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Σ-products and selections of set-valued mappings

Ivailo Shishkov

Abstract. Every lower semi-continuous closed-and-convex valued mapping Φ : X → 2Y ,
where X is a Σ-product of metrizable spaces and Y is a Hilbert space, has a single-valued
continuous selection. This improves an earlier result of the author.
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1. Introduction

In [11] it is proved that every lower semi-continuous closed-and-convex valued

mapping Φ : X → 2Y where X is collectionwise normal, countably paracompact
and pseudoparacompact (i.e. the Dieudonné completion ofX is paracompact) and
Y is a reflexive Banach space, has a single-valued continuous selection. It is easy
to see that, in the above statement, the requirement on X to be collectionwise
normal and countably paracompact is necessary. The pseudoparacompactness
of X is a sufficient but not a necessary condition for such a selection to exist.
Namely, as it is shown in [12], if X is a Σ-product of separable metric spaces (in
particular-real lines) and Y is a Hilbert space, then every lower semi-continuous

closed-and-convex valued mapping Φ : X → 2Y admits a single-valued continuous
selection. In the present paper we prove that the last result remains true in case
X is a Σ-product of arbitrary metric spaces as well. Note that the Σ-product of
uncountably many real lines is known to be collectionwise normal and countably
paracompact but not pseudoparacompact ([7]).

Theorem 1.1. Let X be a Σ-product of metric spaces, Y be a Hilbert space
and Φ : X → 2Y be an l.s.c. closed-and-convex valued mapping. Then Φ has a
single-valued continuous selection.

Note that Theorem 1.1 can be regarded as a new argument in support of the
following

Conjecture 1.2 (M. Choban, V. Gutev, S. Nedev [2]). Every l.s.c. closed-and-

convex valued mapping Φ : X → 2Y , where X is collectionwise normal and
countably paracompact and Y is a Hilbert space, has a single-valued continuous
selection.
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2. Notations and terminology

Let Y be a Banach space. We put Br = {y ∈ Y : ‖y‖ < r}, Dr = {y ∈ Y :
‖y‖ ≤ r} for every r ≥ 0, Bǫ(y) = {z ∈ Y : ‖z − y‖ < ǫ} and Dǫ(y) = {z ∈ Y :
‖z − y‖ ≤ ǫ} for every y ∈ Y and ǫ > 0.

If A is a set, then 2A denotes the set of all nonempty subsets of A. If X and
Y are topological spaces, a set-valued mapping Φ : X → 2Y is called lower semi-
continuous (l.s.c.) if Φ−1(U) = {x ∈ X : Φ(x) ∩ U 6= ∅} is open in X for every
open U ⊂ Y .
A mapping ψ : X → 2Y is called a selection for Φ if ψ(x) ⊂ Φ(x) for every

x ∈ X . A T2-space X is paracompact ([4]) (resp. countably paracompact) if every
open cover (resp. every countable open cover) of X has an open locally finite
refinement. A T1-space is collectionwise normal ([1]) if every discrete family of
its closed subsets can be separated by a disjoint family of open subsets. The
Σ-product (see [3]) of a family of topological spaces {Xs}s∈S with the base point
x = {xs} ∈

∏

s∈S Xs is the subspace

Σ(x) = {y = {ys} : |{s ∈ S : xs 6= ys}| ≤ ℵ0}

of the Tykhonov product
∏

s∈S Xs

3. Proof of Theorem 1.1

Let X = Σ(a) be a Σ-product of metric spaces {Ms}s∈S with a base point
a = {as}s∈S . Since Σ(a) is countably paracompact ([3, Corollary 1]), by [12,
Lemma 4.1], we may suppose, without loss of generality that there exists r > 0
such that Φ(x) ⊂ Br for every x ∈ Σ(a). By E. Michael’s technique [9, the
proof of Theorem 3.2′′], in order to construct a single-valued continuous selection
for Φ it is sufficient to find for every ǫ > 0 a locally finite open cover of Σ(a)
that refines B = {Φ−1(Bǫ(y)) : y ∈ Y }. To this end, we shall construct by
induction a σ-locally finite open cover O of Σ(a) that refines B (Σ(a) is countably
paracompact and hence every σ-locally finite open cover of Σ(a) has a locally
finite open refinement).
Fix ǫ > 0. For every x ∈ Σ(a), denote by f(x) the only point of Φ(x) whose

norm is equal to inf{‖y‖ : y ∈ Φ(x)}.
Following the proof of [12, Theorem 1.1] we put X0 = Σ(a) and ξ0 =

sup{‖f(x)‖ : x ∈ X0}. For every i ∈ N define an l.s.c. Φi
0 : X0 → 2

Y by

Φi
0(x) = cl(Φ(x) ∩Bξ0+1/i), x ∈ X0.

