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Cauchy-Neumann problem for a class of nondiagonal
parabolic systems with quadratic nonlinearities
II. Local and global solvability results

A. ARKHIPOVA

Abstract. We prove local in time solvability of the nonlinear initial-boundary problem
to nonlinear nondiagonal parabolic systems of equations (multidimensional case). No
growth restrictions are assumed on generating the system functions.

In the case of two spatial variables we construct the global in time solution to the
Cauchy-Neumann problem for a class of nondiagonal parabolic systems. The solution is
smooth almost everywhere and has an at most finite number of singular points.

Keywords: boundary value problem, nonlinear parabolic systems, solvability

Classification: 35J65

This article is a continuation of the author’s work [9]. Here we prove two
independent results. These are local and global in time solvability theorems for a
nonlinear initial boundary-value problem to nondiagonal parabolic systems.

In §1 (Theorem 1) local classical solvability is stated for general situations,
that is, we do not assume any structural restriction and growth conditions on
forming system and boundary condition functions. A related result for quasilinear
parabolic systems under the Dirichlet and Neumann boundary conditions was
proved in [1], [2].

Global in time weak solvability of the Cauchy-Neumann problem for parabolic
systems studied in [9] is proved in §2 (Theorem 2). We consider a variational
structure of an elliptic operator and consider only the case of two spatial variables.
These systems have a nondiagonal main matrix and quadratic nonlinearity in
the gradient. Note that the global solvability result is essentially based on the
extendibility theorem (Theorem 1, [9]) and the local solvability theorem (Theorem
1 of the present paper).

This investigation is a generalization of the author’s results [3], [4] where global
in time weak solvability of the Cauchy-Dirichlet problem was stated for the same
class of parabolic systems.

Here we make use of the notation of the Part I of the paper (see [9]).

1. Local in time classical solvability

Let ©Q be a domain in R™, n > 2, with sufficiently smooth boundary 0.
For a fixed T3 > 0 and Q@ = Q x (0,71) we consider a solution u : Q — RN,
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u=(ul,...,uN), N > 1, of the parabolic system

(1.1) uf — A (2w, ug )l g, +05(2,0,ug) =0, 2= (2,) €Q, k=1,...,N.

mﬁxa
The function u satisfies the initial condition

(1.2) =0,

u‘t:O

and nonlinear boundary condition

(13) @k(z,u, ug) + 1/’1?1(2711)“50,1 + gk(z, u)‘r =0,
[ =09 x(0,T1), k<N.
We define the sets
(1.4) M=Q xRV xR, N=TxRNxR™W, NO=TxR",

and suppose that the functions Aklﬁ, be, ok Uiy, gk are smooth enough on M,

N and N, respectively. (More exactly, see conditions Aq, ..., A5 below.)
Suppose that the matrix A = {Azlﬁ }g’lﬁ 5\? satisfies on M the condition

(1.5) Azf(z,u,p)g(gglﬁ >vle2, VEeR™, = const >0.

‘We introduce the functions

oP*
q)k(z;’u,p)_‘/%dsplﬁ—f—(pk(z’u’O):}fl(z”u’p)plﬁ—F@k(zj’u’O)
B
0

and suppose that
(16) (e usp) + (2, u) ) cos(m, wg)ns’ = wolnf?,
Vne RN, g = const > 0,

where n = n(z) is the outward normal vector to Q at a point z € 99, (z,u,p) € N.
We rewrite (1.3) in the form

(1.7) (%gl Z, Uy uy) + wkl(z u)) uéﬁ T Gk(z,u)’F =0, k<N,

where G*(z,t,u) = gF(x,t,u) + ®F(x,t, u,0).
The compatibility condition is written in the following form

(1.8) GF(2,0,0)=0, €09, k=1,... N.



II. Local and global solvability results

We intend to prove the existence of a smooth solution to (1.1)—(1.3) (or (1.1),
(1.2), (1.7)) on some interval [0, Tp), where Ty < T7.
Note that in the case A = A(z,u) and condition (1.7) in the form
A

zs cos(n, o) + Gk(z, u)‘F =0,

local in time classical solvability of (1.1), (1.2) follows from [1], [2]. To prove the
existence of a solution we use the contraction method.
We introduce the following notation

vz, t) — vzt vz, t) —v(ax, t/
R U )bt ) R WO U G B 5
@@ neq T (2.6).(2.)€Q |t —1'|

rFx! t#t!

RIS = @+ %P, e ).

|w|lm,p denotes the norm of v in the space L™ (D), m € [1, 00].
Here and below we write B(Q) instead of B(Q;R") for brevity.
H*/2(Q) is the space of all continuous in Q functions with finite norm

2
[ollzgeara@y = Iolloog + ) + ()52
(So H“/2(Q) = C*/2(Q)).

H2+olta/2 (Q) is the space of functions u continuous on @ with derivatives
Ut, Ug, Ugye and finite norm:

[ullprantarz@) = llullo,@ + l[tzlloo,@ + luzzlloc,@ + llutlloc,@
+ [Ut](é;) + [umm]g) + <Um>§’(é+a)/2)-

We also consider the space H1T®(1+a)/2(T) of functions v that are contin-

uous and have continuous derivatives v, on I'. Here we define this space as
the trace space for H2T®11te/2(Q) [5]. Let 8Q be a C2T* surface. We de-
note by Vi,...,V; C R™ a system of neighborhoods with the following prop-

m
erties: (1) J V; D 99, (2) there exists a system of C*** diffeomorphisms P;
J=1

on Vj, j = 1,...,m, such that P;(V; N Q) = Bi", P;j(V; N 0Q) = o. Here
By ={z e R"| |z| <1}, B} = Byn{z, >0}, 0 = By N{z, =0}.

For a function v € H2+O"1+°‘/2(@), r e V;Nno, t e (0,T1], we define the
function v\9) (y, t) = (Pj_l(y),t) on Q+ = B x [0,T1].

