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Cauchy-Neumann problem for a class of nondiagonal

parabolic systems with quadratic growth nonlinearities

I. On the continuability of smooth solutions

A. Arkhipova

Abstract. A class of nonlinear parabolic systems with quadratic nonlinearities in the
gradient (the case of two spatial variables) is considered. It is assumed that the elliptic
operator of the system has a variational structure. The behavior of a smooth on a time
interval [0, T ) solution to the Cauchy-Neumann problem is studied. For the situation
when the “local energies” of the solution are uniformly bounded on [0, T ), smooth ex-
tendibility of the solution up to t = T is proved. In the case when [0, T ) defines the
maximal interval of the existence of a smooth solution, the singular set at the moment
t = T is described.

Keywords: boundary value problem, nonlinear parabolic systems, solvability

Classification: 35J65

Global in time weak solvability of the Cauchy-Dirichlet problem for a class of
nondiagonal parabolic systems with quadratic growth nonlinearities in the gradi-
ent was proved by the author in [1], [2]. In these papers, we analyzed the parabolic
systems provided that the number of spatial variables equals two and that the
corresponding elliptic operator has a variational structure. More exactly,we con-
structed a solution u : Q → R

N , N > 1, where Q = Ω × (0, T ), Ω is a bounded
domain in R

2, and T is any positive number. This solution is smooth in Ω×(0, T )
with the exception of at most a finite number of points. This result was proved
for quasilinear systems in [1] and it was generalized to the nonlinear case in [2].
To construct the global solution we attract two important facts: 1) local in time

classical solvability theorem, 2) the result on the extension of smooth solutions
from an interval [0, T0) to the closed interval [0, T0]. Such an idea of proof was
originally used by M. Struwe in [3], where the author constructed heat flows of
harmonic maps in the case of two spatial variables.
In this paper we study the Cauchy-Neumann problem for the same type of pa-

rabolic systems. We prove the existence of weak global in time solution possessing
the same properties as in the case of the Dirichlet boundary condition. The work
consists of two parts.

Supported by the Russian Foundation for Fundamental Studies (grant no. 99-01-00684).
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In the presented below Part I, we prove the main analytic result. It concerns the
extension of a smooth solution given on an interval [0, T0) up to t = T0 provided
that “local energies” of the system remain small for t ∈ [0, T0] (Theorem 1).
Next paper (Part II) will be devoted to the solvability results. First,we shall

prove local in time classical solvability to nonlinear nondiagonal parabolic systems
under nonlinear boundary conditions. This result has a general meaning. By this
we mean that we do not assume any structural restriction and growth conditions
on the nonlinearities. In the Part II we also prove weak global solvability of the
Cauchy-Neumann problem for the class of the parabolic systems considered in the
Part I.
Let Ω be a bounded domain in R

2 with sufficiently smooth boundary ∂Ω,
Q = Ω× (0, T ), u:Q→R

N , N > 1, u = (u1, . . . , uN ).
We consider the functional

(1) E [u] =

∫

Ω

f(x, u, ux) dx+

∫

∂Ω

G(x, u) ds,

where f and G are scalar-valued functions, x = (x1, x2).
Here we study the initial boundary value problem

(2)

uk
t −

d

dxα
fpk

α
(x, u, ux) + fuk(x, u, ux) = 0 in Q,

fpk
α
(x, u, ux) cos(n, xα) + g

k(x, u)
∣

∣

Γ
= 0, Γ = ∂Ω× (0, T ), k ≤ N,

u
∣

∣

t=0 = ϕ,

where g(x, u) = ∇uG(x, u), ϕ: Ω→R
N is a given function, n = n(x) is the

outward to Ω normal vector at a point x ∈ ∂Ω, α = 1, 2.
It is obvious that the elliptic operator in (2) is the Euler operator of func-

tional (1) and the natural boundary condition is defined at the lateral surface Γ
of the cylinder Q.
Now we fix a number α0 ∈ (0, 1) and suppose that Ω, f , G, g and ϕ satisfy the

following conditions.