Since Y is a Hilbert space, by [12, Lemma 3.1] there exists i(0) ∈ N such that

(∗(0)) : diam(Φ
i(0)
0 (x)) < ǫ/6 for each x ∈ A0 = X0\Φ

−1(Bξ0−1/i(0)).

Now we apply the construction used in [10]. For every intersection V = Σ(a)∩
∏

s∈S Us, where
∏

s∈S Us is an element of the canonical base V of the product
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∏

s∈S Ms (that is Us is open in Ms for every s ∈ S and Us 6= Ms for no more
than finitely many s ∈ S), put S(V ) = {s ∈ S : Us 6= Ms}. For each x =
{xs} ∈ Σ(a) let {s ∈ S : xs 6= as} = {sx,1, sx,2, . . . }. For every s ∈ S fix a
sequence Us,1,Us,2, . . . of locally finite open covers of Ms such that any element
of Us,i is an union of elements of Us,i+1 and its diameter is less than 1/i. Put
Vi = {V = Σ(a) ∩

∏

s∈S Us : ∅ 6=
∏

s∈S Us ∈ V and Us ∈ Us,i for s ∈ S(V )} for
i = 1, 2, . . . .
Fix a mapping ϕ0 assigning to every couple (V, [x(1), x(2), . . . , x(n)]), where V

is an open subset of A0 which is not covered by finitely many elements of B and
x(1), x(2), . . . , x(n) is a finite (or empty) sequence of points of A0, a point

ϕ0(V, [x(1), x(2), . . . , x(n)]) ∈ V \
n
⋃

i=1

(Φ
i(0)
0 )

−1(Bǫ(f(x(i)))),

(or ϕ0(V ; ∅) ∈ V ).
We denote by L0 the family of all finite sequences V0, V1, . . . , Vn of open subsets

of Σ(a) satisfying the following conditions:

(1) Σ(a) = V0 ⊃ V1 ⊃, . . . ,⊃ Vn and Vi ∈ Vi for i = 1, 2, . . . , n;
(2) Vn ∩A0 6= ∅ and Vi ∩A0 is not covered by finitely many elements of B for

i = 1, 2, . . . , n− 1;
(3) S(Vi) = {sx(k),j : k ≤ i − 1, j ≤ i} for i = 1, 2, . . . , n where x(0) =

ϕ0(A0; ∅) and x(k) = ϕ0(Vk ∩A0, [x(0), x(1), . . . , x(k − 1)]) for
k = 1, 2, . . . , n− 1.

Let U0 be the family of the last elements Vn of those elements of L0 for which
Vn ∩A0 is covered by finitely many elements of B.
Let us verify that U0 covers A0. Suppose that there exists x = {xs} ∈ A0\

⋃

U0
and construct a sequence {Vi}

∞

i=0 of open subsets of Σ(a) and a discrete subset
{x(i)}∞i=0 of A0 in the following manner:
Put V0 = Σ(a) and x(0) = ϕ0(A0; ∅). Take V1 such that x ∈ V1, V1 ∈ V1 and

S(V1) = {sx(0),1}. Obviously V0, V1 is a sequence of L0. Suppose n ∈ N and we

have constructed V0, V1, . . . , Vn and x(0), x(1), . . . , x(n−1) satisfying (1), (2) and
(3) with x ∈ Vn. By assumption x /∈

⋃

U0 and hence Vn ∩ A0 is not covered by
finitely many elements of B. So we put x(n) = ϕ0(Vn ∩A0, [x(0), x(1), . . . , x(n−
1)]) and pick Vn+1 such that x ∈ Vn+1 ⊂ Vn, Vn+1 ∈ Vn+1 and S(Vn+1) =
{sx(k),j : k ≤ n, j ≤ n+ 1}.

