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On a certain converse statement

of the Filippov-Wažewski relaxation theorem

Aurelain Cernea

Abstract. A certain converse statement of the Filippov-Wažewski theorem is proved.
This result extends to the case of time dependent differential inclusions a previous result
of Joó and Tallos in [5] obtained for autonomous differential inclusions.
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1. Introduction

A fundamental result in the qualitative theory of differential inclusions and
their applications (especially in control theory) is the celebrated Filippov-Wažew-
ski relaxation theorem ([1], [4], [6], etc.). This theorem states that the solution
set of a Lipschitzian differential inclusion is dense in the set of relaxed solutions
(i.e. the set of solutions of the differential inclusion whose right-hand side is the
convex hull of the original multifunction).
Recently, Joó and Tallos ([5]) proved a certain converse of this result. More

exactly, given an autonomous differential inclusion with convex valued right-hand
side, a smaller set-valued map which essentially yields the same reachable sets is
found. The key tool in this approach is a property of the contingent derivative of
the reachable set.
As usual in the theory of differential inclusions, important difficulties occur

when one passes from autonomous problems to non-autonomous ones. Moreover,
the main applications of the relaxation theorem concern non-autonomous differ-
ential inclusions.
The aim of this paper is to prove a similar converse statement of the relaxation

theorem in the time dependent case. Even if the proof of our result follows the
same ideas as in [5], the basic tool in our approach is another property ([4]) of
the reachable set of time dependent differential inclusions.
At the same time, we point out that the proof of the main result in [5] may be

done using quasitangent (intermediate) derivatives instead of contingent deriva-
tives of the reachable set.
The paper is organized as follows: in Section 2 we present preliminary results

to be used in the next section and in Section 3 we prove our main result.
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2. Preliminaries

In this section we recall some basic notations and concepts concerning differ-
ential inclusions.
Let S be a metric space, X ⊂ Rn and x ∈ cl(X) (the closure of X).

Definition 2.1. Let (Ks)s∈S be a family of subsets of a metric space Y . The
upper limit and the lower limit of Ks at s0 ∈ S are closed sets defined by

Limsup
s→s0

Ks := {x ∈ Y ; lim inf
s→s0

d(x, Ks) = 0},

Liminf
s→s0

Ks := {x ∈ Y ; lim
s→s0

d(x, Ks) = 0}.

A subset K is said to be the limit or the set limit of the sequence Ks if:

K = Limsup
s→s0

Ks = Liminf
s→s0

Ks =: Lim
s→s0

Ks.

From the multitude of the tangent cones in the literature (e.g. [2], etc.) we
recall only the contingent and the quasitangent (intermediate) cone, defined, re-
spectively by:

KxX = {v ∈ Rn; ∃sm → 0+, ∃vm → v : x+ smvm ∈ X},

QxX = {v ∈ Rn; ∀ sm → 0+, ∃vm → v : x+ smvm ∈ X}.

These cones are related as follows: QxX ⊂ KxX .

Corresponding to each type of tangent cone, say τxX , one may introduce a
set-valued directional derivative of a multifunction G(·) : X ⊂ Rn → P(Rn) (in
particular of a single-valued mapping) at a point (x, y) ∈ Graph(G) as follows

τyG(x; v) = {w ∈ Rn; : (v, w) ∈ τ(x,y) Graph(G)}, v ∈ τxX.

Consider T > 0, I = [0, T ], a set-valued map F (·, ·) : I × Rn → Rn and let
t0 ∈ I, x0 ∈ Rn,Ω ⊂ Rn be a nonempty open set. We denote by SF (t0, x0)
the set of all absolutely continuous functions that are solutions of the differential
inclusion:

(2.1) x′ ∈ F (t, x), x(t0) = x0.