CONDITION A1. Ω is a bounded domain in R
2, ∂Ω ∈ C2+α0 .

CONDITION A2. ϕ ∈ C2+α0(Ω), the compatibility condition holds:

fpk
α
(x, ϕ, ϕx) cos(n, xα) + g

k(x, ϕ)
∣

∣

x∈∂Ω = 0, k ≤ N.

CONDITION B1. The function f is defined and has continuous derivatives fu,
fux, fuu, fp, fpx, fup, fpp on the setM = Ω̄× R

N × R
2N .

The following growth conditions hold onM:

(3) ν0|p|
2 ≤ f ≤ µ0|p|

2 + µ1,
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(4)
|fu|+ |fux|+ |fuu| ≤ µ2(1 + |p|2),

|fp|+ |fpx|+ |fpu| ≤ µ2(1 + |p|),

(5) |fpp| ≤ µ2,
∂2f

∂pk
α∂p

l
β

ξlβξ
k
α ≥ ν|ξ|2,

where ν0, ν, µ0, µ2 = const > 0, µ1 = const ≥ 0.

CONDITION B2. On any compact subset of M, the functions fpx, fpu, fpp

satisfy Hölder condition with respect to x, u, p with the exponent α0.

CONDITION C1. The function G is defined and has continuous derivatives
Gx, Gu, Gxu, Guu, Guxx, Guux, Guuu on the setM0 = Ω× R

N . The following
inequalities hold onM0:

(6) G ≥ h0|u|
2 − h1, h0 = const ≥ 0, |G|+ |Gx| ≤ h2(1 + |u|2),

and for g = ∇uG we suppose that

(7) |g|+ |gx|+ |gxx| ≤ h3(1 + |u|), |gu|+ |gux|+ |guu| ≤ h3,

where h1, h2, h3 = const > 0.

CONDITION C2. On any compact subset of M0, the functions gu and gxx

satisfy Hölder condition in x and u with the exponent α0.
As an example of f we introduce

(8) f(x, u, p) =
1

2

∑

k,l≤N
α,β≤2

Aαβ
kl (x, u)p

l
βp

k
α,

where the matrix A = {Aαβ
kl } is smooth enough, A

αβ
kl = Aβα

lk , and

〈A(x, u)ξ, ξ〉 ≥ ν|ξ|2, ∀ ξ ∈ R
2N , ν = const > 0.

We may also put G ≡ 0 or G = 12 |u|
2.

Remark 1. System (1) with f represented by quadratic form (8) is the quasilin-
ear system of parabolic equations with nondiagonal principal matrix A(x, u) and
quadratic growth nonlinearity (fu(x, u, p) ∼ |p|2, |p| → ∞).

Remark 2. The continuation theorem we shall prove (Theorem 1) is valid under
more general assumptions on f and G. For example, we may suppose that f =
f(x, t, u, p) and G = G(x, t, u),

(9)
|ft|+ |ftu| ≤ µ2(1 + |p|2), |fpt| ≤ µ2(1 + |p|), on Q× R

N × R
2N ,

|Gt| ≤ h2(1 + |u|2), |gt| ≤ h3(1 + |u|), on Γ× R
N ,
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and conditions A1, . . . , C2 hold.
Nevertheless, to save place we study the situation when ft = Gt = 0 because

in Part II of the paper a weak global solution will be constructed under such
restriction.
We shall use the following notation:

BR(x
0) = {x ∈ R

2 : |x− x0| < R}, SR(x
0) = {x ∈ R

2 : |x− x0| = R},

B+R (x
0) = BR(x

0) ∩ {x2 > x02}, ΩR(x
0) = BR(x

0) ∩Ω,

γR(x
0) = BR(x

0) ∩ ∂Ω,

Qt1,t2 = Ω× (t1, t2), Q = QT = Q0,T , Ωt = Ω× {t}.

