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On Kelvin type transformation for Weinstein operator

MARTINA SIMUNKOVA

Abstract. The note develops results from [5] where an invariance under the Mobius
transform mapping the upper halfplane onto itself of the Weinstein operator Wy :=
A+ ﬁ% on R™ is proved. In this note there is shown that in the cases k # 0,
k # 2 no other transforms of this kind exist and for case k = 2, all such transforms are
described.
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1. Introduction

It is well known from last century that the Kelvin transformation for functions

of n real variables )
T
(10) (@) = oy ()
]2 \ |2

transforms a harmonic function v to a harmonic function Ku. Another trans-
formation of this property is changing variables of a function w by a similarity,
i.e.

(Su) () :=u(rRz + a)

where r is a positive real number, R is an orthonormal matrix and a € R™ is a
vector. Transformations K and S generate the group of transformations

1) (Tw) (z) = se(x) =220 (M (2)),

where M is a Mébius transformation with dilatation factor s, i.e. s(x) is such
a positive real number that the Jacobian matrix M’(x) divided by s(z) is an
orthonormal matrix. It can be computed from the coordinates of the mapping
M = (My,...,My) as

(2)
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for an arbitrary [ =1,...,n.
O.D. Kellogg shows in his monograph [1] that no further transformation of the

type
(Tu) (2) = p(z)u (¥(z)),

where ¢ is a positive function and ¥ a bijection, which preserves harmonicity

exists. Kellogg considers the case n = 3 only, but it is also valid in the case n > 3.
A similar problem for caloric functions is solved by H. Leutwiler in [2]. The

role of the Kelvin transformation is played by the Appell transformation. The

problem for Kolmogorov and Kolmogorov type operator is solved in [3], [4].
This paper deals with the Weinstein operator

n 2
o0“u k Ou

i=1

where k is an arbitrary real number. In [5] is shown that for this operator the
transformations (1) have the form

(Tw) (z) := s(z) " TE=2/ 2y (M (x))

and they preserve the solution of the Weinstein operator provided that M is a
Mébius transformation which maps the halfspace R" = {(z1,...,2) € R", 2, >
0} onto R’}. We show in this paper that in cases k # 0,2, n > 3 no else transfor-
mation of this type exists. Further we prove that in the case k = 2 the bijection
M can be an arbitrary Mobius transformation and (1) has the form

(Tu) (z) := Mn—(x)%(ac)("_z)ﬂu (M(x)) .

In

Note that the condition M,, = xy, ¢ is equivalent to the invariance of the halfspace
R under transformations M and M -1

2. Equations describing W-morphisms

In this section we give the definition of a W-morphism and equivalent con-
ditions which describe it. First we introduce some notation. Let R} be as
above, U,V C R} domains, ¥ : U — V a bijection, ¢ : U — (0,00) a posi-
tive function and W the Weinstein operator with k& € R. The transformation
T :C?(V) — C?(U) defined by Tu := - (w0 ¥) is called a W-morphism provided
that W(Tw) = 0 on U whenever W(u) =0 on V.

Theorem. Let n > 2, W,T,p € C2(U), ¥ = (¢1,...,¢n) € (C2(U))", U,V be
as above. Then the following conditions are equivalent:

1. T is a W-morphism;
2. T maps every polynomial
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1,2y, ,’El.%'p,l'% —(k+ 1)5612, 3ZC%$1 —(k+ 1)56?,

for ,p=1,...,n—1, 1
3y, — 6(k + 3)apaf + (k+1)(k + 3)a} }OT p=1,...n=1,1#p

to a solution of the equation W (-) = 0;
3. The functions p,v1, ... ,¥y satisfy on U the equations:

3) W(p) =0,

(4) Vi - Vip; =0, for i,j=1,....n, i #j,

(5) V]| = V]| for i,j=1,...,n,
k|| V||

(6) oW () + 2V - vy = RVl 5

1/} m»
n

here §;, is the Kronecker delta equal to 1 for i = n and to 0 for i # n.
Note that V' C R"} and hence ¢, > 0 on U;
4. There exists a function > on U such that

™) W(Tu) = =2 - (W(u) o 0)
for every u € C3(V).

PrOOF: We show that 1 =2=3=4=1.

To prove 1 = 2 it is enough to check that all considered polynomials are
solutions of the Weinstein operator. We omit it.

Now we prove 2 = 3: the equation (3) is a straightforward consequence of
W (1) = 0. To prove the other equations we will use the following identities which
are valid for all functions u,v, vy, vy € C2(U)

(8) W(uv) =u W(v) + oW (u)+2Vu - Vo,

(9) W (™) = mo™ W (wv) — (m — D)o™W (u) + m(m — 1)uo™ 2| Vo2,
(10) W (uvivg) = vy W (uvg) + vaW (uvy) — vivaW(u) + 2uVoy - Voa.