Let v/ = (y1,... ,yn—1), L =27 x [0,T1], we put
(1.9) [0l 31 +e1te)/2(F) = sup Hv(j)(y’,0,t)||H1+a,(1+a)/2(E),

ism
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where

1+a)/2
(1.10) [Jw(y' Dllpgrseirarrzgs) = lwlloos + 1wy lloos + [y ]S + (w) /.

It is obvious that definition (1.9),(1.10) depends on the fixed atlas {V}, P;}7;
but all the norms are equivalent.
Now we fix an g > 0 and some T € (0,77] and introduce the space

Xp = {v L Q — RN v € 2o lteo/2(QT)| o),y = o} . QT =ax(0,7).
For a fixed v € X1 we put

AAzf(x,t,v,vx) = Aglﬁ(x,t,v,vm) — Azf(x,0,0,0),
A%fl(x, t,v,vy) = %fl(x, t,v,vg) — xgk(x, 0,0,0),
AP (b, 0) = ) (2, t,0) — G (2,0,0)

and consider the linear problem

(1.11)
wf — Aglﬁ(x,o,0,0)wéﬁma—i—bk(a@,t,v,vx)—i—AAglﬁ(x,t,v,vx)vl 0, (z,t)eQT,

TgTa
(%gl(xa 07 05 O) + 1/’%(% 05 O)) wéﬁ + Gk(xa t? ’U) =+ (A;fl(xv ta v, vZB)

+ AU (2, t,0))ok e =0, TT =00 x (0,7), k=1,... N,

w‘ =0 = 0
We write AAvm:{AAgf(x, t, v, vx)véﬁxa JREN
A vy = {A?/)]fl(x, 2 v)vfcﬁ}kSN, A%vm:{Aﬂfl(% t,v, Ux)vgcﬁ}kSNv
G = {GF(z,t,v)}*=N for brevity.
We assume that the complementing conditions hold for problem (1.11).
If the data are smooth enough then according to the linear theory there exists

a unique solution w € Xp of (1.11) [5, Chapter VII, Theorem 10.1] and the
following estimate is valid:

Hw”XT < C0{||b||Ha0,a0/2(QT) + ||AA : vIE(EH'HaO,aO/2(QT)
(1.12) +[|As- U:c||H1+ao,(1+ao)/2(rT) +[|AY - UI|‘H1+&07(1+QO)/2(FT)
+ ||GH’H1+@0)(1+@0)/2(I‘T)}'

The constant ¢g in (1.12) depends on the parameters v, vy from conditions
(15)v (16)7 ”A(Ia 0,0, O)”C“O(Q)v H%(ZE, 0,0, 0)||Cl+ao(8ﬂ)v H‘/’(Ia 0, 0)||Cl+a0(fz)a
C?t20 characteristics of 9Q and T7, but it does not depend on the fixed T and
any characteristic of the function v.
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Thus, problem (1.11) defines the map F: X7 — X,
(1.13) w=F(v), VYveXp.

We shall prove that if T < 77 is small enough then there exists a fixed point u
of F. The function u € Xp is a solution of the problem (1.1)—(1.3).

Now we impose precise conditions on the data.

Let M > 0 be an arbitrary fixed number.

A1, On My = A{(,t,u,p) € M| [u| +[p| < M}
e the functions A = {Azf }z’f 5\? are continuous and have continuous deriva-
tives Ay, Ap; a

e the functions A4, Ay, A are Holder continuous in «, ¢, u, p with the exponents
ag, ag/2, ag, ag, respectively.

AQ. On MM
e the functions b = {b¥(z, t,u, p)}*<N are continuous with derivatives b, and
bp,
e the functions b are Holder continuous in z, ¢ with the exponents g, ag/2,
respectively,

e by, by are Holder continuous in z,t¢,u,p with the exponents ag, ag/2, oo,
«g, respectively.

Az. On Ny = {(z,t,u,p) € N Ju| + [p| < M},
e the functions ¢ = {<I>k (z,t,u, p)}kSN are continuous with derivatives @,

k
e the functions » = {%fl(:v, t,u,p)}f%ﬁN, }tgl(:v, t,u,p) = 01 W ds
= B

have continuous derivatives sz, sz, sp,

e the functions s, s, s, are Holder continuous in ¢ with the exponent (1 +
OZO)/Q,

e the derivatives s, are Holder continuous in x,¢ with the exponents o and
ag/2 correspondently,

e the derivatives sy, »zp, Sy, up, ¥pp exist and are Holder continuous in
x,t, u, p with the exponents ag, ag/2, ag, ap.

Ag. On NY, = {(z,t,u) € NOju| < M},

e the function G(z,t,u) = ®(x,t,u,0) + g(z,t,u), G= {Gk}kSN, is contin-
uous with derivatives Gz, Gy, Gzu, Guu,

e the functions G, G,, are Holder continuous in ¢ with the exponent (1+«q)/2,

e the function G is Holder continuous in « and ¢ with the exponent g, ag/2,

o Gyu, Gy are Holder continuous in z, ¢, u with the exponents «g, ag/2, ap.

o7
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A5. OHNO,

o p= {wfl (x,t, u)}f%ﬁ  are continuous functions with derivatives vz, ¥u,

e the functions ¢ are Holder continuous in ¢ with the exponent (1 4 ag)/2,
e )y, 1, are Holder continuous in z,¢,u with the exponents ag, ag/2, ag,
respectively.

Remark 1. All Holder constants h in conditions A;—As depend on M, ie., h =
h(M).

We put

HO = ”b(‘rvovovo)”oo,ﬂ + [b(w,t,0,0)]go) + ||G$(‘T=t70)”7-{007a0/2(1")

1 2
+11Go (1, 0)l|pgaguaor2qry + (Gl o) 2,

(1.14)

and note that Hy depends on 77 but it does not depend on T and M.
Now we formulate the main local result.

Theorem 1. Let Q be a bounded domain in R™, n > 2, with C?1t®_smooth
boundary 092, ag € (0,1) is a fixed number. Suppose that conditions (1.5), (1.6),
and (1.8) hold and linear problem (1.11) satisfies the complementing conditions.
Then there exist numbers My and Ty = To(Mp) € (0,T1] such that if assumptions
A1-As hold with M = My then problem (1.1)—(1.3) is uniquely solvable in X
for any fixed T < Tp. Numbers My and To(My) depend on the given problem
data.

