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Some examples related to colorings

Michael van Hartskamp, Jan van Mill

Abstract. We complement the literature by proving that for a fixed-point free map f :
X → X the statements (1) f admits a finite functionally closed cover A with f [A]∩A = ∅

for all A ∈ A (i.e., a coloring) and (2) βf is fixed-point free are equivalent.
When functionally closed is weakened to closed, we show that normality is sufficient

to prove equivalence, and give an example to show it cannot be omitted.
We also show that a theorem due to van Mill is sharp: for every n ≥ 2 we construct

a strongly zero-dimensional Tychonov space X and a fixed-point free map f : X → X
such that f admits a closed coloring, but no coloring has cardinality less than n.

Keywords: Čech-Stone extension, coloring, Tychonov plank

Classification: Primary 54G20; Secondary 54C20, 54D15

All spaces are assumed Tychonov and all maps are continuous. For undefined
notions we refer to [2].
Let f :X → X be a map. An element x ∈ X is called a fixed point of f

if f(x) = x. If f has no fixed points then f is called fixed-point free. If f is
fixed-point free, then one naturally wonders whether its Čech-Stone extension
βf :βX → βX is also fixed-point free.
Van Douwen [4] considered this question and used special covers that are now

called colorings in the literature, named after their counterparts from graph theory
(cf. [3], [1], [5], [6] and many others).
A coloring of a fixed-point free map f :X → X is a finite closed cover A of X

such that for every A ∈ A we have f [A] ∩ A = ∅. If A is an open / functionally
open / functionally closed cover where f [A] ∩ A = ∅ for every A ∈ A then A is
called an open / etc. coloring of f .
In the literature (e.g., [1, p. 1052]) one now and then refers to van Douwen

for the equivalence of the following statements: (1) f has a functionally closed
coloring and (2) βf is fixed-point free. This statement was however not proved
in van Douwen [4]. He restricted himself to closed maps. We fill in the gap in the
literature and show that the statements are indeed equivalent.
If we weaken functionally closed to closed then, as to be expected, normality

is needed for the equivalence of (1) and (2). We show that normality cannot
be omitted by presenting a Tychonov space having a fixed-point free map that
admits a finite closed coloring whereas its Čech-Stone extension has a fixed point.
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Finally we modify this last example to show sharpness in a theorem due to van
Mill [6]. He showed that if a normal spaceX has finite covering dimension n and f
is a homeomorphism such that f admits a finite coloring, then a coloring of f with
n + 3 sets exists. (Aarts, Fokkink and Vermeer [1] did the same for metrizable
spaces.) For every n ≥ 4 we present a strongly zero-dimensional space with a
fixed-point free homeomorphism having a finite closed coloring of n elements but
not one with fewer elements.

1. Equivalence

We start with the following theorem.

Theorem 1. Let X be a (normal ) space and let f :X → X be a fixed-point free
map. The following statements are equivalent:

1. βf is fixed-point free,
2. f admits a functionally open (open) coloring,
3. f admits a functionally closed (closed) coloring.

Proof: First assume that X is an arbitrary space.
1 =⇒ 2: Let X be a space and let f :X → X be such that βf is fixed-

point free. Let x ∈ βX . By normality of βX there exists a functionally open
neighborhood Ux of x such that βf [Ux] ∩ Ux = ∅. Now apply compactness and
trace on X to obtain a functionally open coloring of f .

2 =⇒ 3: Let A be a functionally open coloring. By [2, 7.1.5] there exists a
functionally closed shrinking B of A. Clearly B is a functionally closed coloring.

3 =⇒ 1: Suppose B = {B1, . . . , Bn} is a functionally closed coloring of X .
Striving for a contradiction, assume βf(p) = p for some p ∈ βX . Obviously,
p ∈ βX \ X . Put E = { 1 ≤ i ≤ n : p ∈ Bi }. These and all other closures are
taken with respect to βX . Clearly E 6= ∅ as {B : B ∈ B } covers βX . By known
properties of the Čech-Stone compactification, it follows that for G =

⋂

i∈E Bi

we have G =
⋂

i∈E Bi. In particular, p ∈ G. Hence,

βf(p) ∈ βf [G] ⊆ βf [G] = f [G].

Next observe that for all i ∈ E we have G ⊆ Bi. Since Bi is a color this gives us
that Bi ∩ f [G] = ∅. But now since B is a cover we obtain f [G] ⊆

⋃

i/∈E Bi. Hence

p = βf(p) ∈ f [G] ⊆
⋃

i/∈E

Bi =
⋃

i/∈E

Bi.