In the sequel we consider indexes I,p = 1,....,n—1, ]l #pandi = 1,...,n.
Substituting v = ¢, v1 = ¥y, va = ¥ to (10) and using W(p) = W(pyy) =
W (pp) = W (eyibp) = 0, we obtain ¢V - Vip, = 0 which, due to the positivity

of ¢, gives (4) for I,p # n. Now we claim to prove Vi - Vo, = 0 for | # n.
Condition 2 in the theorem gives

(11) W(py2) = (k+ L)W (gup),
(12) SW (pu2ey) = (k+ L)W (o).

On the other hand, substituting u = ¢, v = 1; to (9) and using W (p) = W (py;) =
0 we obtain

(13) W (™) = m(m — 1)) 2(| V|2
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and putting u = @, v1 = 1y, v2 = V2 to (10) we get
(14) W () = oW (@) + 20V - V(7).
Now using (11), (13), (14) to simplify (12) we get
eV V(U) =0
which can be simplified to
e Vi - Vb = 0.

This implies, due to the positivity of ¢ and v, (¥ is a mapping to R} and hence

1/}71 > 0)7
Vi - Vipp = 0.

To prove (5) we use

(15)  3W(pn) = 6(k + 3)W (wunui) + (k+ 1)(k + 3)W (24f) = 0.

Substituting u = ¢ and vy = v = 2 or v; = Y2, vy = @[J?, respectively, to (10)
and using (4) we get

(16) W (owd) = 202 W (02) + 802 | Vebn |12,
(17) W (pp29?) = VAW (7)) + VEW (py2).

Using (11), (13) for m = 2 we can rewrite (16) and (17) as

(18) W (o) = 4(k + 1)pv2 [ Vi |12 + 8evz || Vel |?,
(19) W (ov297) = 2002 V|12 + 2(k + 1) | Ve |12

Now substituting (18), (19) and (13) with m =4 to (15) we get

12(k + 1)y |V |2 + 24002 | Vi ||? — 12(k + 3)va || V|2
—12(k + 1) (k + 3)pu2|| V|2 + 12(k + 1) (k + 3)¢? || Vi |2 = 0

which can be simplified to
(20) PURlIVenl? = o Vil

Relation (20) is valid for all  =1,...,n — 1 and gives (5).

Equations (6) for i = 1,...,n—1 are direct consequences of W (p1);) = 0, W(yp) =
0 and (8).

Equation (6) for i = n can be derived from (11) using (9), (13), (5), and (3).
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To prove 3 = 4 we use the chain rule for the relation Tu = ¢ - (u o V)

(21) (1) = 390 (uo W)+ QDZ ( Ou \I/) ?ﬁ:

8:EZ' =1 ]
P(Tu) 8% 2 o0
0:7 oz 3(“0‘1' Z (axj ) O,
D Oy "/ ou %,
(22) te ﬂz—: (ax 0z, ° )890 o, J””j; oz, ° V) a2

Now we are able to compute (we use the summation convention over indexes i, j, 1)

82 \Ij) O Oy

W(Tu)=W(p)(uo¥)+ ¢ <

8$ja$l ° 8:172 8xl
ou ok O Do 0%y 9Py
* (a—x] ‘I’) <x D 20w, 0n; ¥ 0a?

which together with (3)—(6) gives (7) with 3 = ||V ]|.
The last implication, 4 = 1, is evident. O

3. Some facts about Mo6bius transformation

Consider non-empty domains U,V C R’} with the bijection ¥ : U — V
now. Let components 11,...,%, € C2(U) of the bijection ¥ fulfill the condi-
tions (4), (5). Put s = |[Vy1]| and let Uy := {x € U,»(z) # 0}. As > is a
continuous function, the set U; should be open and as the mapping ¥ is a bijec-
tion, the complement U — U7 has no inner points and Uy # (). From the equations
(4), (5) is clear that the bijection ¥ preserves angles of curves i.e. it is conformal
on U;. We will use

Liouville theorem. Let n > 3, Uz, Vo C R™ be domains and let ¥ : Uy — V5
be a conformal mapping. Then ¥ is a Mébius transformation, i.e. its components

Y1,...,%n can be written either in the form
o, T
(23) ¥i(x) :bi+TZRinx—aH2
J=1

or in the form

(24) i) = b+ 1Y Rijaj,
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where r > 0, a;, b; for i = 1,...,n are real numbers with (a1, ...,ayn) ¢ Uz and
R;; are components of an orthonormal matrix.