We split the proof of Theorem 1 into the following lemmas.

Lemma 1. There exist numbers My and T = T(MO) < T4, such that for any
T < T the map F transforms By, in Byy,, where By, = {v € X7p| ||v]| x, < Mo}.
The numbers My and T depend on Hy (see (1.14)) and on the same values as the
constant cq in (1.12).

Lemma 2. Let My and T be fixed as in Lemma 1. There exists a positive number
6 = 6(Mo) such that for every vi,ve € By, C Xp, T < T, we have

(1.15) ||F(v1) — F(’UQ)HXT <4 (Tao/2 + T(l—ao)/Q) v — UQHXT'

Indeed, if these lemmas are proved then we fix 7’ from the condition
o [(17)00/ + (1) (1me0/2] < 1.

For T < Ty = min{7’, T}, the mapping F is a contraction in By, € X, which
implies the existence of a unique u € By, such that u = F'(u). Certainly, v is the
solution to (1.1), (1.2), (1.7) or (1.1)—(1.3) and Theorem 1 is proved.
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ProoF oF LEMMA 1: Fix T'<Tj, M > 0 and v € By; C Xp arbitrary. For all
summands J, in the braces of (1.12), we shall derive the following inequalities:

(1.16) Ji < b (M) (T2 4 TAZ00)2) Ly k=1, 5.

In what follows, we denote by hi(M), h(M) different but nondecreasing in M
functions. They may depend on the data and 77 but not on the fixed 7. All
parameters H;, and H are independent of M and T'.

1. Estimation of J; = HbHHaO,aO/z(QT). We split Jp in

2 . . .
T = Blloogr + BT + ) = 1 + o + Js.
First of all, note that U’t:O =0 and

1+ 2
loloogr < MotlloogrTs  lozlooqr < (va)gr®/ T +e0)/2,

[vzzlloo o < <vm>(010/2)Ta0/2

It is evident that
i < 1062, 0,02) = 5,0.0,0) o g + 10(2:0.0.0) | g
< h() (1907 4 0] gr + el o) + H

< h(M) (T”‘O/2 +T+ T(1_a0)/2) +H.

(ao)
QT

b(x,t,v(x,t), v (2, 1)) — b2, t,v(2, 1), ve (2, 1))

To estimate jo = (b > we write the inequalities

db(z, t, t t
< [bl,£,0,0) — b(a’ t00|+’/ (ol ), s0a (0,0,

1
B / db(z',t, sv(a’ t), svg (2, 1))

d
ds s

< H|Az|*0

0
1

+ / |by(z,t, sv(x,t), svg (2, 1)) — by(2, t, sv(2, 1), svg(2',1))| |v(z, t)| ds

1
+ / by (2, t, sv(a’ 1), svz (2, 1)) ds|v(x, t) — vz’ 1)
0
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/|bp z,t, sv(x,t), svg(z,t)) — bp(2, t, sv(2', 1), svgp(2', 1)) ds - |vg(z, 1)

+ / lbp (2, t, sv(a’, 1), svgp(2',1))] ds|vg (2, 1) — vy (2, 1) < H|Az|*

0 ()

h(M)|Axz|20 (T + T 4 T<1+ao)/2) . Az =z — o).
To justify inequality (x), we have used (1.17) and the following inequalities:

lv(z,t) —v(@, )| < <Ux>(1+ao)/2 (14-0) /2|A:C|
(1.18) wo)2
o (@, 8) = va (@', 1)] < (vaa); gr T/ %|Aa].
We arrive at the inequality
jo < H + h(M) (TO‘O n T(1+ao)/2) .
J3 is estimated in a similar way:

|b(, t,v(z, 1), v (2, 1) — bz, t' v(z, '), v (2, )] < |b(x,t,0,0) — b(z,t,0,0)]

}/ [db x,t, sv ;cd;) ,svg (1)) db(x,t’,sv(x;ltsl),svx(:v,t’))} ds

< H|At|"0/2

+ }/ [bv(x,t, sv(x,t), svg(x, t))v(x, t) — by(x, ', sv(x,t'), svg(z, t/))v(x,t/)} ds

+ ‘ / [bp(z, t, sv(z, t), svz(z, ) vz (2,t) — by(2, ¢/, su(z, 1), svg(z, t))ve (2, t')] ds
0

< HIAH 4+ h(M) (Iolloo gr + lvalloo, o ) {IAU2 + [0(, ) = v(a, ¢

+ vz (2, t) — vz (2, t)|*} + R(M){|v(z,t) — v(z,t)| + |va(z,t) — va(z, )]}

< H|At*0/2 1 h(M) (T + 7(1+e0) /2) {|At[*0/2 4 | At + |Ag|o0-(1Fe0)/2)

+ M{|At] + |At|IFe0)/2),

It follows that j3 < H + h(M)T“/2 and we get (1.16) for k = 1, where Hj is

defined by |[b(z,0,0,0) |00 and [b(x, ,0, 0)]£2T).
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2. Estimation of Jo = ||AA - /U:BwHHaO’aO/Q(QT). We have

o = 1AA - v g o + (AA - 040) O+ (AA - 03) P =iy + g + s,

It is easy to see that i1 < h(M)||vez oo, < h(M)T /2,
Further,

iz < (AA) ) vz oo, o7 + 1B A]l0 g (v22)

where

(A (.t v,0) — A (2,0,0,00)0) < (A2 (2, t,0,0)) ) + H < (M) + H,

AAll o0 < h(M)T?/2,
7Q
Whence,

iy < h(M)|[vzalloe gr + H(M)T™/2 < h(M)T*/2.
’ (1.17)

At last,

. 2) 2
is < (AA ST vgallog g + DAl gr (vae) ok < H(M)T0/2.

Consequently, Jo < h(M)T*0/2 and (1.18) is proved for k = 2.