For u : Q→R
N we write

ux = {uk
xα

}k≤N
α≤2 , |ux|

2 =
∑

k≤N
α≤2

(uk
xα
)2, uxt = {uk

xαt}
k≤N
α≤2 ,

|uxt|
2 =

∑

k≤N
α≤2

(uk
xαt)

2, uxx = {uk
xαxβ

}k≤N
α,β≤2, |uxx|

2 =
∑

k≤N
α,β≤2

(uk
xαxβ

)2.

For a set A ⊂ R
k we write |A|k = meask A.

We simply write BR, SR, B
+
R , . . . , instead of BR(0), SR(0), B

+
R (0), . . . , for

brevity. We write ‖ · ‖p,Ω instead of ‖ · ‖Lp(Ω).

The definition of the spaces can be found in [4].
For β, γ ∈ (0, 1) and a continuous in Q function v we put

〈v〉
(β)
x,Q = sup

(x,t),(x′,t)∈Q

x 6=x′

|v(x, t) − v(x′, t)|

|x− x′|β
,

〈v〉
(γ)
t,Q = sup

(x,t),(x,t′)∈Q

t 6=t′

|v(x, t) − v(x, t′)|

|t− t′|γ
,

[v]
(β)
Q = 〈v〉

(β)
x,Q + 〈v〉

(β/2)
t,Q .

Cβ,γ(Q) is the space of continuous in Q functions with the finite norm

‖v‖Cβ,γ(Q̄) = sup
Q̄

|v|+ 〈v〉
(β)
x,Q + 〈v〉

(γ)
t,Q.

Let
δ(z1, z2) = max{|x1 − x2|, |t1 − t2|1/2}, ∀ z1, z2 ∈ R

n+1,

be the parabolic metric.
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We denote by L2,λ(Ω), L2,λ(Ω) and L2,λ(Q; δ), L2,λ(Q; δ) the Morrey spaces
and the Campanato spaces in euclidean and parabolic metrics, respectively.

H2+γ,1+γ/2(Q) is the space of continuous in Q functions u = u(x, t) possessing
continuous in Q derivatives ut, ux, uxx, with the norm

‖u‖H2+γ,1+γ/2(Q̄) = sup
Q̄

|u|+ sup
Q̄

|ux|+ sup
Q̄

|uxx|

+ sup
Q̄

|ut|+ [ut]
(γ)
Q + [uxx]

(γ)
Q + 〈ux〉

(1+γ)/2
t,Q ,

(see [4, Chapter I, §1]).
For fixed α0 ∈ (0, 1) and (t1, t2) ∈ [0, T ], we define the class

K{[t1, t2]} = {u : Q
′
→R

N | u ∈ H2+α0,1+α0/2(Q
′
)}.

where Q′ = Qt1,t2 .
We write u ∈ K{[t1, t2)} if u ∈ K{[t1, τ ]} ∀ τ < t2.
We denote by V (Q) the space L∞((0, T );L2(Ω)) ∩ L2((0, T );W 12 (Ω)) of func-

tions v with the norm

||v||Q =
(

esssup
(0,T )

‖v(·, t)‖22,Ω + ‖vx‖
2
2,Q

)1/2
< +∞.

If v ∈ V (Q) and dimΩ = 2, then v ∈ L4(Q) and

(10) ‖v‖4,Q ≤ q0

(

1 +

(

T

|Ω|2

)1/4
)

||v||Q,

where q0 = const > 0 depends only on C
1 characteristic of ∂Ω (see [4, Chapter 2,

§3]).
We denote by c, ci positive constants which may depend on the parame-

ters ν0, . . . , h3 from conditions (3)–(7) and on the C
2+α0 characteristic of ∂Ω,

‖ϕ‖C2+α0(Ω̄). The dependence on T is stressed by writing c(T ).

Now we formulate the theorem on the extendibility of smooth solutions.