So p ∈ Bi for some i /∈ E and so we have the desired contradiction.
It is clear that the same reasoning can be repeated for normal spaces, replacing

functionally open/closed covers by open/closed covers. This is so because for a
normal space X and closed subsets A, B ⊆ X we have that A ∩ B = A ∩ B. �
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2. A finite closed coloring exists, but βf has a fixed point

We now present an example showing that for non-normal spaces ‘functionally
closed’ cannot be weakened to ‘closed’ in Theorem 1.

Example 1. Let X be the topological space obtained by identifying the two
points ω1 in the topological sum of two copies of ω1 + 1 to a single point, say e.
We identify one fixed copy of ω1 + 1 in X with ω1 + 1. For every x ∈ X \ {e} we
denote by −x the corresponding element of the other copy of ω1, and let −e = e.
Moreover we define an ordering on X as follows:

0 < 1 < 2 < · · · < ω < · · · < ω1 = e = −e

e = −e < · · · < −ω < · · · < −2 < −1 < −0.

Put Y = Z ∪ {∞,−∞} where as a subbase for the topology we put

{ 〈a,∞] : a ∈ Z } ∪ { [−∞, a〉 : a ∈ Z },

i.e., Y is the two-point compactification of Z. The map h:Y → Y defined by
h(y) = y + 1 (y ∈ Z) and h(±∞) = ±∞ is a homeomorphism.
Now consider the space X × Y and put Z = (X × Y ) \ {(e,∞), (e,−∞)}. See

Figure 1 for a sketch of X × Y and Z.

e = ω10 1 2 −0−2
−1

∞ ∞

−∞ −∞(e,−∞)

(e,∞)

ω1 + 1 ω1 + 1

X

Y

Figure 1. Four Tychonov planks put together, See Example 1

The reader readily checks that βZ = X × Y . (cf. [2, 3.12.20(e)] and [2, Corol-
lary 3.6.9])
Next we define f :X × Y → X × Y as follows

f
(

(x, y)
)

= (−x, h(y)).
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The map f is obviously a homeomorphism. One readily checks that (e,∞) and
(e,−∞) are the only fixed points of f . So f ↾ Z is fixed-point free. Since
β(f ↾ Z) = f it follows that f is not colorable.
We will now show that f admits a finite closed coloring. To this end we first put

A = { x ∈ X : x ∈ ω1 + 1 } and B = −A. Furthermore let C = {0,±2,±4, . . .}
and D = {±1,±3,±5, . . .}. Obviously

{A × (Y \ C), A × (Y \ D), B × (Y \ C), B × (Y \ D)}

is a finite closed cover of X×Y . We leave it to the reader to verify that by tracing
this cover to Z we obtain a closed coloring of f .

3. Finite closed colorings of arbitrary size

Now that we have shown that there exists a zero-dimensional Tychonov space
and a homeomorphism with a finite coloring (of 4 elements) one is interested to
know whether an upper bound on the minimal number of colors can be found.
Van Mill [6] showed that for homeomorphisms on finite dimensional (in the

sense of dim) normal spaces every finite coloring induces a coloring of cardinality
dimension plus three. By modifying our example from the previous section we
show that for every n ≥ 4 there exists a strongly zero-dimensional space with a
fixed-point free homeomorphism having a finite closed coloring of n elements but
not one with fewer elements.

Example 2. For all m ∈ ω, we will construct by induction spaces Zm and
homeomorphisms hm:Zm → Zm such that the following conditions are satisfied
for all m.

1. |Zm| ≤ ℵm+1,
2. Zm is strongly zero-dimensional,
3. |βZm \ Zm| = 2,
4. hm:Zm → Zm is a fixed-point free homeomorphism,
5. βhm has two fixed points,
6. hm admits a finite coloring,
7. for every z ∈ βZm \Zm, every open neighborhood U ∋ z and every closed
coloring A of hm there exist m+ 2 distinct elements A1, . . . , Am+2 of A
such that U ∩ Ai 6= ∅ (for 1 ≤ i ≤ m+ 2). In particular |A| ≥ m+ 2.