3. Estimation OfJ3:||A%’Ux||H1+a0,(1+ao)/2(FT) and J4:||A1pvx||H1+a0,(1+ao)/2(p:r).
For a fixed atlas {V}, P; };”:1 we choose a neighborhood V; and a mapping P;

and then express Asw, in the local coordinate system (y1,...,yn). We shall

write y = y(z) and z = z(y) for y = Pj(r) and z = Pj_l(y), respectively,

0y, t) = v(z(y),t), y € B—f', t € [0,7T]. In the new coordinates

Azgl (z,t, v(z, 1), vz (z, )L, 5@, t) = [%fl (x(y),t,ﬁ(yat)aﬁy(yat) %)

. oy ) )
- %gl(x(y),0,0,0)} Uéw(yut)ﬁ ; Oy =01in Bf.
Putting
5 5 oy \ Oy
%gl(yatuv(ya ) Uy y, %g ( t 0 y7t), (y7t) az) ﬁ,

we have A%vm‘ = Adciy.

z=z(y)
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According to definition (1.9), (1.10), we have to estimate the expression

J3 = || A0yl prta0.arag)/zmry = [A%0y[log s + [[(A%0y )y [l o0 w7

+ [(Asdy)y ]9 + (D) 02,

Here X7 =6 x (0,7), o= {y e R* 1| |y/| < 1}.
We have the following estimates for o:
Hﬁ”oo,ET < MT, [@](20;9) < h(M) (Tl—ao/2 +T(1+a0)/2) ,

lbylloo.r < AADTAT2 [5,1(0) < p(agypeo/2,

1.19
(1.19) <ﬁy>£1;Ta0)/2 < h(M),  [|(y)y lsoxr < h(M) (T(l—i-ao)/? +Tao/2> 7

[G0)y] o < h),

where h(M) depends on the same parameters as in (1.17), (1.18) and C?t%0
characteristics of the maps y = y(z) and = = z(y).
Now for J3 we deduce the estimate

Js < hOMTAH02 1 (T2 (A v + (Al o)

. - R N (a0) N a
A% o T2 4 [(A5) 0] 57+ [l ] 52

+ <A%>§};;”0>/ h(M)THe0)/2 4 p(M)|| A% oo -

Here

|85 57 < A (T2 + o5 + 1oy lloo.zr) < AT/

<
(1.19)
1(850) || oo 57 < RM)YT/2 4 B(M)[[[iy || 0 537 + 1By )y [l o 7]

< R(M)T*/2,
(1.19)

(A5 1 [(A5),) 50 + <A;{>§}E+Tao)/2 (1§1 h(M) + H.

From the above it follows that J3 < h(M)T@0/2. This implies (1.16) for k = 3.
The expression Jy is estimated in the same way as J3.

4. Estimation of J5 = ||G||H1+a0v(1+a0)/2(FT)‘
In the local coordinates system we estimate J5 = ||G||H1+a0,(1+a0)/2(2;p), where
G/ t,0(y,0,t) = G(z(v/,0),t,v(z(y,0),1)), v €0, te0,T).
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From the compatibility condition (1.8) it follows that é‘t:O = éy/ |t:0 =

It is easy to see that
j5 < Hé”oo ET—’—Héy’H Ay’Hoo »T
(1.20) +1Gy 150 + G182 vyl oo o + 1G5 Hoo srlog)se
HARTT < HODTR Gyl + (@
To estimate [Gy/](;;? ) we consider the expression
é, (@0) Gy (Y 1,8y, 0,1)) — Gy (v £, 9(y",0,1))]
(Gyhyzr = S e |Ay/|oo
{te[o ], }
y'#y"
[ Gy ts00/.0.0) ~ £ Gt 0.0 s
< sup
(.} |Ay’ |°‘0
(G (41,000,

B (1ol s+ )% ) +H<R(M) (T+TA+0)/2) 4 1.

In the same way we derive that

Gy )\t < () (T + T 702) 4 1.

This implies

(1.21) [Gy,](ao) < h(M) (Tl—ao/Q +T(1+ao)/2) s

TS

To estimate [év](zaf ) we argue in the same way.

At last, we shall derive

(1.22) (G < na) (T4 70700/2) 1 g,
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Indeed,
|G(y,7 tlu ﬁ(ylu 07 t/)) - G(yla tﬂu ﬁ(ylu 07 t”))|

<|/

+1GW 1, 0) - Gy, t",0)|

dé(y/’ t/’ S’[)(y/’ 07 t/) _ dé(y/a t//a S’O(y/a 07 t//) dS
ds ds

—_

('t s0(y,0,t)

0
(v, ", s0(y",0,8"))| ds|o]| o0 57

I
Q)
[S43

Gy, 1", s0(y',0,¢"))] ds||dtl| oo x| At]

|At|(1F@0)/2 < p(pr )T{|At|(1+°‘°)/2 + |At|} + h(M)|At| + H|At|(1F0)/2
7(1-a0)/2 +H) |At|(1+a0 /2

This proves (1.22). Now from (1.20)—(1.22) it follows that

/_\ m O\»—A

+
<

Js < h(M) (1002 - T1=00)/2) 4,

verifying (1.16) for Js.
Thus, by (1.12), (1.16), we obtain that

(1.23) Jwllr < coh(M) (72072 4+ TA=0)/2) 4 o Ho,

where ¢ is the constant from (1.12) and Hy is defined in (1.14).
Now we put My = 2coHg and fix T' < T7 from the condition

coh(Mp) (TO!()/Q + T(l_o‘o)/2) < coHp.