Theorem 1. Let conditions A1, . . . , C2 hold and u be a solution of the class
K{[0, T )} to problem (2). Then there exist ε0 > 0 and R0(ε0) > 0 such that the
inequality

(11) sup
[0,T )

sup
x0∈Ω̄

‖ux(·, t)‖
2
2,ΩR0

(x0) < ε0

implies the inclusions u ∈ K{[0, T ]} and uxt ∈ L2,2+2α0(Q; δ). The number ε0 is
determined by parameters ν0, ν, µ0, . . . , µ2, h0, . . . , h3 and by C

1+1 characteristics
of ∂Ω.

The proof of the theorem is contained in Lemmas 1–7 and Propositions 1, 2.
The proofs of Lemmas 2–4 are similar to the corresponding proofs in [1] and we
omit them here.
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Now we put

E[u(t)] = ‖ux(·, t)‖
2
2,Ω + ‖u(·, t)‖22,∂Ω,

E[u(t),Ωr(x
0)] = ‖ux(·, t)‖

2
2,Ωr(x0)

+ ‖u(·, t)‖22,γr(x0)
,

and we write E [u(t)] for E [u], u = u(x, t) (see (1)).

Lemma 1. If u ∈ K{[0, T )} is a solution to problem (2) then the following
inequalities hold:

t2
∫

t1

∫

Ω

|ut|
2dx dt+ E [u(t2)] ≤ E [u(t1)], ∀ t1 ≤ t2 < T,(12)

‖ut‖
2
2,Q + sup

[0,T ]
E[u(t)] ≤ c1E[ϕ] + c2 ≡ E0,(13)

where c1, c2 = const > 0 depend on the parameters ν0, µ0, µ1, h0 − h2. If h0 = 0
in condition (6) then c1, c2 also depend on T and on C

1+1 characteristics of ∂Ω.
Moreover, the following local energy-type estimate holds:

(14)

t2
∫

t1

∫

ΩR(x0)

|ut|
2dx dt+ sup

[t1,t2]
E[u(t),ΩR(x

0)]≤c3(R+(t2 − t1))

+ c4E[u(t1),Ω2R(x
0)] +

c5(t2 − t1)E0
R2

,

∀ t1, t2 ∈ [0, T ], ∀x
0 ∈ Ω, R ≤ min{1, diamΩ}.

The constants c3, . . . , c5 in (14) depend on the same parameters as c1, c2 in
inequality (13).

Proof: The function u satisfies the integral identity

(15)

t2
∫

t1

∫

Ω

(

uk
t η

k + fpk
α
(x, u, ux)η

k
xα
+ fuk(x, u, ux)η

k
)

dx dt

+

t2
∫

t1

∫

∂Ω

gk(x, u)ηk ds dt = 0,

where t1 ≤ t2 < T and η is a smooth function on the set Ω× [t1, t2].
From (15) with η = ut, estimate (12) follows. To derive (13) we consider two

cases.
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First, we suppose that h0 6= 0 in (6). From (12) it follows that

t
∫

t1

∫

Ω

|ut|
2dx dt+min{h0, ν0}E[u(t)] ≤ (h1 + h2)|∂Ω|+ µ1|Ω|

+max{µ0, h2}E[u(t1)],

and the inequality (13) holds.
If h0 = 0 in (6) then

(16)

t2
∫

t1

∫

Ω

|ut|
2dx dt+ ν0 sup

[t1,t2]
‖ux(·, t)‖

2
2,Ω ≤ c1E[u(t1)] + c2, ∀ t1 ≤ t2 < T,

where c1, c2 = const > 0 do not depend on T .
Let λα, α = 1, 2, be Lipschitz in Ω functions such that λα

∣

∣

∂Ω
= cos(n, xα).

The following inequalities are valid:

‖u(·, t)‖22,∂Ω ≤ 2

∫

∂Ω

|u(x, t)− u(x, t1)|
2(λ21 + λ

2
2) dx+ 2‖u(·, t1)‖

2
2,∂Ω

≤ 2

∫

Ω

(

|u(x, t)− u(x, t1)|
2λα(x)

)

xα

dx+ 2‖u(·, t1)‖
2
2,∂Ω

≤ ‖ux(·, t)‖
2
2,Ω + c‖u(·, t)− u(·, t1)‖

2
2,Ω + 2E[u(t1)].

