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The property (β) of Orlicz-Bochner sequence spaces

Pawe l Kolwicz

Abstract. A characterization of property (β) of an arbitrary Banach space is given. Next
it is proved that the Orlicz-Bochner sequence space lΦ(X) has the property (β) if and
only if both spaces lΦ and X have it also. In particular the Lebesgue-Bochner sequence
space lp(X) has the property (β) iff X has the property (β). As a corollary we also obtain
a theorem proved directly in [5] which states that in Orlicz sequence spaces equipped
with the Luxemburg norm the property (β), nearly uniform convexity, the drop property
and reflexivity are in pairs equivalent.
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Classification: 46E30, 46E40, 46B20

1. Introduction

Let (X, ‖·‖) be a real Banach space, B(X) and S(X) be the closed unit ball,
unit sphere of X , respectively. For any subset A of X , we denote by conv(A) the
convex hull of A.
The Banach space (X, ‖ · ‖) is uniformly convex (X ∈ (UC) for short), if for

each ǫ > 0 there is δ > 0 such that for x, y ∈ S(X) the inequality ‖x − y‖ > ǫ

implies
∥∥1

2 (x+ y)
∥∥ < 1− δ (see [4]).

Define for any x /∈ B(X) the drop D (x, B(X)) determined by x by

D (x, B(X)) = conv ({x} ∪ B(X)) .

A Banach space X has the drop property (X ∈ (D)) if for every closed set C
disjoint withB(X) there exists an element x ∈ C such thatD (x, B(X))∩C = {x}.
Recall that for any subset C of X , the Kuratowski measure of non-compactness

of C is the infimum α(C) of those ǫ > 0 for which there is a covering of C by a
finite number of sets of diameter less then ǫ. Rolewicz in [20] has proved that X
is uniformly convex iff for any ǫ > 0 there exists δ > 0 such that 1 < ‖x‖ < 1 + δ
implies diam(D(x, B(X))\B(X)) < ǫ. In connection with this he has introduced
in [21] the following property.
A Banach space X has the property (β) (X ∈ (β) for short) if for any ǫ > 0

there exists δ > 0 such that

α (D (x, B(X)) \ B(X)) < ǫ

whenever 1 < ‖x‖ < 1 + δ.
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We say that a sequence {xn} ⊂ X is ǫ-separated for some ǫ > 0 if

sep(xn) = inf {‖xn − xm‖ : n 6= m} > ǫ.

The following characterization of the property (β) is very useful (see [14]):
A Banach space X has the property (β) if and only if for every ǫ > 0 there

exists δ > 0 such that for each element x ∈ B(X) and each sequence (xn) in B(X)
with sep(xn) ≥ ǫ there is an index k for which

∥∥∥∥
x+ xk

2

∥∥∥∥ ≤ 1− δ.

A Banach space is said to be nearly uniformly convex (X ∈ (NUC)) if for every
ǫ > 0 there exists δ ∈ (0, 1) such that for every sequence {xn} ⊆ B(X) with
sep(xn) > ǫ, we have conv({xn}) ∩ (1 − δ)B(X) 6= ∅.
The following implications are true in any Banach space

(UC)⇒ (β)⇒ (NUC)⇒ (D)⇒ (Rfx),

where (Rfx) denotes the reflexivity (see [9], [17] and [21]). Any of them cannot
be reversed in general. However the uniform convexity and the property (β) are
equivalent in Orlicz-Lorentz function spaces and the property (β) and reflexivity
are equivalent in Orlicz sequence spaces (see [5] and [12]).
The Banach space X is said to have uniformly Kadec-Klee property (X ∈

(UKK) for short) if for every ǫ > 0 there exists δ ∈ (0, 1) such that

(UKK) :

(xn) ⊂ B(X)

xn
w
→ x

sep(xn) ≥ ǫ




=⇒ ‖x‖X < 1− δ.