Then from (1.23) it follows that for any 7' < T and v € By, € X7, |wlx, =
| F(v)|lx; < Mp. Lemma 1 is proved. O

PROOF OF LEMMA 2: Let M and T'(M) be fixed as pointed in the statement
of Lemma 1. For any T < T we fix o and v" € By, € Xp. Put w’ = F(V)),
w”" = F@"), & =w—w", &=1"-2v". According to (1.14) we have the following
system:

f = AR (2,0,0,000% 5, + [BF(=,0/, o) = R (2,0, 0|
AAOCB(Z v, v )(v/l)xﬁma - AAQB(Z v v”)(v“l)mﬁ%} =0,
zeQf, k<N,
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(540 (,0,0,0) + v (2, 0,0) ) | + [G*(2,0/) = G (2,0")]
l
+ [(A%@(z,v’,v;) + AU (1)) (0 )y — (Do (20", )
(1.24)
16} " i _
+A (2,0 )) (v )xﬁ] =0 on I7p,

Problem (1.24) can be written in the short form:

(1260 af — A (2,0,0,0)d, ,, +D*(2) + E*(2) =0, z€Qr, k<N,
(540 (,0,0,0) + 43 (,0,0)) il + 28 (2) + YE ()|, =0,

where D, E, Z, Y denote the correspondent expressions in the square brackets
of (1.24). For example, D = {DF}F=N
DF(2) = bF (2,0 (2), v (2)) — b¥(2, 0" (2),!(2)) and so on.

For the linear problem (1.24%), the following estimate holds:

llx, < co{||D|Hao,ao/z(QT) + 1Bl geo.e0r2(g7)
(1.25)

+ ||Z|\H1+ao»(1+ao)/2(fT) + ||Y||'H1+a0,(1+a0)/2(]_“T)}-

We shall prove that every term on the right-hand side of (1.25) is estimated by
h(M)(T /2 4 T(l—ao)/2)||@||XT with some nondecreasing function h(M) > 0.

1) Estimation of ||D||Ha07a0/2(@).
First of all we note that ¢|y=¢0 = 0 and

lolloor < Iollxr T, [0)5) < c(@)8] o (TOF00)/2 4 T1=00/2)
(126) (il gr < 18]l 2 TAF0/2, [5,]50) < (@, 1) ]| 2702,

18zallo gr < 18] 5T/,

We write D¥ in the form:

1 1
ki, = ~ k(, = =
DF(2) :/7‘% (2,0,8) @m(z)+/7‘% (2,0,02) 4 gm (1),
0

Avm Avm al
0 s



66 A. Arkhipova

where © = v + s0, 0y = v + sbdz. By condition Ay, we obtain the inequality

1
(20)
Dl oragry < D) (1ol r + el ) + | [ . ] 8l 07
0
’ (o) ; (c0)
+ H/bv()ds [v]QT + [/bp(...)ds] ) ””wnoo,QT
0 o0 @T 0 @

[62)99) <y (M) |6]| 2 T2

Here and below, we denote by h(M) different positive nondecreasing on M func-
tions. They do not depend on 7" but may be depend on T7.

2) Estimation of ||E||Ha0'a0/2(QT)'
E¥(2) can be written in the form

EF(z) = AAz‘lﬁ(z,v’,vqu)ﬁl + [Az‘lﬁ(z,v',v;) — Az‘lﬁ(z,v”,vg)](v"l)xﬁxa, then

TRTo
by condition Aj and inequalities (1.26), we obtain the estimate

1Bl eom0r2(gry < IAAG 2 1)llog g7 lBaallos o

1 1
(| [aa] olgr | [
O m’QT

eclloe g7

0,
AA ]9 1 [AA](00)
+ 1AA] & QT[UIEIE]QT [ ] V2200, +
1
+ [/AU ds} 0]l oo T M + H/ ] [o@m]g’ﬁ)
, QT 50,QT
1 (c0) : (a0)
| [ ds} locloogrt + | [ an(..) s -
0 0

h(M)||5]| xrT@/2.

3) Estimation of HY“HHQO’(H%)/?(FT)‘

To estimate this expression we straighten a part of JQ2 and obtain the corre-
sponding local estimate of the norm as it was done in the proof of Lemma 1. Using
the same notation we introduce an atlas {V}, P;} <y, for Q, where Pi:V;NnQ —

B, Pj(V;noQ) =0, Sy =0 x(0,7).
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For some fixed j < m, we write y = y(z) for y = Pj(z) and x = x(y) for

Note that Yk A%ﬁ (2,0, 0 A%ﬁ (z,0" v”)vgﬁl]—p
[A1/1k1(2 oA A‘/)kl(z "l l] Yk( )+YIkI( ). Tt is sufficient to prove that
(1.27) HYIH'H1+“0)(1+@0)/2(I‘T) < h(M)||0] x, (Tao/2 +T(1—a0)/2) '

An analogous estimate for Y7; is more easily derived in the same way.
In the local coordinates y € Bl ¥y = (vY,yn),y" € o, we have

V0= Aol (). ). 000 52 ) 6, - 5

+ o (o000 0, 0+ 52 ) = (0 ), ),

9y 10y
" 1 ’Y
a0 32| 52

(1.28)

. N
= A%zl(y t,v ,vy) ey

yEU
yn=0

A l
+ (%kl(y t v 7vy) %Zl(y ,t,’U 7U£//)) vgw ’

where in the last equality we set v = v(z(y/,0),t).
We shall estimate [|Y7([/11a0,0+a0)/2 (5, according to definition (1.9), (1.10).
In the local coordinates

I9lloo, 7 < 18llxy - T3 Néylloo sy < Killdllxg - T

(1.20) (3190 + [, < Kool ey - T/
1oy oo,z < Ksllolxg -T2 [(0y)y 159 < Ka,

where constants K; depend on T; and C?1®0 characteristics of z(y) and y(z).
It is easy to see that I1 = ||Y7 oo x, < h(M)]|0]|x, T/2.

For the next step we omit indexes of functions and write
(1.30)
Y = A NG 82( )dA//
1), = Sty Oy + Ae(y )y + 900y s Dvy
1 1
0%5(..) _ . ., 0%3(...) _ o
N Uyrds dvy + Tap Uy ds 00y,
0
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1 1
0%5(...) . X %)
+/W(vy)y/ ds vy/vZ—I—/st vyvg
0

95(...)

ds ((@y)y/vg + f)y(vg)y/).