Fons van Engelen pointed out that with a modification of the argument the
number m+ 2 for hm can easily be raised.
We start the construction with Z0 = Z and h0 = f as in Example 1. It

obviously satisfies all conditions.
We proceed by induction. Assume Zm−1 and hm−1 have been constructed as

specified above. For notational convenience we put Z = Zm−1 and h = hm−1.
We fix∞ and −∞ such that βZ\Z = {∞,−∞}. In a similar way as in Example 1
we identify in two copies of ωm+1 + 1 the points ωm+1 to a single point. We put
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X = ωm+1 ∪ {e = ωm+1} ∪ −ωm+1. We define −x and the ordering as before.
Again X is compact.
Define f :X ×βZ → X ×βZ by f

(

(x, y)
)

= (−x, h(y)). It is easy to see that f
has two fixed-points: (e,∞) and (e,−∞). Let D be the set of all non-fixed points
of f . We claim that Zm = D and hm = f ↾ D are as required.
One readily observes that |Zm| ≤ ℵm+1. It is well-known that βωm+1 =

ωm+1 + 1, so it follows that β(ωm+1 × Z) = (ωm+1 + 1)× Z. This implies that
βD = X × βZ. Since βD is strongly zero-dimensional it follows that dimD = 0
as well.
We will now show that f ↾ D admits a closed coloring. Let B = {B1, . . . , Bn}

be a closed coloring of h. Then

{

(ωm+1 ∪ {e})× B1
(βZm)

, . . . , (ωm+1 ∪ {e})× Bn
(βZm)

,

(−ωm+1 ∪ {e})× B1
(βZm)

, . . . , (−ωm+1 ∪ {e})× Bn
(βZm)

}

is a closed cover of βZ. One readily checks that the intersections with Z yield a
closed coloring of f .
To finish the construction we need to check condition (7). By symmetry it

suffices to prove it for one of the fixed points. Let U = U0 × U1 be a basic open
neighborhood of the fixed point (e,∞). Consult Figure 2 for more information.
Let A be a coloring of f . For z ∈ Z, we consider the sets Bz = { (y, z) : z ∈

Z, y ∈ ωm+1 }. From the fact that A is finite it follows that there exists an
Az ∈ A and a closed unbounded set Cz ⊆ ωm+1 such that Cz × {z} ⊆ Az . As
Az is closed, we have (e, z) ∈ Az .
Now {Az ∩ ({e} × Z) : z ∈ Z } corresponds to a coloring of h and hence there

exist at least (m − 1) + 2 = m + 1 distinct such Az denoted A1, . . . , Am+1.
Moreover these have non-empty intersection with U .
Actually, for every open set U2 with ∞ ∈ U2 ⊆ U1 we have that m + 1 such

sets exist. Without loss of generality we may assume that for every open set U2
with ∞ ∈ U2 ⊆ U1 and every i ≤ m+ 1 we have Ai ∩ U2 6= ∅ (where i ≤ m+ 1).
Define the map ξ:Z → {1, . . . , m+ 1} by ξ(z) = i if and only if Az = Ai.
For a moment fix i and consider the set Ai. The set { z : ξ(z) = i } has

cardinality ≤ |Zm| ≤ ℵm. So the intersection

Ci =
⋂

{Cz : ξ(z) = i }

is an intersection of at most ℵm closed unbounded subsets of ωm+1. Hence Ci is
closed unbounded as well (by regularity of ωm+1).

We claim that for every x ∈ Ci, we have (x,∞) ∈ Ai. This is not complicated.
Let V = V0 × V1 be a neighborhood of (x,∞) in Z. As V1 is a neighborhood
of ∞ in Z, it follows from (7) that there exists a z ∈ V1 such that Az = Ai. In

particular, (x, z) ∈ V . So (x,∞) ∈ Ai = Ai, as Ai is closed.
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(e,∞)ωm+1 + 1 −ωm+1 + 1

X

Z

z
Bz

U0

U1
U2

(d,∞)

(x,∞)

(−d,∞)

V1

V0

Ai

Figure 2. Figure for Example 2

Fix c ∈ U0 such that −c ∈ U0 as well. For every i, the set Ci is closed
unbounded, so there exists a d > c such that d ∈

⋂

i Ci. Obviously (d,∞) ∈
A1∩· · ·∩Am+1. Since A is a coloring it follows that f

(

(d,∞)
)

/∈ A1∪· · ·∪Am+1.

Hence there exists an A ∈ A \ {A1, . . . , Am+1} with (−d,∞) ∈ A ∩ U . This
completes the construction.
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