For all 0 ≤ t0 ≤ t1 ≤ T and ξ ∈ Rn set

(2.2) RF (t1, t0, ξ) = {x(t1); x(·) ∈ SF (t0, ξ)}

the reachable set of the inclusion (2.1) from (t0, ξ) at time t0.
Let B be the unit ball in Rn.
In what follows we assume the following:



On a certain converse statement of the Filippov-Wažewski relaxation theorem 79

Hypothesis 2.2. (i) ∀ (t, x) ∈ I × Rn F (t, x) is closed.
(ii) ∀x ∈ Rn F (·, x) is a measurable set-valued map.
(iii) ∀ (t, x) ∈ I × Ω F (t, x) is nonempty.
(iv) F (t, ·) is Lipschitz on Ω, i.e. ∃L > 0 such that ∀ t ∈ I, ∀x, y ∈ Ω F (t, x) ⊂

F (t, y) + L‖x − y‖B.

The set-valued map RF enjoys the semigroup properties:

∀ 0 ≤ t1 ≤ t2 ≤ t2 ≤ T, ∀ ξ ∈ Rn RF (t3, t2, RF (t2, t1, ξ)) = RF (t3, t1, ξ)

∀ 0 ≤ t ≤ T, ∀ ξ ∈ Rn RF (t, t, ξ) = ξ.

By coF (·, ·) we denote the set-valued map whose values are the closed convex
hulls of the values of F (·, ·) at every point. Let us note that if F (·, ·) is upper
semicontinuous (resp. continuous, locally Lipschitz) then so is coF (·, ·) (e.g. [1]).
When F (·, ·) does not depend on the first variable (2.1) reduces to

(2.3) x′ ∈ F (x), x(0) = x0.

We denote by SF (x0) the solution set of the differential inclusion (2.3). In this
case, the following result is proved in [5]:

Theorem 2.3 ([5]). Assume that F (·) is locally Lipschitz on Ω with convex
compact values and consider a compact valued locally Lipschitz set-valued map

G(·) with the same Lipschitz constant such that G(x) ⊂ F (x) for every x ∈ Ω.
Then SG(x) is dense in SF (x) (in the metric of uniform convergence) for all x ∈ Ω
if and only if coG(x) = F (x) for each x ∈ Ω.

The proof is essentially based on the following property of the contingent
derivatives of the set valued map t → RF (t, 0, x):

Theorem 2.4 ([5]). If F (·) is continuous on Ω, then

(2.4) F (x) ⊂ KxRF (·, 0, x)(0; 1) ⊂ coF (x) ∀x ∈ Ω.

Remark 2.5. According to Theorem 2.5 in [3], if F (·) is continuous on Ω, then

(2.5) F (x) ⊂ QxRF (·, 0, x)(0; 1) ⊂ coF (x) ∀x ∈ Ω.

Obviously, the first inclusion in (2.5) is stronger than the corresponding one
in (2.4).

Let us note that the proof of Theorem 2.3 may be performed through the same
arguments employed in [5], but using the quasitangent derivative of the reachable
set and the property in (2.5) instead of the contingent derivative and Theorem 2.4.
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3. The main result

In order to establish a corresponding relaxation result for nonautonomous
differential inclusion (2.1) one needs the following property, which states that
when F (·, ·) is sufficiently regular, the set-valued map coF (·, ·) is the infinitesi-
mal generator of the semigroup RF (·, ·) in the sense that the difference quotions
(RF (t+ h, t, x)− x)/h converge to coF (t, x).

Theorem 3.1 ([4]). Assume that Hypothesis 2.2 holds true and let t0 ∈ [0, T )
and x0 ∈ Ω.
If F (·, ·) is lower semicontinuous at (t0, x0), then

(3.1) coF (t0, x0) ⊂ Liminf
h→0+

RF (t0 + h, t0, x0)− x0
h

.

If F (·, ·) is upper semicontinuous at (t0, x0) and F (t0, x0) is bounded, then

(3.2) Limsup
h→0+

RF (t0 + h, t0, x0)− x0
h

⊂ coF (t0, x0).