Moreover,

‖u(·, t)−u(·, t1)‖
2
2,Ω ≤ (t2− t1)‖ut‖

2
2,Ω×(t1,t2)

≤
(16)
(t2− t1)c1E[u(t1)]+(t2− t1)c2.

This implies the estimate

(17)
ν0
2

‖u(·, t)‖22,∂Ω ≤
ν0
2

‖ux(·, t)‖
2
2,Ω + ν0E[u(t1)] + c(t2 − t1)(E[u(t1)] + 1).

Now we sum (16) and (17) to obtain the inequality

t2
∫

t1

∫

Ω

|ut|
2dx dt+

ν0
2
sup
[t1,t2]

E[u(t)] ≤ c1(T )E[u(t1)] + c2(T ), ∀ t ≤ t2,

and estimate (13) follows.
To derive (14), fix a point x0 ∈ ∂Ω, R ≤ min{1, diamΩ} and set η = utξ

2 in
(15), where ξ = ξ(x) is a cut-off function on B2R(x

0), ξ = 1 in BR(x
0). If h0 6= 0

then (14) follows immediately.
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If h0 = 0 in (6) then we get the inequality

(18)

t2
∫

t1

∫

Ω2R

|ut|
2ξ2dx dt+ ν0 sup

[t1,t2]
‖ |ux(t)|ξ‖

2
2,Ω2R(x0)

≤ c0(R+R
2 + (t2 − t1)) + c1E[u(t1),Ω2R(x

0)] +
c2(t2 − t1)

R2
E0.

Furthermore, as above, we derive the inequality

(19)
ν0
2

‖u(·, t)ξ‖22,γ2R ≤
ν0
2

‖ux(·, t)ξ‖
2
2,Ω2R

+ ν0E[u(t1),Ω2R] +
c(t2 − t1)E0

R2
.

From (18) and (19), inequality (14) follows. �

Remark 1. Taking into account the estimate ‖ut‖22,Q ≤ E0 we derive that

(20) sup
[0,T ]

‖u(·, t)‖22,Ω ≤ 2TE0 + 2‖ϕ‖
2
2,Ω ≡ E1.

Estimate (10) with v = u guarantees that

(21) ‖u‖4,Q ≤ c(E0, T ).

Remark 2. The variational structure of the elliptic operator of system (2) was
only assumed in order to prove Lemma 1. Later on we do not use this fact and
consider our problem in the form

(22)

uk
t −

d

dxα
ak
α(x, u, ux) + b

k(x, u, ux) = 0, (x, t) ∈ Q,

ak
α(x, u, ux) cos(n, xα) + g

k(x, u)
∣

∣

Γ = 0,

u
∣

∣

t=0 = ϕ,

where ak
α(x, u, ux) = fpk

α
(x, u, ux) and b

k(x, u, p) = fuk(x, u, p). From assumpti-

ons (4), (5) it follows that the functions a = {ak
α}

k≤N
α≤2 satisfy the natural growth

conditions:

(23)

|a|+ |ax|+ |au| ≤ µ2(1 + |p|), |ap| ≤ µ2,

∂ak
α

∂pl
β

ξkαξ
l
β ≥ ν|ξ|2, ∀ ξ ∈ R

2n,

|b|+ |bx|+ |bu| ≤ µ2(1 + |p|2), |bp| ≤ µ2(1 + |p|).