It is known that X ∈ (NUC) iff X ∈ (UKK) and X is reflexive ([9]).
In this paper a characterization of the property (β) of an arbitrary Banach

space is given. This result enables us to consider the property (β) in Orlicz-
Bochner sequence spaces lΦ(X). One of the fundamental problems in these spaces
is the question of whether or not a geometrical property lifts from X to lΦ(X).
Although the answer to such a question is often expected, the proof of such a
response is usually nontrivial. Considerations of that type for various kinds of
convexities for different spaces of Bochner type were done by many authors (see
for instance [1], [2], [3], [6], [8], [13], [18], [19]). We will prove that the Orlicz-
Bochner sequence space lΦ(X) has the property (β) if and only if both spaces lΦ
and X have it also.
Denote by N and R the sets of natural and real numbers, respectively.
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A map Φ : R → [0,∞) is said to be an Orlicz function if Φ is vanishing at 0,
even, convex and not identically equal to zero. Let l0 stand for the space of all
real sequences. By the Orlicz sequence space we mean

lΦ =

{
x ∈ l0 : IΦ(cx) =

∞∑

i=1

Φ (cx(i)) < ∞ for some c > 0

}
.

We endow lΦ with the so called Luxemburg norm defined by

‖x‖Φ = inf
{
ǫ > 0 : IΦ

(x

ǫ

)
≤ 1
}

.

For every Orlicz function Φ we define the complementary function Ψ : R −→
[0,∞) by the formula

Ψ(v) = sup
u>0

{u|v| − Φ(u)}

for every v ∈ R. The complementary function Ψ is also an Orlicz function.
We say that the Orlicz function Φ satisfies the δ2-condition (we write Φ ∈ δ2)

if there exist constants k0 > 2 and u0 > 0 such that

(1) 0 < Φ(u0) < ∞ and Φ(2u) ≤ k0Φ(u)

for every |u| ≤ u0.

Now, let us define the type of spaces to be considered in this paper. For a
real Banach space 〈X, ‖·‖X〉, denote byM(N, X), or just byM(X), the space of
sequences x = (xn) such that xn ∈ X for all n ∈ N. Define onM(X) a modular

ĨΦ(x) by the formula

ĨΦ(x) =

∞∑

i=1

Φ (‖x(i)‖X) .

Let
lΦ(X) =

{
x ∈ M(X) : x0 = (‖x(i)‖X )

∞
i=1 ∈ lΦ

}
.

Then lϕ(X) equipped with the norm ‖x‖ = ‖x0‖Φ becomes a Banach space which
is called the Orlicz-Bochner sequence space.

2. Auxiliary lemmas

Lemma 1. Suppose that Φ ∈ δ2 with some constants u0 and k0 defined in (1).
Then

lim
k→∞

{Φ ((1 + 1/k)u) /Φ (u)} = 1

uniformly for all |u| ≤ u0 (Lemma 1.1 in [7]).
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Lemma 2. If x, y ∈ X \ {0}, then

‖x+ y‖ ≤
1

2
‖x̂+ ŷ‖ (‖x‖+ ‖y‖) +

(
1−
1

2
‖x̂+ ŷ‖

)
|‖x‖ − ‖y‖| ,

where x̂ = x/ ‖x‖ (Lemma 1.1 in [8]).

Lemma 3. If Ψ ∈ δ2, then for every w > 0 with 0 < Φ(w) < ∞ there exist

numbers a = a(w) ∈ (0, 1) and γ = γ(a(w)) ∈ (0, 1) such that

(2) Φ

(
u+ v

2

)
≤
1

2
(1 − γ)(Φ(u) + Φ(v))

for all u ≤ w and v satisfying
∣∣ v
u

∣∣ ≤ a.

Proof: We will apply some methods from Lemma 1.1 in [3]. Let w > 0 satisfy
0 < Φ(w) < ∞. It is well known that

lim
v→∞

Ψ(v)

v
= sup {u > 0 : Φ(u) < ∞} .

Hence there exists v0 = v0(w) such that 0 < Ψ(v0) < ∞ and for every c ∈ (1, 2)
we get

Φ
( c

2
u
)
= sup

v>0

{ c

2
|u| v −Ψ(v)

}
= sup

0<v≤v0

{ c

2
|u| v −Ψ(v)

}

for every u ≤ w. On the other hand, by Ψ ∈ δ2, we obtain that there exists a
number k = k(v0) such that Ψ(2v) ≤ kΨ(v) for every |v| ≤ v0. Then, applying
Lemma 1, we conclude that there exists a number ξ ∈ (1, 2) such that Ψ(ξ2v) ≤
2ξΨ(v) for every |v| ≤ v0. Hence

Φ

(
ξ

2
u

)
= sup

v≥0

{
ξ

2
|u|v −Ψ(v)

}
= sup

0<v≤v0

{
ξ

2
|u|v −Ψ(v)

}

≤ sup
0<v≤v0

{
ξ

2
|u| v −

1

2ξ
Ψ
(
ξ2v
)}

≤
1

2ξ
Φ(u)

for every u ≤ w. Then the proof can be easily finished (see [3]). �

Lemma 4. Let Φ ∈ δ2. The following assertions are true:

(a) ‖xn‖ = 1 iff ĨΦ(xn) = 1;

(b) for every sequence (xn) ∈ lϕ(X) we have ‖xn‖ → 0 iff ĨΦ(xn)→ 0;

(c) for every p ∈ (0, 1) there exists q ∈ (0, 1) such that the inequality ĨΦ(x) ≤
1− p implies ‖x‖ ≤ 1− q.