We cannot use the theorem for U; as it may not be connected. But we can
take as U one of the components of U and if we compute s = ||V ||, we obtain

(25) o) =
in the case (23) and
(26) »(x) =7

in the case (24). We see that s is a positive function and therefore Uy = Uy = U.
In the sequel we will need the following

Lemma 1. Let ¥ = (¢1,...,%y) be a Mébius transformation given by (23) or
(24), respectively, and let s« be given by (25) or (26), respectively. Then ¥ is a
bijection on R} iff ¢ = xps on RY.

PrOOF: To prove the implication < is enough to realize that from ¢, = z, ¢ it
follows that 1, > 0 iff z,, > 0.

To prove the implication = we consider the case (23) first. As ¥ is a continuous
bijection, the boundary {(x1,...,2n-1,0);71,...,2,1 € R} of R’} should be
mapped bijectively by ¥ onto itself with exception of at most one point a. Then

n—1

R, '(ZC]' - aj) Runan
(27) bp + 1 (]7 —r——— =0
! z_:l 2 — a2 2 — a2
‘]_
holds for all (z1,...,2n—1,0) # a. Let @ = (ay,...,an—1,0) be an orthogonal
projection of the vector a to the plane z, = 0, let ¢;, ¢ = 1,...,n — 1 be a
canonical vector in the same plane and let © = @ + ¢;. Then ||z —al|> = 1 + a2
and (27) gives
Ry; Rynan

28 0="5b .
(28) n+r1+a% rl—i—a%

On the other hand (27) gives for x = a — ¢;

Ry Rpnan
T —-Tr .
1+ a2 1+ a2

(29) 0=by—

Equations (28), (29) give Ry,; =0 for i =1,...,n— 1 and Rpy = £1 (note that
;?:1 R?zj =1). Let x = @ + ce; for ¢ € R. Then equation (27) has the form

Rypan

r = by,.
CQ—I—CL% "
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Since ¢ can be an arbitrary number it should be b, = Ryna, = 0. But since
Ryn = £1 it should be a,, = 0. Relation (23) has therefore the form

rRynxy
Un(2) = 7——>
" |z — al|?
with Ry, = +1. But as v, should be positive for x,, > 0 we have R,, = 1 and
rIn
Un(2) =
" [ — al|?

which together with (25) gives ¢y, (x) = xp ().
Consider the case (24) now. Again 1, = 0 whenever z,, = 0 and hence

n—1
bn—I—TZanIj =0
=1
for an arbitrary point (z1,...,2,-1,0) which gives again b, = 0, R,; = dp;,
Yn(x) = rzy and hence by, = xp . O

Lemma 2. Let U C R" be a domain, r > 0, R;; be an orthonormal matrix
a=(a,...,an),b=(b1,...,bn) € R™ a ¢ U and ¢1,...,1¥n be defined by (23)
or by (24), respectively, on U. Let s be defined by (25) or by (26), respectively,
on U. Then the following identity

n—2 90 1 « oy
(30) 5 8—:“(10%% 5,2 E Ay 9z,
is valid forx € U and fori =1,...,n
PROOF: We consider the case (23), (25) first. The left hand side of (30) is
n—2 0 n—2 0 T — a;
31 —(1 =——(1 —21 — =2-n)—2—%.
(31) P gtog ) = " S (logr —2log o — ) = (2= n) T

To compute the right hand side we need to differentiate (23)

oYy rRy; le xz —a;)
— = —2r

oz; [z —a? Z CLH4
(921/” _ _4T‘Rli(:§i — ai) n i (_QTle(Ij — aj) n STle(Ij — aj)(xi — ai)2>

oz o —al? |l — al|* [l — al|®

J=1

and compute the Laplace operator

n

n
(32) Aiﬁ[ — Z T'Rli(fﬂl - a’l) (_ — o+ 8 Z B 2TL rRlZ Zj — a’l) .

_ 4ll4 _ 414
2w ] 2 a—al
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Now we are ready to compute the right hand side of (30)

o
2 22 wlaxf

|z — (IH4 |4 2n)rRyp(xp — ap)
o2 lpz_l lz = all®
TR[Z' _ i QTle(xj — aj)(xi — ai) _
fe—alP " & Je—dl
zn: (n— 2)RliRlp($p —ap)
= o~ al?