To estimate ‖ux‖4,Q and ‖uxx‖2,Q we study problem (2) in the local setting.
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Let V be a neighborhood of a fixed point of ∂Ω such that under a C1+1 diffeo-
morphism y = y(x), the set V ∩Ω is mapped to B+2 = B2 ∩ {y2 > 0} and the set

V ∩ ∂Ω to γ2 = B2(0) ∩ {y2 = 0}. We denote by x = x(y), y ∈ B
+
2 , the inverse

transformation to y = y(x) and by v(y, t) = u(x(y), t) a solution to the following
problem:

(24)

vk
t − (Ak

α(y, v, vy))yα + B
k(y, v, vy) = 0, y ∈ B+2 , t ∈ (0, T ),

−Ak
2(y, v, vy) + ĝ

k(y1, v)
∣

∣

γ2×(0,T )
= 0, k = 1, . . . , N,

v
∣

∣

t=0 = ψ(y), y ∈ B+2 .

Here

Ak
α(y, v, q) = a

k
β

(

x(y), u, q
∂y

∂x

)

∂yα
∂xβ

,

B
k(y, v, q) = bk

(

x(y), u, q
∂y

∂x

)

−Ak
α(y, v, q)

Jyα(y)

J(y)
,

J(y) =

∣

∣

∣

∣

det
∂x(y)

∂y

∣

∣

∣

∣

> 0 in B+2 ,

ψ(y) = ϕ(x(y)), ĝ(y1, v) =
g(x(y1, 0), u)H(y1)

J(y1, 0)
,

H(y1) =

(

(

∂x1(y1, 0)

∂y1

)2

+

(

∂x2(y1, 0)

∂y1

)2
)1/2

, |y1| ≤ 2.

On the setM+ = B+2 × R
N × R

2N , the following conditions hold (see (23)):

(25)

|A|+ |Ay|+ |Av| ≤ l1(1 + |q|),

|Aq| ≤ l2,
∂Ak

α

∂qmγ
θkαθ

m
γ ≥ ν∗|θ|

2, ∀ θ ∈ R
2N ,

(26) |B|+ |By |+ |Bv| ≤ l3(1 + |q|2), |Bq| ≤ l3(1 + |q|),

where the positive constants ν∗, l1, . . . , l3 depend on the parameters ν, µ2 and
C1+1 characteristics of functions x(y) and y(x).
Furthermore,

(27)
|ĝ|+ |ĝy1 | ≤ l4(1 + |v|),

|ĝv|+ |ĝvy1 |+ |ĝvv | ≤ l4,

with l4 = const > 0 depending on h3 (see (7)) and C
1+1 characteristics of y(x)

and x(y).
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Remark 3. The set Ω can be covered by a finite number of neighborhoods V 1,
. . . , VM such that a C1+1-diffeomorphism yj = yj(x) is defined on the set V j

and transforms V j ∩Ω into a standard ball or a half-ball, j = 1, . . . ,M . We may
assume that parameters l1, . . . , l4 in the local problem (24)–(27) depend on the
C1 or C1+1 characteristics of ∂Ω, but not on the fixed mapping yj .

Remark 4. For a fixed neighborhood V and diffeomorphism y : V ∩ Ω → B+2
there exists a number λ > 0 such that the image of ωR(y

0) = B+2 ∩BR(y
o) under

the mapping x = x(y) is contained in ΩλR(z
0) for all y0 ∈ B+2 , z0 = x(y0)

and R < 1/2. Below we fix the same parameter λ ≥ 1 for all neighborhoods
V 1, . . . , VM covering ∂Ω.

Lemma 2. Let v be a smooth solution of (24) in B+2 × [0, T ). There exists
a number ε1 > 0 depending on the parameters ν∗, l1, . . . , l4 from conditions
(25)–(27) such that if

(28) sup
[0,T )

sup

y0∈B+2

‖vy(·, t)‖
2
2,ωR1

(y0) < ε1

with some R1 = R1(ε1) > 0, then for any y
0 ∈ B+

3/2
the following estimate holds:

(29) J =

T
∫

0

∫

ωR/4(y0)

(

|vy |
4 + |vyy |

2
)

dy dt

≤ c

{

T

(

E1 +
E0
R2
+ 1

)

+ ‖ψy‖
2
2,ω2R(y0)

}

,

where parameters E0 and E1 were defined in (13) and (20).