Proof: (a) It was shown in [11].

(b) It is known that ‖xn‖ → 0 iff ĨΦ(ηxn)→ 0 for any η > 0. Then, in view of
δ2-condition, one can complete the proof.

(c) The statement in the case X = R was proved in [10]. For an arbitrary
Banach space the proof is similar. �
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3. Results

Theorem 1. A Banach space X has the property (β) if and only if for every
ǫ0 > 0 there exists δ0 > 0 such that for each element x ∈ X\{0} and each sequence

(xn) in X\{0} with sep
(

xn

‖xn‖X

)
≥ ǫ0 there is an index k for which

∥∥∥∥
x+ xk

2

∥∥∥∥
X

≤
1

2
(‖x‖X + ‖xk‖X)

(
1−
2δ0min{‖x‖X , ‖xk‖X}

‖x‖X + ‖xk‖X

)
.

Proof: Necessity. Take ǫ0 > 0 and x ∈ X\{0}. Let the sequence (xn) in

X\{0} be such that sep
(

xn

‖xn‖X

)
≥ ǫ0. Define y = x

‖x‖X
and yn =

xn

‖xn‖X
. Then

y, yn ∈ B(X) and sep(yn) ≥ ǫ0. By the property (β) of X there exist a number

δ = δ(ǫ0) an index k such that
∥∥∥y+yk

2

∥∥∥
X

≤ 1− δ. Let δ0 = δ. If ‖x‖X ≥ ‖xk‖X ,

then

1− δ0 ≥
1

2

∥∥∥∥
x

‖x‖X

+
xk

‖xk‖X

∥∥∥∥
X

=

∥∥∥∥
x+ xk

2 ‖xk‖X

−
x

2

(
1

‖xk‖X

−
1

‖x‖X

)∥∥∥∥
X

≥

∥∥∥∥
x+ xk

2 ‖xk‖X

∥∥∥∥
X

−
∥∥∥x

2

∥∥∥
X

∣∣∣∣
1

‖xk‖X

−
1

‖x‖X

∣∣∣∣ .

Hence a simple computation yields
∥∥∥∥

x+ xk

2

∥∥∥∥
X

≤
1

2
(‖x‖X + ‖xk‖X)

(
1−
2δ0min {‖x‖X , ‖xk‖X}

‖x‖X + ‖xk‖X

)
.

If ‖x‖X < ‖xk‖X , then the proof is analogous.

Sufficiency. Let ǫ > 0 and x ∈ B(X). Take a sequence (xn) in B(X)
with sep(xn) ≥ ǫ. Passing to subsequence, if necessary, we may assume that
‖xn‖X → b, b ∈ [ǫ/2, 1] and ‖xn‖X ≥ ǫ/4 for every n ∈ N. Then, applying
Lemma 2, we conclude that there exist a number ǫ0 = ǫ0(ǫ) > 0 and a subsequence

(xnj )
∞
j=1 ⊂ (xn)

∞
n=1 such that sep

(
xnj

‖xnj
‖X

)
≥ ǫ0. Consequently

∥∥∥∥
x+ xk

2

∥∥∥∥
X

≤
1

2
(‖x‖X + ‖xk‖X)

(
1−
2δ0min {‖x‖X , ‖xk‖X}

‖x‖X + ‖xk‖X

)

for some k ∈ (nj)
∞
j=1. If ‖x‖X < 1/2, then

∥∥∥x+xk
2

∥∥∥
X

≤ 3
4 = 1 −

1
4 . Otherwise,

denoting a = min{1/2, ǫ/4}, we get

min {‖x‖X , ‖xk‖X}

‖x‖X + ‖xk‖X

=

(
1 +
max {‖x‖X , ‖xk‖X}

min {‖x‖X , ‖xk‖X}

)−1

≥
1

1 + 1
a

=
a

1 + a
.