+
o—_ . °
S

Now we apply definition (1.28), conditions Az, estimates (1.29) and equality
(1.30) to deduce that

by = [|(VD)y oo, < R(M)|[0] x, T2

Further,

ts = | (71) ) LA ) oyl + 18y o 2
I)y S v Inp 1Vylloo,Sr y' lloo, 27 Vyln

+ [A%](zaﬁ)l\(@y)yfl\oo,m + 1A% 0oy [(ﬁy)y,](gj?) ¥

1
95(. .. . e
—I—H/ %[gp )ds-(vg)y/ -[vy](z;’)},
0

where there are twenty two terms in the braces. We have not enough place to
write and calculate all of them. Note only that all the terms are estimated by
h(M)||1§||XTT°‘0/2 by using A3 and inequalities (1.29).

OO,ET

At last,
. (H%) Iy (1+2a0)
l4 — < T L5 S <A%(y 7ta v 5vy)’0y>t,2’r
1 1+aQ
8%(y’,t,v,vy) ds v : 0
+ — 5 S Uy HU”oo,ET
/ (% t, X
1 o3, ) (m)
. d 12} 7 2
* H 0/ Ov > % 00, X7 <U>t7ET
1 1+a
03(...) " 2 0) 0,
+ 3 ds vy Hvy”oo,ET
" /4 t,Xr
1 8k( ) (1+ao)
DR ~ 2 1 ] ] ] ]
N H / 6 ds vg <Uy>t,ET =J1+J2+93+ 4+ 5.
; P 00,
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For example, we estimate ji:

2 2

1+ap (1+a0)
J1 < <A;{>t,ET HﬁyHoo,ET + ||AJA{||OO,ZT <ﬁy>t,§)T

(=) ()
Here (A%)py,, 7 = (A, t,0' (v 1), vy (v, 1))y, 7 < (M), [|AZ]|oo,2p <

h(M)T(1+20)/2 Now 4y is estimated by h(M) |0 x, T*/? with the help of (1.29).
All other ji’s are estimated in the same way (about the arguments (...) see
(1.28)). Summarizing, we have estimated ;-4 and ||YIHH1+QO,(1+QO)/2(ET) by

h(M) |8 x, T*/? with some h(M) > 0, hence (1.27) follows.

4) Estimation of HZ“H”"‘O’(H“O)”(FT)‘

[ OGH () g om

We write Zj, in the form Z¥(z) = Do s 9™ (2), ="+ sd and put

o,

Z(y't) = Z(x(y',0),t), ¥ €0, te(0,T).
To deduce the estimate

(1.31) HZHHHQO,(HQO)/z(ET) < h(M)Hf)HXT (Tao/Q + T(l—oco)/2)

we make use of conditions Ay, inequalities (1.29) and argue in the same way as
at the previous step. From (1.31) and definition (1.9), (1.10), the estimate of
||ZH7-(1+&07(1+&0)/2(FT) follows.

Now we go back to estimate (1.25) and obtain that for some h(M) > 0

(1.32) ||1I)HXT < Coh(M)H{;”XT (Ta0/2 + T(l—ao)/2) '

Here ¢y depends on the same data as in the statement of Theorem 1. By inequality
(1.32) with 6 = cgh(M), (1.17) follows. Lemma 2 is proved. O

2. Weak global in time solvability

Using M. Struwe’s idea [6], we shall construct a global solution of the Cauchy-
Neumann problem to the class of parabolic systems studied in [9].

Suppose that Q is a bounded domain in R? and 7" > 0 is fixed arbitrarily,
Q = Qx(0,T). For some functions f: Q@ x RN x R?N — Rl and G:Q xRN — R1,

N > 1, we consider a solution u: Q — RN, u = (u!,...,u!), of the problem
k d
ut _dCC fp§($7u7ux)+fuk($,u,ux):0, z:(:v,t)EQ,
«

@D f (@ ug) cos(n,za) + ¢F (@ w)| = 0, T =02x (0,T), k<N,

u‘t:() = QD(,T),

69
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where g = V4G, ¢:Q — RY is a given function, n = n(z) is the outward to Q
normal vector at a point z € 0.

It is easy to see that the corresponding to (2.1) stationary problem describes
stationary points of the functional

(2.2) E[U]:/f(a:,u,um)d:c—F/G(x,u) ds.
Q oN

Now we fix a number ag € (0,1) and formulate all assumptions on 99, ¢, f,
G and g.

Dy. 90 € C3t0 » e WHQ).
Dy. fis defined on the set M = QxRN xR2N with the derivatives mentioned
below and satisfies the following conditions:
(1) ) )
wlpl” < f < 1+ polpl®,
(2.3) | ful + [ fuz| + [ fuul < p2(L+ 1), [l + [fpa] + [ fpul < pa(1 + |p]),
[ fopl + ppal < 2, (fpp(,u,p)6,€) > VI, VE € RPY,

with positive constants vy, ug, p2, v and p1 > 0.

(2) Derivatives fpz, fppe are continuous on M and are Holder continuous in z
with the exponent oy on any compact set of M.

(3) ¥(x,u,p) = fup(z,u,p) is continuously differentiable in z, u, p on the set M.

(4) On any compact subset of M, the function A(z,u,p) = fpp(x,u,p) is twice
continuously differentiable in all arguments and Agzu, Azp, Auu, Aup, App are
Holder continuous in all arguments with the exponent ag.

Ds3. (1) G(z,u) is a continuous function on the set Mg = Q x RY, it has
continuous derivative G, and satisfies

(2.4) G > holul® = h1, |G|+ |Gg| < ha(1 + |uf?),

hg, h1 = const > 0, ho = const > 0.

(2) The function g(xz,u) = V,G(z,u) and its derivatives ¢, gz, 9zz, Gu, Guz,
Jun are continuous on Mgy and

(2.5) 19l + 19| + |9z < h3(1+[ul), |gul + |guz| + [guul < hs,

hs = const > 0.

(3) On any compact subset of My, g, is Holder continuous in z with the
exponent ag and gz, gy are Holder continuous in z, v with the exponent ag.
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It is evident that under assumptions D;-Ds3, the parabolic system (2.1) has
nondiagonal main matrix and quadratic nonlinearity in the gradient. In general,
the weak global solvability for such a type systems was not proved yet.