_ z": 2(n = 2)Ry;(xj — aj)Ryp(xp — ap)(xi — az’))

Z = al®

~ (n=2)(w —ay)
lz — al|?

and we see that it is the same as the left hand side (compare it with (31)).
In the case (24), (26) both left hand side and right hand side are identically equal
to zero on U. 0
Lemma 3. Denote the result of both sides of (30) by B;. That means

_ ) Li=ay ;
B, — { (2—-n) liafz m the case (23)

0 in the case (24).
Then the following identity

(33)

0B;
4 B2 )
(34) Z ( i 59€i>
i=1
holds for all x € R"™ — {a} in the case (23) and for all x € R™ in the case (24).
PROOF: can be obtained by a straightforward calculation and we omit it. (|

4. Describing of W-morphisms

In this section we give a description of all W-morphisms for an arbitrary k£ € R
and n > 3. We do it by solving the equations (3)—(6). In the previous section we
saw that the mapping ¥ should be a Md&bius transformation and can be expressed
as in (23) or (24). Equations (6) are used to compute ¢. From (6) we can compute
the scalar product
ks 1

V- Vip; = mém = 5eW(wi).
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Since the vectors Vi; for i« = 1,...,n form an orthogonal basis with the same
length || V|| = ¢ we can use the relation

n
Vo - Vi,
Vo= V¢ Tigy,

i=1 x?
to write "
Vo = 3V - > s v
Now we use the definition of W and write the last vector relation in coordinates
Op _ kg On ¢ 81/11 B sa Oy Oy

(35 =g 522 Ay
=1

dxj  2pp Oxj 232 = Bacn ox;’

Further we can use Y ;" ; %% = 52§, and (30). Then we get
n J

Op _ ke 9p  (n—2)p0d(logx) ¢ k

which can be integrated as

k -2 k
logso=§10gwn+ 10g%—§logxn+log0

or

(36) gozC(w—")2%nTz.

Relations (23) or (24), respectively, together with (36) give all solutions of (4)—
(6). Let us check equation (3) now. To compute W(yp) we use (35) and write

gf = Ajp with
L awz k
(37) Aj = 2 0n; | 22 ; ( (1/%) - E(S]n-

Using A; we can write the expression W (y) as

(38) Wie) = | 3 (42 + ‘Z‘;‘]) LS

T
=1 "

107
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Introducing
(39) =2 gy,
and using B; introduced in (33) in the form

0
(40) Bj = — %22 Atz wl

we can write Aj as
Aj = Bj + Cj.

Putting it to (38) and using (34) we get
“ aC; k k
2
(41) W((p) =p- E <2BjCj + Cj 97 Y ) + —Bn + —C),

Let us compute (41) part by part
= k N,
Z2Bjcj——% Y + . 22 wlaxn
n 2 2
S (2 L 2 O
J 4 \Y2 22 iy Oz
n 2
1 1
(42) o k(L2 L 1A
Z ,Tj 2 ’(/Jn 7/1n + 2

k o i
o B = ‘WZAW%
=1

n

2
*a _k_<i%_i),

n
Ty, 2¢n \Up 0z, Tp

Substituting (42) to (41) we get

k(k—2) (»* 1
(13) W) = e (- ).
We see that in cases k = 0, k = 2 relations (23), (36) and (24), (36) give all
W-morphisms while in the cases k # 0, k # 2, transformations are admitted
with 1, = xps only. Note that we have proved in Lemma 1 that v, = x,sr is
equivalent to that Mobius transformation is a bijection on R’} . We can summarize
these facts in the
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Theorem. Let n > 3, Rl be as above, U,V C R"} domains, ® : U — V a
bijection, ¢ : U — (0,00) a positive function and W the Weinstein operator with
k € R. Then the transformation T : C2(V) — C%(U) defined by Tu := ¢ - (u o ¥)
is a W-morphism iff

1. in cases k # 0, k # 2, the bijection ¥ is a Mdbius transformation mapping

R onto itself such that U(U)=V and ¢ = %7l+§72,

2. in cases k = 0 or k = 2, ¥ is an arbitrary Mébius transformation with

Y(U)=V and p = (1#—)%%”772

n
Tn

5. Conclusion remarks

There are two natural questions.

1. A different result in the case k = 0 (i.e. W = A) seems to be natural, but
why is it in the case k = 27

2. Is it possible to use Theorem to derive the Poisson formula for the operator
A+ 202

The answer to both problems is surprisingly simple. Let U C Rl be a domain
and take u € C2(U). Then A (zpu(z)) = znAu + 2% = I (Au+ 2 Ou )

Tn OTn
We see that when a function « is a solution of the Weinstein operator for k = 2,
then the function v(z) = xnu(x) is harmonic on U. That means that properties
of harmonic functions, including the Poisson formula, can be modified to the
solutions of the Weinstein operator with the coeflicient k = 2.
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