Hence
∥∥∥x+xk

2

∥∥∥
X

≤ 1− 2δ0a
1+a . Taking δ(ǫ) = min

{
2δ0a
1+a , 1

4

}
we can finish the proof.

�
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Theorem 2. The following statements are equivalent:

(a) lΦ(µ, X) has the property (β);
(b) both X and lΦ have the property (β);
(c) X has the property (β) and lΦ is reflexive;
(d) X has the property (β), Φ ∈ δ2 and Ψ ∈ δ2.

Proof: (a) ⇒ (b). Since the spaces lΦ and X are embedded isometrically into
lΦ(X) and the property (β) is inherited by subspaces, lΦ and X have the prop-
erty (β).

(b) ⇒ (c). The property (β) implies reflexivity.

(c) ⇒ (d). By the reflexivity of lΦ we conclude that Φ ∈ δ2 and Ψ ∈ δ2.

(d) ⇒ (a). Assume that X has the property (β), Φ ∈ δ2 and Ψ ∈ δ2. Let
ǫ> 0 and x ∈ S(lΦ(X)). Take a sequence (xn) in S(lΦ(X)) with sep(xn) ≥ ǫ. By
Lemma 4(b) we get that there exists a number σ = σ(ǫ) ∈ (0, 1) such that

(3) inf
n 6=m

ĨΦ (xn − xm) ≥ σ.

Denote bΦ = sup{u > 0 : Φ(u) < ∞}. Let w0 = bΦ if Φ (bΦ) < 1, otherwise
w0 = Φ

−1(1). In view of δ2-condition there exists a number k > 0 such that

(4) Φ (2u) ≤ kΦ (u)

for every |u| ≤ w0. Take numbers a and γ from Lemma 3 for the number w = w0.
Let l = 1/a. Then there exists a number kl such that Φ (lu) ≤ klΦ (u) for every
|u| ≤ w0. Consequently

(5) Φ (au) ≥ βΦ (u)

for every |u| ≤ w0/a, where β = 1/kl. Take a number c > 0 satisfying

(6) cǫ < 3βσ/8k.

For every sequence (yn)
∞
n=1 ⊂ (xn)

∞
n=1 define the sets:

A(yn) =

{
i ∈ N :

min {‖x(i)‖X , ‖yn(i)‖X}

max {‖x(i)‖X , ‖yn(i)‖X}
≥ a for every n ∈ N

}
,

B(yn) = N \ A =

{
i ∈ N :

min {‖x(i)‖X , ‖yn(i)‖X}

max {‖x(i)‖X , ‖yn(i)‖X}
< a for some n ∈ N

}
.

Note that if (xnk
)∞k=1 ⊂ (xn)

∞
n=1, then A(xnk

) ⊃ A(xn) and B(xnk
) ⊂ B(xn).

Moreover for every sequence (yn)
∞
n=1 ⊂ (xn)

∞
n=1 let

M(yn)(i) =

{
n ∈ N :

min {‖x(i)‖X , ‖yn(i)‖X}

max {‖x(i)‖X , ‖yn(i)‖X}
< a

}
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for every i ∈ N and

I1,(yn) =
{
i ∈ N : cardM(yn)(i) < ∞

}
and I2,(yn) = N \ I1.

We divide the proof into two parts.

I. Assume that
ĨΦ

(
xχB(xn)

)
=

∑

i∈B(xn)

Φ (‖x(i)‖X) ≥ cǫ.

We will denote A(xn) = A, B(xn) = B,M(xn)(i) =M(i) for every i ∈ N, I1,(xn) =

I1, and I2,(xn) = I2 for short.

1. Suppose that

(7) ĨΦ

(
xχI2

)
≥ cǫ.

We consider two cases:

a) Assume that there exists a subset I21 ⊂ I2 such that ĨΦ

(
xχI21

)
≥ cǫ/2 and⋂

i∈I21
M(i) 6= ∅. Consequently there exists n0 ∈ N such that n0 ∈

⋂
i∈I21

M(i).
Then, by Lemma 3, we get

∑

i∈I21

Φ

(∥∥∥∥
x(i) + xn0(i)

2

∥∥∥∥
X

)
≤
∑

i∈I21

1

2
(1− γ)

(
Φ (‖x(i)‖X ) + Φ

(
‖xn0(i)‖X

))
.