I we put f(z, u,p) = § APz, w)phh, G(z,u) = & h(@)ul2 + (u,r(x)), where
Azf are C2T20 gmooth functions on O x RY and Azlﬁ = Aﬁa,

Aglﬁ(x,u)ﬁﬁﬁlﬁ >vle?, VEeR?, v =const >0,

h,r € C%2(Q), h(x) > 0, then conditions Dy, D3 hold. In this case we have the
quasilinear problem (2.1) in the form

(2.6)
1
uf = (A7 (@)oo + 5 (A (0 0) ey, = 0, (1) € Q,

z3 zgUza
Ony r

“’f:o =¥

= zf(x,u)uéﬁ cos(n, z4) + h(z)uF + rk(:zr)’F =0, k<N,

We shall construct a weak global solution to (2.1) (and, in particular, to (2.6))
in five steps.

Step 1. First of all, we “smooth” the initial function .

Proposition 1. Under conditions D1-ID3 there exists a sequence {@m () bmen,
om € C?T90(Q), with ¢ — ¢ in W4 (Q) and such that every function ¢,
satisfies the compatibility condition:

(2.7) 11 [om] = fpg(xa m(2), (pm(2))z) cos(n, za) + gk(% S"m(w))}meag =0,
k< N.

As 90 € €310 there exists a sequence {¢y,}, ¥y € C3T(Q), ¢, — ¢ in
W4 (). If some function 1, does not satisfy (2.7) then we can “correct” it in a
boundary layer with the help of the distance function. The function belongs to
C?+20(Q)) and the new sequence tends to ¢ in W3 (). To save place we omit the
proof of Proposition 1.

Step 2. Now we study problem (2.1) with the initial condition u|t:0 = Om, Om
satisfies (2.7). To apply Theorem 1 we introduce the problem in the nondivergence
form, & = u — pm:

i — A2 (2 i)l + 6 (2, 0) =0, (2,0) € Q,
(2.8) 0 (1, i)

u

kg AN _
s+ (:v,u)}r—O, k=1,...,N,

=0 = 0

71
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where

Azf( ’u ) - fpkplﬁ(xaﬁ + (Pm(‘r)vﬁ'i_ (Spm(‘r))l‘)v

V¥ (2,8, ) = fur (@8 + om (@)D + (pm(2))a) = fom (- )BR+
+ (@) > o () = gt (P,
(by (...) we denote the same arguments as function f, & has);
1
0 08) = [ g (@04 @), (o () + 59) s - cos(m, ),
0

3" (2, 0) = ¢ (@, 8+ o () + frp (2, 8+ o (), (pm(2))a) cos(m, za).

Conditions D1-D3 and (2.7) imply the validity of the assumptions of Theo-
rem 1. Thus, for some T3, > 0 there exists a unique smooth solution @, to (2.8)
in a cylinder Qp, = Q x [0, Ti), Gy € H2T0:1420/2(Q, ). Tt implies the exis-
tence of a solution uy, to problem (2.1). We suppose that T}, defines the maximal
interval of the smooth solution.

Step 3. We put Elu(t)] = Jua ()30 + llu(- )13 o
Elu(); ()] = Jua (- 1)l13 g, g0y + 4 1)13 . (4005
v (z°) = 99 N B, (0).

The functions wu.,, m € N, satisfy the following inequalities

1113 s 0y + Eltim(®)] < 1 + 2 Blom]

(2.9)
<c1 + &E[p] = eq, Vit e0,Tm),

Elum(t"); Qr(a%)] < e3(R + (¢ = 1) + caBlum(t'); Qar (2°)]

(2,10) S —
LU0 Gy o7, v € T, R < min{l, diam ©/2).

RZ2 ’
Inequalities (2.9), (2.10) follow from (13), (14) [9]. By Remark 13 [9], the
constants ci, ... ,c5, do not depend on Tyy,.

Now we fix Ry > 0 such that

E[(p;QgRO(IO)] < 86_004’ vz? €0, and Ry < min{l, 85_003}’

where gq is as in Theorem 1 [9]; it depends on the data from conditions D;—Dj3.
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Then there exists some number mg € A such that

&
(211) ElomlQany («°)] < 7=, Ym = mo.

We put T = R2, where 6 < m and derive from (2.10) (with ¢ = 0,

t" =t, R = Ry) and (2.11) the inequality

sup sup Elum(t); Qg,(x)] <eo, Vm >mg.
0<t<min{T,T},} x°€Q

If Tp,, < T then all assumptions of Theorem 1 [9] are valid and it is possible to
extend the solution wu,, up to t = Ty,. This contradicts the definition of Tj,.
Thus, Tp, > T > 0 and

(2.12) sup sup Elum(t), Qg,(z)] < eo.
[0,7] z€Q

All functions um,(t), m > my, are smooth on Q x [0,7]. According to Lemma 2
and Remark 7 [9], (2.12) guarantees that

. T
(2.13) I(wm)azll3 5 < ¢+ e <1+T+ﬁ>, Q=9x(0,7),
’ 0

where the constants ¢ and c, are defined by parameters from conditions (2.3)-
(2.5) and C1*! characteristics of 9Q, ¢, also depends on ||90||W21(Q)'
By (2.9), (2.13), it follows that

(2.14) [sou:?] ||um(-,t)||W21(Q) + ||Um||W22,1(Q) <c¢, Vm>myg.

Whence, uy, — u weakly in W;’l(Q), (tm)z — ug in L2(Q) for some sequence
of m — +0c0. The limit function u is a solution to (2.1), u € Y (Q) = W;’l(Q) N
L>®((0,7), W3 (Q)). From Theorem 2 [9] it follows that u is a unique solution in
this class. Applying Theorem 2 [9], we find that u € H2+@0-1+a0/2(qy % (0,71)
and ugy € L22H200(Q) % (5,7)), V6 > 0.