It follows, from (∗(0)) and the definition of ϕ0 that, for every x̃ ∈ A0, the set

A0 ∩ (Φ
i(0)
0 )

−1(Bǫ/6(f(x̃))) is a neighborhood of x̃ in A0 which meets no more

than one element of {x(i)}∞i=0, i.e. {x(i)}
∞

i=0 is discrete in A0 and hence in Σ(a).
Observe that if s ∈ S(Vi) for some i ∈ N, then s ∈ S(Vj) for every j ≥ i.
Therefore, since xi ∈ Vi ∈ Vi for every i ∈ N, then limi→∞ x(i)s = xs for every
s ∈

⋃

∞

i=1 S(Vi). In other words {x(i)}
∞

i=0 converges to the point x
′ = {x′s} where

x′s =

{

xs, s ∈
⋃

∞

i=1 S(Vi)

as, s /∈
⋃

∞

i=1 S(Vi).
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This is a contradiction and hence U0 covers A0.
Now let us verify that Un

0 = {Vn : V0, V1, . . . , Vn is an element of L0} is locally

finite in Σ(a) for every n ∈ N. Obviously U00 = {Σ(a)} is locally finite. Suppose

n ∈ N and Uk
0 is locally finite in Σ(a) for every k ≤ n. Let x = {xs} ∈ Σ(a)

be arbitrary. Take a neighborhood T of x in Σ(a) which meets only finitely

many elements of
⋃

{Uk
0 : k = 1, 2, . . . n} and let S

′ =
⋃

{S(Vn+1) : Vn+1 ∈

Un+1
0 , Vn+1 ∩ T 6= ∅}. It is clear from (3), that S(Vn+1) is uniquely determined
by V0, V1, . . . , Vn. Hence, since there are only finitely many elements V0, V1, . . . , Vn

of L0 with T ∩ Vn 6= ∅, S′ is finite. Define a neighborhood O of x in Σ(a) in the
following way:

O = T ∩ (
∏

s∈S

Os) ∩ Σ(a),

where Os = Ms for every s ∈ S\S′ and Os is a neighborhood of xs in Ms which
escapes all but finitely many elements of Us,n+1 for s ∈ S′. Clearly O intersects

only finitely many elements of Un+1
0 . Thus we have actually shown, by induction,

that Un
0 is locally finite in Σ(a) for every n ≥ 0. Since U0 ⊂

⋃

∞

n=0 U
n
0 , U0 is a

σ-locally finite family in Σ(a) which covers A0. By definition, for every V ∈ U0
there exists a finite family B(V ) ⊂ B that covers V ∩ A0. Hence the family
P0 =

⋃

{{V ∩ A0 ∩ B : B ∈ B(V )} : V ∈ U0} is a σ-locally finite open (in A0)
covering of A0 whose elements are contained in the elements of B. Since Σ(a)
is collectionwise normal ([6]) and countably paracompact, by [8], there exists a
σ-locally finite and open (in Σ(a)) family O0 such that P0 = {O ∩A0 : O ∈ O0}.
Without loss of generality, we may assume that every element of O0 is contained
in some element of B.
Now, suppose, for every γ < α < ω1, Xγ , Aγ and Oγ have been constructed

with: Xγ and Aγ are nonvoid closed subsets of Σ(a), Xγ ⊃ Aγ and Oγ is a σ-
locally finite open (in Σ(a)) cover of Aγ whose elements are contained in elements
of B.
If

⋃

(
⋃

γ<α Oγ) = Σ(a), then we merely take O =
⋃

γ<α Oγ . Otherwise put

Xα = Σ(a)\
⋃

(
⋃

γ<α Oγ). As before, let ξα = sup{‖f(x)‖ : x ∈ Xα} and for

every i ∈ N define Φi
α : Xα → 2Y by Φi

α(x) = cl(Φ(x) ∩Bξα+1/i), x ∈ Xα.

We take i(α) ∈ N such that

(∗(α)) diam(Φ
i(α)
α (x)) < ǫ/6 for each x ∈ Aα = Xα\Φ

−1(Bξα−1/i(α)).

In the same way as above we find a σ-locally finite open (in Σ(a)) cover Oα of Aα

such that every element of Oα is contained in some element of B, which completes
the proof.
Note that α < γ < ω1 implies ξγ < ξα. Then we have

⋃

(
⋃

γ<α′ Oγ) = Σ(a) for

some α′ < ω1, otherwise we get a strictly decreasing transfinite sequence of real
numbers {ξγ}γ<ω1 , which is impossible. Therefore O =

⋃

γ<α′ Oγ is a σ-locally

finite open refinement of B.
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