Denote p1 =
γcǫ
4 ∈ (0, 1). Thus

ĨΦ

(
x+ xn0

2

)
≤ 1−

γ

2
ĨΦ

(
xχI21

)
≤ 1− p1.

Finally, by Lemma 4(c), we get
∥∥x+xn0

2

∥∥ ≤ 1− q1, where q1 ∈ (0, 1) depends only
on p1.

b) Assume that for every subset I ⊂ I2 we have

(8) ĨΦ (xχI) < cǫ/2 or
⋂

i∈I

M(i) = ∅.

Define
J1 =

{
i ∈ I2 : cardM

′

(i) < ∞
}
and J2 = I2 \ J1,

where

M
′

(i) =M
′

(xn)(i) =

{
n ∈ N :

min {‖x(i)‖X , ‖xn(i)‖X}

max {‖x(i)‖X , ‖xn(i)‖X}
≥ a

}
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for every i ∈ N. If ĨΦ(xχJ1) ≥ cǫ/2, then there exists a subset J11 ⊂ J1 sat-

isfying card J11 < ∞ and ĨΦ

(
xχJ11

)
≥ cǫ/4. This case is analogous to 1.a).

Hence, in view of (7), we conclude that ĨΦ

(
xχJ2

)
≥ cǫ/2. Then, by (8), we

get
⋂

i∈J2
M(i) = ∅ and consequently

⋃
i∈J2

M
′

(i) = N. For every i ∈ J2 we

have cardM(i) = ∞ and cardM
′

(i) = ∞. Take i1 ∈ J2. Let (xnk
)∞k=1 be

a subsequence of (xn)
∞
n=1 such that nk ∈ M

′

(i1) for every k ∈ N. We obtain
i1 ∈ A(xnk

). Hence A(xnk
) ⊃ A(xn), B(xnk

) ⊂ B(xn) and M(xnk
)(i) ⊂ M(xn)(i)

for every i ∈ N. Furthermore I2,(xnk
) ⊂ I2,(xn). Thus after a finite number of

steps we get a subsequence which satisfies condition II.

2. Suppose that

ĨΦ

(
xχI2

)
< cǫ.

Hence ĨΦ

(
xχI1

)
> 1 − cǫ. We may assume that card I1 < ∞ and ĨΦ

(
xχI1

)
≥

1 − cǫ. Take i1 ∈ I1. We have cardM(i1) < ∞, so there exists a subsequence
(xnk
)∞k=1 ⊂ (xn)

∞
n=1 such that

min
{
‖x(i1)‖X , ‖xnk

(i1)‖X

}

max
{
‖x(i1)‖X , ‖xnk

(i1)‖X

} ≥ a

for every k ∈ N. For i2 ∈ I1 we can find a subsequence (xnkj
)∞j=1 ⊂ (xnk

)∞k=1

such that
min

{
‖x(i2)‖X ,

∥∥∥xnkj
(i2)

∥∥∥
X

}

max
{
‖x(i2)‖X ,

∥∥∥xnkj
(i2)

∥∥∥
X

} ≥ a

for every j ∈ N. In such a way we construct a sequence (zn)
∞
n=1 ⊂ (xn)

∞
n=1

satisfying
min {‖x(i)‖X , ‖zn(i)‖X}

max {‖x(i)‖X , ‖zn(i)‖X}
≥ a

for every n ∈ N and i ∈ I1. But ĨΦ

(
xχI1

)
≥ 1 − cǫ and I1 ⊂ A(zn), so this

situation is considered in case II.

II. Suppose that

(9) ĨΦ

(
xχA(xnk

)

)
=

∑

i∈A(xnk
)

Φ (‖x(i)‖X ) > 1− cǫ

for some subsequence (xnk
)∞k=1 ⊂ (xn)

∞
n=1. We may assume that card A(xnk

) <

∞ and still ĨΦ

(
xχA(xnk

)

)
≥ 1 − cǫ. Denote for simplicity (xnk

) by (xn). We

divide this case into two parts.
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a) Suppose that there exists a subsequence (xnk
)∞k=1 ⊂ (xn)

∞
n=1 such that

(10) ĨΦ

(
2xnk

χB
(xn)

)
≥ σ/2

for every k ∈ N. Denote for short B(xn) = B. Define Bk = {i ∈ B : nk ∈ M(i)}.