Suppose that 77 > T defines the maximal interval of the existence of smooth
solution u. According to Theorem 3 and Remark 12 [9], u admits a smooth
extension to the set © x (0,71] \ X7, where the singular set X7, consists of at
most a finite number (M) points, Sp, = {(},71) U... U (™1, T1)}. Analyzing
the proof of Theorem 3 [9] and using (2.10) one can easy derive that M < 4065—(?0.
Moreover, u(-,t) t—_fil“l u(-, T1) weakly in W} (Q) and in Wg’lOC(Q\{xlu. SuzMiy,
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If hp > 0in (2.4) or G = 0 on 0N then the dominating constant M; does not
depend on T (see Remark 13).

Step 4. We denote o) (z) = u(z, T1) € W34 (Q) and deduce that

(2.15) ElpM] < £lp] — L0 g,
dey

in the same way as in [6]. Now we consider problem (2.1) for ¢ > T} with initial
function go(l)(:v). We argue precisely as we did at the previous step. As a result,
we deduce the existence of a smooth solution w1 (z, t) on some interval (T, T5),
uM (1) = uD (-, Ty) weakly in WHR), t — Tb.

We construct a sequence of intervals (T, Tm+1) C (0,7) and of solutions
u(m)(~,t), m=20,1,2,..., (Tp = 0, u(® =y, <p(0) = ). Taking in consideration
(2.15), we deduce that

m-+1
(m+1) 0)7 _ | Yoéo
ElplmT] < €[] (;%) 10,

and arrive at
m—+1

(2.16) M = Z M; <

404 _
VOEO

In the case when hg > 0 in (2.4) or G =0 on 90, mg in (2.16) does not depend
onT.

Joining all the functions u("™), we obtain a solution u (2.1). The solution is
smooth on Q% (0, 7], except of at most finitely many points. Further, u; € L2(Q),
sup Eu(t)] < E[g], u(-,t) — ¢ weakly in W4(Q) (indeed, one can prove that
u(-,t) — ¢ in the norm of W(Q)). The uniqueness of u with the mentioned
properties follows from Theorem 2’ [9] when applying the result to each interval

M
[T, Tj+1), U (T3, Tj41) = [0,T).
]_

We have proved the following result.

Theorem 1. Let conditions D1-Dg hold. Then for a fixed number T' > 0 and
any function ¢ € W4 () there exists a global solution u : @ x (0,T) — RY to the
problem (2.1) such that u is H2+@0:1+@0/2 smooth function in Qx (0, 7]\ 3. The
singular set . consists of at most finitely many points {(z”, tj)}j]vi 1- The number
M is estimated by the data from assumptions D1-D3 and T. If hy # 0 in (2.4)
or G =0 on JQ then M is estimated by the data from ;-3 only.

Every point (z7,17) € ¥ is characterized by the condition

Tim . 2 .
th/HtlJ [Jeeg ’t)||2,QR(mJ) >e9, VR>0,
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(number ey > 0 is taken from Theorem 1 [9]). Furthermore,
(1) we Lo((0,T) WA(Q)), u € L3(Q), sup ) Elu(t)] < Elv);
( u is a unique solution with the above properties;
u satisfies the integral identity

)
3)
/u hF (z,u ux)hma + fur(z,u ,ug)hF) dQ
Q
+

/gk z,u)hFdl =0, Vh e L2((0,T); W3 () N LY((0,T); L>()),
r

u(-, 1) ¥ in Wi(Q).

On the behavior of the solution at infinity

Here we suppose that hg # 0 in (2.4) or G = 0 on 9. In this case, the number
mo in (2.16) does not depend on T'. As T' > 0 was fixed arbitrarily we may discuss
the behavior of u(-,t) when t — +oo0.

First, we assume that all singularities in Q are developed in a finite time inter-
val. Then for some 7' > 0 and R > 0 we have the inequality

2

sup sup [luz (-, ?)]| < €o-

ST 2et 2,Qr(2)
Whence, (see [7, Chapter III]]) along a certain sequence of indices j — oo
the sequence u(-,¢;) weakly converges in WZ(Q) to a function u>® € WZ(1Q),
u(+,tj) — 0 in L?(Q). By the imbedding theorem, ug(-,t;) — (u®°)y in L3(€),
s < 0o. To justify these facts note that for any ¢ > T the following estimates are
valid:

t+1 t+1

/Hum D3 qdr <c+ep (1+R2> /”Ut N3 qdr — 0.

Furthermore, uzq (-, ;) L uSS in the L2(92) norm. To prove this assertion
j—00

we treat the local setting of (2.1) (see (24) [9]). In such a case, the functions
u(-,t;),u transform to v(-,¢;), v in Bi. From the integral identity for v (-, t;)
and v> we derive that [|(v(-,t;) — v™°)yylly g+ — 0. Returning to the functions
1
u(-,t) and u°, we deduce that [Juzz(-,t;) — uggll2,0 B 0.
j—00

Known results on the smoothness of weak solutions of nonlinear elliptic systems
guarantee that u> € C2T90(Q), 4™ is an extremal point of the functional £[u] =

/ f(.’II,U,’U/Z-) d(E-i—/ G(.’II,U) ds.
Q onN
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In particular, if E[p] < eo/v (eg > 0 is defined in Theorem 1 [9] and v is
the constant from (2.3)), then from the monotonicity of E[u(t)] it follows that
SUP[0,00) [z ()| ¢ < 0. In this case Theorem 1 [9] yields that solution u(-,t)

to (2.1) is a smooth transformation of ¢ to an extremal point ©® when ¢ € (0, oo].
Suppose now that there exist singular points at the infinity. In this case u™° is
a smooth in Q\ {z! U... Uz} solution to the problem

d
_Efpg(xauuul‘)—i_fuk(xauuul‘):07 :EEQu
ok (2, u, ug) cos(n, z4) + ¢*(x, “)‘xean =0.
According to De Giorgi’s lemma [8, Chapter II, Lemma 3.1], u®° satisfies the
identity

/(fpgn’;a + fen®) dz + /gknk ds =0, YneWiQ)nL®Q).
Q onN
Concluding, note that the boundedness of the solution constructed was not
stated. ~ The estimate supjg 7y [luz(,t)[l2,0 < const guarantees only that
sup(o,7) lu(-; )| £2.n(q) < const, n = 2.
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