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A new proof of weighted weak-type
inequalities for fractional integrals

D. Cruz-URrIBE, SFO

Abstract. We give a new and simpler proof of a two-weight, weak (p,p) inequality for
fractional integrals first proved by Cruz-Uribe and Pérez [4].
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1. Introduction

For 0 < o < n, the fractional integral operator I, is defined by

Iaf(:v)Z/R Ady-

n |z —y|nme

In [4], Cruz-Uribe and Pérez proved a two-weight, weak-type norm inequality
which answered a question posed by Sawyer and Wheeden [9].

Theorem. Given a pair of weights (u,v), p, 1 < p < o0, and o, 0 < a < m,
suppose that for some r > 1 and for all cubes @,

1/rp 1/p’
) a/m (L Td ) (i -0'/p g ) C .
(1.1) Q| (|Q|/Qu x |Q|/QU x <C< o

Then the fractional integral operator I, satisfies the weak (p,p) inequality
n C
(1.2) u({z e R": [Iof(z)| > t}) < 7 Jr |f[Pv de.

Their proof of Theorem 1.1 was fairly complex, and depended on a technical
lemma resembling a good-A inequality. The purpose of this paper is to give
another, more elementary proof. It is based on three weighted norm inequalities
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for the fractional integral operator and the closely related fractional maximal
operator,

Q[/n
M, f(x) = su dy.
f() 591[; ] /Qlfl y

These are stated in Section 2 and the proof of Theorem 1.1 is in Section 3.

Finally, we remark that we believe that condition (1.1) in Theorem 1.1 is not
the best possible. In [4], Cruz-Uribe and Pérez proved an analogue of Theo-
rem 1.1 for singular integrals, and in [3] they sharpened this result by replacing
the local L™ norm on the left-hand side of (1.1) by the smaller Orlicz space norm
I | Log Lyp—1+5, 0 > 0. (A similar condition is sufficient for a strong (p,p)
inequality for fractional integrals. See Pérez [7].) We conjecture that the corre-
sponding weak (p, p) result holds for fractional integrals. For a partial result, see
Cruz-Uribe and Fiorenza [2].

2. Preliminary results

The first result we need is due to Muckenhoupt and Wheeden [6, p. 262].

Theorem 2.1. Given o, 0 < « < n, and a weight w € A, there exists a
constant C, depending only on «, n and the A constant of w, such that for all
functions f,

suptw({z € R" : |Iof(x)| > t}) < Csuptw({x € R"™ : My f(z) > t}).
t>0 t>0

The second result is due to Sawyer [8, p.285]; for a simple proof see [1].

Theorem 2.2. Given o, 0 < a < n, and a weight w, there exists a constant C,
depending only on « and n, such that for all functions f,

w({z e R" : My f(z) > t}) < g/ | fIMaqw dz.
R’!L

The third result is a special case of a theorem due to Pérez [7, p. 668].

Theorem 2.3. Given o, 0 < a < n, r > 1, and a pair of weights (u,v) such that
(1.1) holds, then there exists a constant s, 1 < s < min(n/a,r), and a constant
C such that for all functions f,

(2.1) / (Mas f)P'/50™P' 1P dg < C/ P /5u7' 1P g
n R
PROOF: Given s, 1 < s < min(n/a, ), condition (1.1) is equivalent to

s/p s/r
|Q|sa/n <ﬁ/cj2[v—8/p]p’/sd$) p (rcj[?l/cjg[uS/P]Tp/sdx) pS c

Pérez showed that this implies (2.1), provided that (rp/s)’ < p//s. This is true
for s =1, so by continuity it is true for s > 1 sufficiently small. ]
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3. Proof of Theorem 1.1
The proof requires one lemma.

Lemma 3.1. Givena, 0 < o < n, and s, 1 < s < n/a, then for all non-negative,
locally integrable functions g, My (M (g°)Y/*)(2) < CMeas(g°)(x)Y/®, where M is
the Hardy-Littlewood maximal operator.

PROOF: Our proof is modeled on the proof of a similar result in Garcia-Cuerva
and Rubio de Francia [5, p.158]. It will suffice to show that there exists a con-
stant C such that for any x and any cube ) containing =z,

a/n
|Q||Q| /M (0)/* dy < CMao(g) () 1/°.

Let g = g1 + go, where g1 = gxsg- Then M(g*)(@)/* < M(g)(2)*/* +
M(gg)(x)l/s. Since M is weak (1, 1), by Kolmogorov’s inequality (cf. [5, p. 485]),

a/n 1/8
G | Mtepw ey < ciar (g [ oi)

a/n 1 s /s
< C|Q (m /3@9 dy)

< CMgas(g°)(2)V/5.

Further, M (g )1/5 € A; with a constant independent of g, (see [5, p.158]), s

a/n
G | MWy < ClQI M () )V

There exists a cube P containing x such that

2
w)S—/gsdy-
Pl Jp7?

Since P must intersect R™ \ 3Q, Q C 3P. Therefore,

1 1/s
Q™M (g3)(x)V/* < C|3P|/™ (@ /3 9 dy) < OMas(g°)(x)V/>.

O

We can now prove Theorem 1.1. Fix p, 1 < p < 0o, and a function f € LP(v);
by a standard argument we may assume that f is non-negative, bounded and has
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compact support. For each t > 0, let By = {z € R"™ : I, f(z) > t}. By duality
there exists a function Gy € L¥', |Gty = 1, such that

W(EYYP = [uV/Pxp, [l = / PG da.

Ey

Fix s > 1 as in Theorem 2.3, and let wy = M(us/pr)l/s. Then wt € A1 C Ao,
and the Ao, constant of w; depends only on s. Hence, by Theorems 2.1 and 2.2,
and by Lemma 3.1,

suptu(Et)l/p =supt / uPGy da
t>0 t>0 o
< suptwi(E)
t>0
< Csuptwi({z € R": My f(x) > t})
t>0

< C'sup fMo(wy) da
t>0 JRn

<Csup | fMas(u®/PGE)Y da.
t>0 JR™

Then, by Holder’s inequality and Theorem 2.3,

1/p , , 1/p
suptu(E)/? < Csup ( [ d:c> ( Mas (u®/2G3 )P 1507 I d;v)
t>0 t>0 n Rn

1/p , , 1/p'
< Csup ( / f”vd:v> ( JRGEA /pd:v>
t>0 n n

1/p
= C'sup ( P da:) .
t>0 R
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