Suppose that for every k ∈ N we have Bk = ∅. Then

min
{
‖x(i)‖X , ‖xnk

(i)‖X

}

max
{
‖x(i)‖X , ‖xnk

(i)‖X

} ≥ a

for every i ∈ B and k ∈ N. Hence A(xnk
) = N and this situation is considered in

case II.b). Thus we may assume that there exists k0 ∈ N such that Bk0 6= ∅. We
will prove that

(11) ĨΦ

(
2xnk0

χBk0

)
≥ σ/8.

If B \ Bk0 = ∅, then Bk0 = B and (11) holds trivially. Let B \ Bk0 6= ∅. Suppose

conversely that ĨΦ

(
2xnk0

χBk0

)
< σ/8. Then, in view of (4) and (10), we get

ĨΦ

(
xnk0

χB\Bk0

)
> 3σ/8k. Moreover

B \ Bk0 =



i ∈ B :

min
{
‖x(i)‖X ,

∥∥∥xnk0
(i)
∥∥∥

X

}

max
{
‖x(i)‖X ,

∥∥∥xnk0
(i)
∥∥∥

X

} ≥ a



 .

Consequently, by (5) and (9), we obtain

cǫ ≥ ĨΦ (xχB) ≥ ĨΦ

(
xχB\Bk0

)
≥ ĨΦ

(
axnk0

χB\Bk0

)

≥ βĨΦ

(
xnk0

χB\Bk0

)
≥
3βσ

8k
,

but this is a contradiction with (6), so (11) is proved. On the other hand, by
Lemma 3, we get

∑

i∈Bk0

Φ

(∥∥∥∥∥
x(i) + xnk0

(i)

2

∥∥∥∥∥
X

)

≤
∑

i∈Bk0

1

2
(1− γ)

(
Φ (‖x(i)‖X) + Φ

(∥∥∥xnk0
(i)
∥∥∥

X

))
.

Hence

ĨΦ

(
x+ xnk0

2

)
≤ 1−

γ

2
ĨΦ

(
xnk0

χBk0

)
≤ 1− p2,
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where p2 =
γσ
16k . Finally, by Lemma 4(c), we conclude

∥∥∥
x+xnk0

2

∥∥∥ ≤ 1− q2, where

q2 ∈ (0, 1) depends only on p2.

b) Assume that there exists a subsequence (xnk
)∞k=1 ⊂ (xn)

∞
n=1 such that

(12) ĨΦ

(
2xnk

χB(xnk
)

)
< σ/2

for every k ∈ N. Denote still this subsequence (xnk
) by (xn), A(xnk

) = A and

B(xnk
) = B. We will show that

(13) inf
n 6=m

ĨΦ ((xn − xm)χA) ≥ σ/2.

Indeed, if not, then, by (3) and (12), for some n 6= m we would get

σ ≤ ĨΦ (xn − xm) = ĨΦ ((xn − xm)χA) + ĨΦ ((xn − xm)χB)

<
σ

2
+
1

2
ĨΦ (2xnχB) +

1

2
ĨΦ (2xmχB) < σ,

a contradiction, so (13) is true. Take λ ∈ R such that

(14) 0 < λ < σ/8.

For every n 6= m there exists i0 ∈ A satisfying ‖xn(i0)− xm(i0)‖X ≥ λ ‖x(i0)‖X .

Indeed, if not, then σ
2 ≤ ĨΦ ((xn − xm)χA) < λ for some n 6= m. But this is

a contradiction with (14). Moreover, we will prove that the following condition
holds:

(+) there exist a subset A0 ⊂ A and a subsequence (zn) ⊂ (xn) such that

‖zn(i)− zm(i)‖X ≥ λ ‖x(i)‖X for all n 6= m, i ∈ A0 and

‖zn(i)− zm(i)‖X < λ ‖x(i)‖X for every n 6= m and i ∈ A \ A0.

Denote by FA the family of all nonempty subsets of the set A. We have
card A < ∞. Hence card FA < ∞.

1. Consider the element x1 and the sequence (xn)
∞
n=2. Then there exist a

subsequence
(
x

(1)
n

)∞
n=1

⊂ (xn)
∞
n=2 and a subset A1 ∈ FA, such that

∥∥∥x1(i)− x
(1)
n (i)

∥∥∥
X

≥ λ ‖x(i)‖X for every n ∈ N, i ∈ A1 and

∥∥∥x1(i)− x
(1)
n (i)

∥∥∥
X

< λ ‖x(i)‖X for every i ∈ A \ A1 and n ∈ N.
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Denote y
(1)
1 = x1 and y

(1)
n+1 = x

(1)
n for every n ∈ N.