Consequently, if F (·, ·) is continuous at (t0, x0) and F (t0, x0) is bounded, then

Lim
h→0+

RF (t0 + h, t0, x0)− x0
h

= coF (t0, x0).

We show first that if a continuous convex set-valued map is given, that any
smaller upper semicontinuous map that essentially retains the same reachable
sets, necessarily contains all extremal points of the convex set-valued map.

Theorem 3.2. Assume that F (·, ·) : I × Ω → P(Rn) is continuous with convex
compact values and consider an upper semicontinuous compact valued set-valued

map G(·, ·) : I×Ω→ P(Rn) such that G(t, x) ⊂ F (t, x) ∀ (t, x) ∈ I×Ω. Suppose
that RG(τ, t, x) is dense in RF (τ, t, x) ∀ t, τ ∈ I, ∀x ∈ Ω.
Then coG(t, x) = F (t, x) for every (t, x) ∈ I × Ω.

Proof: It is an easy consequence of the definition of the upper limit that if
RG(τ, t, x) is dense in RF (τ, t, x) then

(3.3) Limsup
h→0+

RF (t+ h, t, x)− x

h
= Limsup

h→0+

RG(t+ h, t, x)− x

h
.

Indeed, one has v ∈ Limsuph→0+
RF (t+h,t,x)−x

h if and only if v ∈ KxRF ((t, t, x);
(1, 0, 0)) if and only if ((1, 0, 0), v) ∈ K((t,t,x),x)Graph RF (·, ·, ·) and it is well

known that for any X ⊂ Rn and any x ∈ X , KxX = KxX.
By applying Theorem 3.1 and (3.3) we obtain for (t, x) ∈ [0, t)× Ω

F (t, x) = Lim
h→0+

RF (t+ h, t, x)− x

h
= Limsup

h→0+

RF (t+ h, t, x)− x

h
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= Limsup
h→0+

RG(t+ h, t, x)− x

h
⊂ coG(t, x)

and this proves the theorem. �

In what follows the density of the solution set will be understood with respect
to the norm in the Banach space C(I, Rn) of continuous functions.

Theorem 3.3. Assume that Hypothesis 2.2 is satisfied and F (·, ·) : I × Ω →
P(Rn) is continuous with convex compact values. Consider an upper semicontin-
uous compact valued set-valued map G(·, ·) : I × Ω→ P(Rn) such that G(t, ·) is
locally Lipschitz with the same Lipschitz constant as F (t, ·) and G(t, x) ⊂ F (t, x)
∀ (t, x) ∈ I × Ω.
Then SG(t, x) is dense in SF (t, x) ∀ t ∈ I, x ∈ Ω if and only if coG(t, x) =

F (t, x) for every (t, x) ∈ I × Ω.

Proof: The sufficiency is the classical relaxation theorem. Let us note that this
statement is valid without the assumptions that F (·, ·) is continuous and G(·, ·)
is upper semicontinuous.
For the necessity, since SG(t, x) and SF (t, x) have the same closure with respect

to the norm of C(I, Rn) then so do RG(τ, t)(x) and RF (τ, t)(x) in the norm of
Rn ∀ t, τ ∈ I, ∀x ∈ Ω, hence we apply Theorem 3.2 and the proof is complete.

�

Remark 3.4. Obviously, a key tool in the proof of Theorem 3.2 is Theorem 3.1.
Theorem 3.1 (Theorem 2.2.11 in [4]) remains valid under the more general

assumption that F (t, ·) is L(t)-Lipschitz, with L(·) ∈ L1(I, R) (more exactly, the
proof of Theorem 3.1 can be adapted using the absolute continuity of the Lebesgue
integral).
So, Hypothesis 2.2(iv) can be improved by assuming that there exists L(·) ∈

L1(I, R) such that ∀ t ∈ I, F (t, ·) is L(t)-Lipschitz on Ω.
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