = |jy||% = %(1 + on(ky)). Moreover,
ky(t) = p(t,z(t)) for t € Sz and y(t) =0 for ¢t € Oy.

Assume that f, = yn + ¢n € S(L};), fn(z) — 1. In order to prove that
Il fn — yll — 0, we consider six steps.

I. Assume that £37(z) <1—6 < 1. Take z € Fyy such that ||z — 2|y < 1—6.
Then

1 fal@) =< &,yn > +¢n(@) < |2llarllyal} + Iénlllz = 2l m
< Nlynll X + I énll(1 = 0) = [| full = Olinll-

Therefore ||¢n| — 0, ||yn||?v — 1 and (z,yn) — 1. Without loss of generality
we assume in the following that ||yn||?v =1forn=1,2,... and {z,yn) — 1.

II. Let us prove that k(yp) # 0 for an infinite number of n € N, i.e. there are
ky > 0 such that

1
lynll%y = 7= (1 + on (knyn))-
n

Otherwise [|y,[% = S yn(t)b(t) dp for infinite number of n. Since &y/(z) < 1,
there is A > 1 such that gj;(A\z) < co. Hence 1 = [jy,[|% = Jrun(®)b(t) dp >
S yn(t)Az(t) dw — X as n — oo, which is a contradiction. So, we may assume in
the following, that k(yy) # 0 for all n € N.
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III. We will prove that

k =supk, < co.
n

Otherwise, we may assume that ky, — oco, whence for A > 1 such that gy (Ax) <
00, we get

1
v [ aOmydn =5 [ a(tun0)dn
1

<3 /Syn b(t)yn(t) dp = %/S lim q(t, v)yn(t) dp

vV—00
Yn

1 . N(t,v) 1 1
=3 ~/Syn lim Tyn(t) dp = th_)néo E(l + on (knyn))

a contradiction. Therefore k < oco.

IV. Let us prove that

) i sup [ N (e b0 | =o.

Otherwise, there is € > 0 such that

lim [sup/ N (t, knyn(t)) d,u] > €.
pE=0| n JE

Given 777 > 0 there is £ € ¥ with uF; < n and ny € N such that
fEl N(t,knyyn, (t)) du > €. By the absolute continuity of integral there is ©y
such that

/ Nt knyn(t)) du < &
A

for any A € ¥ with uA < ©1 and n = 1,2,... ,n;. Take n2 = min(n/2,01).
Then there is Ep € ¥ with puFo < g and ng € N such that fE2 N(t, knoyns (1)) du
> ¢. Obviously, na > nj. Proceeding like that by induction, we can construct a
sequence (1;) of positive numbers with 71 > 29 > 2253 > ... > 2"y, > ...
a sequence (n;) of natural numbers with n; < ng < n3 < ... and a sequence (E;)
in ¥ with pE; < n; such that

/ Nt kn;yn; (1) dp >e (1=1,2,...).
E;
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Hence
1 1
L G = (bl Odu+ 5 [ X0y, 0 dn)
kn; " Jr\E; A JE;
1 1
< k—(QM(fCXT\E ) + on (kniynixr\i;) + yom (AexE,)
1
+ /\QN(kmyanE ))
1 1 1
< k—(QM(x) + on(kn;yn;) — (1 — X)QN(knimeEi) + XQM(A$XEi))
n;
1. ¢ 1l e
[ Aevg) —1—(1— )2,

This is a contradiction, so equality (2) holds.
V. Now, we will prove that
p(ta(t) = p—(La(t)  for te S,

i k t) = ky(t) = [0)
nlm nyn( ) y( ) { 0 for t € O.
From

1 1
0 llynll%— < z,yn >= —(1 + on (knyn)) — k—(% knyn)
n

kn
- é@M(x) + on(kntn) — {2, kntin))
> 2 / (Mt 2(8)) + Nt Fngn () — 2(E)knyn(8)) du
T

it follows that
(3) M(t,z(t)) + N(t, knyn(t)) — z(t)knyn(t) = 0 p-ae. in T.

Notice that p_(¢,x(t)) = p(t,x(t)) for ¢ € Sg. Therefore, by the Young in-
equality, we can easily deduce that kpyn(t) — p(t,x(t)) p-a.e. in S,. Using
condition (b) in Theorem 1, we conclude that y, — 0 py-a.e. in T.

VI. Finally, we will show that ||yn—y||9\, — 0. By Proposition 1, we can assume
that pT' < co. Take an arbitrary € > 0. By N € Ag there exist £ > 0 and a
nonnegative function §y € L! such that

N{(t, §> < EN(t,v) + 8o (t)

for p-a.e. t € T. Take n > 0 such that if £ C T and ,u(E) <, then [ do(t) dp <
1, fE (tky(t)) dp < 2 and [ N(t, kpyn(t)) du < 4 for any n € N (the last
one is possible by (2)).
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Since kpyn — ky p-a.e. in T, there is Ty C T such that u(T \ Tp) < n and
N(t, knyn(t) — ky(t)) — 0 uniformly in Ty. Hence

knyn(t) - ky(t) 1
N, ————=)d —
" (t, 5 )du < 5

for n large enough. Therefore,
knyn(t) — ky(t))
2e

k t) — ky(t
<21+ [ n, Fom®) = ky(®)
To 2e

+1/ N, Envn® g BvOy g
T\To

Vi — kol < 22(1 + /T N(t,

2 € €
1 1
<2(+g+3 [ 3 (N )
0

+ 00(t) + kN (L, y(t)) + do(t)) du)
< 4e

for n large enough, which means that ||kpyn — ky||9\, — 0 as n — 0. On the other

hand &, = ||knyn||?v — ||ky||?v =k as n — oo. Thus ||yn — y||?v — 0 as n — oo,
which completes the proof. ([

Corollary 2. The following are equivalent:

(1) Ljy is strongly smooth,
(2) Ly is very smooth,
(3) Ly is smooth and N € As.

PROOF: It is an immediate consequence of Theorem 2. O
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