2. Consider the element x
(1)
1 and the sequence

(
x

(1)
n

)∞
n=2
. Then there exist a

subsequence
(
x

(2)
n

)∞
n=1

⊂
(
x

(1)
n

)∞
n=2
and a subset A2 ∈ FA such that

∥∥∥x(1)
1 (i)− x

(2)
n (i)

∥∥∥
X

≥ λ ‖x(i)‖X for every n ∈ N, i ∈ A2 and

∥∥∥x(1)
1 (i)− x

(2)
n (i)

∥∥∥
X

< λ ‖x(i)‖X for every i ∈ A \ A2 and n ∈ N.

Denote y
(2)
1 = x

(1)
1 and y

(2)
n+1 = x

(2)
n for every n ∈ N. Taking the next steps we

conclude that there exists a set A0 ∈ FA, a sequence (jk)
∞
k=1 of natural numbers

and a sequence of subsequences
(
y

(jk)
n

)∞
n=1
, k = 1, 2, . . . such that

(
y

(j1)
n

)∞
n=1

⊃
(
y

(j2)
n

)∞
n=1

⊃ . . .

and for every k ∈ N we get
∥∥∥y(jk)

1 (i)− y
(jk)
n (i)

∥∥∥
X

≥ λ ‖x(i)‖X for every n ∈ N, n ≥ 2, i ∈ A0 and

∥∥∥y(jk)
1 (i)− y

(jk)
n (i)

∥∥∥
X

< λ ‖x(i)‖X for every n ∈ N, n ≥ 2, i ∈ A \ A0.

Define zn = y
(jn)
1 for every n ∈ N. In such a way we have constructed the

sequence (zn)
∞
n=1 satisfying the condition (+). Denote this subsequence still by

(xn). Furthermore, we will prove that

(15) ĨΦ

(
2xnχA0

)
≥ σ/4

for every n∈N except at most two elements. Suppose conversely that ĨΦ

(
2xnχA0

)

< σ/4 for n ∈ {n1, n2}. By condition (+) we obtain ‖xn1(i)− xn2(i)‖X <
λ ‖x(i)‖X for every i ∈ A \ A0. Hence, by (13) and (14), we get

σ

2
≤ ĨΦ ((xn1 − xn2)χA) = ĨΦ

(
(xn1 − xn2)χA0

)
+ ĨΦ

(
(xn1 − xn2)χA\A0

)

<
1

2
ĨΦ

(
2xn1χA0

)
+
1

2
ĨΦ

(
2xn2χA0

)
+ λ <

3σ

8
,

which is a contradiction.
Note that ‖x(i)‖X > 0 and ‖xn(i)‖X > 0 for every i ∈ A and n ∈ N. For every

i ∈ A0 define the sequence

(yn(i)) =

(
xn(i)

‖x(i)‖X

)∞

n=1

⊂ X.
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By condition (+) we conclude that for every i ∈ A0 we have sep {yn(i)}X ≥ λ.
Moreover ‖yn(i)‖X ∈ [a, 1/a] for every n ∈ N and i ∈ A. Let i1 ∈ A0. Passing
to a subsequence if necessary, we may assume that limn→∞ ‖yn(i1)‖X = y1 ∈
[a, 1/a]. Furthermore, applying Lemma 2, we conclude that there exist a number
λ1 = λ1(λ, y1) and a subsequence (ynk

)∞k=1 of (yn)
∞
n=1 such that

sep
{
ynk
(i1)/ ‖ynk

(i1)‖X

}
X

≥ λ1.

Moreover, the function λ1(λ, ·) is nonincreasing. Let λ0 = λ1(λ, 1/a). Then

sep
{
ynk
(i1)/ ‖ynk

(i1)‖X

}
X

≥ λ0.

Take i2 ∈ A0 and consider a sequence (ynk
(i2))

∞
k=1. Similarly we deduce that

there exists a subsequence (ynkj
)∞j=1 ⊂ (ynk

)∞k=1 such that

sep
{
ynkj
(i2)/

∥∥∥ynkj
(i2)

∥∥∥
X

}
X

≥ λ0.

Because card A < ∞, so in such a way we can find a sequence (vn)
∞
n=1 ⊂ (yn)

∞
n=1

satisfying
sep {vn(i)/ ‖vn(i)‖X}X ≥ λ0

for every i ∈ A0. Denote still this subsequence by (yn). But

sep {yn(i)/ ‖yn(i)‖X}X = sep {xn(i)/ ‖xn(i)‖X}X .

Basing on Theorem 1 take a number δ0 = δ0(λ0). For every i ∈ A0 we consider an

element x(i) ∈ X\{0} and a sequence (xn(i)) in X\{0} with sep
(

xn(i)
‖xn(i)‖X

)
≥ λ0.

Hence there exists a number n0 = n0(i) ∈ N such that

(16)

∥∥∥∥
x(i) + xn0(i)

2

∥∥∥∥
X

≤
‖x(i)‖X + ‖xn0(i)‖X

2

(
1−
2δ0min

{
‖x(i)‖X , ‖xn0(i)‖X

}

‖x(i)‖X + ‖xn0(i)‖X

)
.

For every i ∈ A0 and every sequence (un(i))
∞
n=1 ⊂ (xn(i))

∞
n=1 ⊂ X , define

N (i, (un(i))) = {n = n(i) ∈ N : x(i), un(i) satisfies (16)} .

Let i1 ∈ A0. The property (β) of X implies that cardN (i1, (xn(i1))) = ∞.
Thus we can find in X a subsequence (xnk

(i1))
∞
k=1 ⊂ (xn(i1))

∞
n=1 such that

x(i1), xnk
(i1) satisfies the inequality (16) for every k ∈ N. Consider the sequence

(xnk
(i2))

∞
k=1. Similarly cardN (i2, (xnk

(i2))) = ∞. Consequently there exists a

subsequence
(
xnkj
(i2)

)∞
j=1

⊂ (xnk
(i2))

∞
k=1 such that x(i2), xnkj

(i2) satisfies the
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inequality (16) for every j ∈ N. After a finite number of steps we may construct in
lΦ(X) a subsequence (xm)

∞
m=1 ⊂ (xn)

∞
n=1 such that for every i ∈ A0, x(i), xm(i)

satisfies the inequality (16) for every m ∈ N. Because of the fact that

min {‖x(i)‖X , ‖xm(i)‖X}

max {‖x(i)‖X , ‖xm(i)‖X}
≥ a for every m ∈ N and i ∈ A

we obtain
∥∥∥∥

x(i) + xm(i)

2

∥∥∥∥
X

≤
1

2
(‖x(i)‖X + ‖xm(i)‖X) (1− α) ,

for every m ∈ N and i ∈ A0, where α = 2δ0a
1+a . Then

∑

i∈A0

Φ

(∥∥∥∥
x(i) + xm(i)

2

∥∥∥∥
X

)
≤
∑

i∈A0

1

2
(1− α) (Φ (‖x(i)‖X ) + Φ (‖xm(i)‖X))

for every m ∈ N. Applying (15), it is easy to finish the proof in the same way as
in the case II.a). �

Remark. It is worth to mention that the property (β) does not lift from X into
LΦ (X) in the case when LΦ is a function Orlicz space. It is enough to consider
the Lebesgue-Bochner space Lp(µ, X) when 1 < p < ∞ and µ is the Lebesgue
measure on [0, 1]. Then if X is not uniformly convex, then Lp(µ, X) has not
even the uniformly Kadec Klee property (Theorem 3.4.9 in [16]). Moreover, if
LΦ(X) ∈ (β), then obviously LΦ ∈ (β) and X ∈ (β). But LΦ ∈ (β) iff LΦ ∈
(UC) (see [5]). If we additionally assume that X ∈ (UC), then LΦ(X) ∈ (UC)
(Theorem 3.4.3 in [16]).

As an immediate consequence of Theorem 2, we get the following characteri-
zation of the property (β) in Orlicz sequence spaces with the Luxemburg norm
proved directly in [5].

Corollary 1. Let Φ be an Orlicz function. The following statements are equiv-
alent:

(a) lΦ has the property (β);
(b) lΦ is (NUC);
(c) lΦ has the property (D);
(d) Φ and Ψ satisfy the δ2-condition, i.e. lΦ is reflexive.

Proof: It is enough to apply Theorem 2 with X = R which is uniformly convex,
so it has also the property (β). �

Corollary 2. The Lebesgue-Bochner sequence space lp(X) (1 < p < ∞) has
the property (β) iff X has the property (β).

Proof: The sequence space lp is an Orlicz sequence space generated by the Orlicz
function Φ(u) = |u|p satisfying all the assumptions of Theorem 2. �
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