Now we only comment the idea of the proof of Lemma 2.
It is easy to see that v satisfies the identity

(30)

t
∫

0

∫

B+2

(

vk
y1th

k + [Ak
α]y1h

k
yα

− B
khk

y1

)

dy dτ

+

t
∫

0

∫

γ2

[ĝk]y1h
kds dτ = 0, ∀ t < T0,

with any smooth function h(y, τ) which vanishes in the neighborhood of the set

S+2 = {|y| = 2} ∩ {y2 > 0} for any τ ∈ [0, t].
Here and below we denote by [. . . ]yk the total derivative with respect to yk of

the expression [. . . ]. From (30) with h = vy1ξ
2, ξ is a cut-off function for B2,
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transforming the boundary integral over γ2 to the integral over B
+
2 we derive the

inequality

(31)
1

2

∫

B+2

|vy1 |
2ξ2dy

∣

∣

∣

∣

t

0
+
ν∗
2

t
∫

0

∫

B+2

|(vy1)y |
2ξ2dy dt

≤ c1

t
∫

0

∫

B+2

[

(|vy |
2 + |v|2 + 1)ξ2 + |vy|

2|ξy |
2 + |vy|

4ξ2
]

dy dt ≡ P.

To estimate the integral

∫ t

0

∫

B+2

|vy2y2 |
2ξ2dy dt we refer to system (24) and ellip-

ticity condition (25). After that, by (31), we obtain the inequality

(32)

t
∫

0

∫

B+2

|vyy |
2ξ2dy dt ≤ c2

{

t
∫

0

∫

B+2

|vt|
2ξ2dy dt+ P

}

.

The integral I =

∫ t

0

∫

B+2

|vy |
4ξ2dy dt in the expression P is estimated with the

help of the inequality
‖w‖44,Ω ≤ 2‖w‖22,Ω · ‖wx‖

2
2,Ω

for w = |vy |2ξ and assumption (28) with some small ε1 in the same way as it was
done in the proof of Lemma 2.1 ([1]). Then estimate (29) follows from (32), (13),
(14) and (20). As a consequence of (29), we have the estimate

(33)

t
∫

0

∫

B+
3/2

(

|vy |
4 + |vyy |

2)dy dt ≤ c

{

T

(

1 + E1 +
E0

R21

)

+ ‖ϕ‖2
W 1
2 (Ω)

}

,

where R1 > 0 is the constant from Lemma 2.

Remark 5. Let ε1 > 0 be the same number as in Lemma 2, let c
∗ > 0 be the

constant from the inequality
∫

ωr(y0)

|vy(y, t)|
2dy ≤ c∗

∫

Ωλr(x0)

|ux(x, t)|
2dx,

where y0 ∈ B+
3/2
, x0 = x(y0), r < 1/2. The constant c∗ depends on C1 charac-

teristics of ∂Ω only.
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Now we suppose that for the solution u ∈ K{[0, T )} and ε0 = ε1/c∗ there exists
R0 = R0(ε0) such that

(34) sup
[0,T )

sup
x0∈Ω

‖ux(·, t)‖
2
2,ΩR0

(x0) < ε0.

Then v(y, t) = u(x(y), t) satisfies (28) with R1 = R0/λ and estimate (33) follows
from Lemma 2. Inequality (34) coincides with condition (11) of Theorem 1. As a
result, under the assumptions of Theorem 1, we obtain the estimate

(35) J ≡

∫

Q

(|ux|
4 + |uxx|

2)dQ ≤ c(T,R0).

Lemma 3. Let u be a solution to problem (2). If the integral J0 =

∫

Q
(|u|4 +

|ux|
4)dQ is finite then there exists t1 ∈ (0, T ) such that for all γ ∈ [0, ν/(4µ2)]

the following estimate holds:

(36) sup
[t1,T )

∫

Ω

|ut(x, t)|
2+2γdx+

T
∫

t1

∫

Ω

(

|uxt|
2|ut|

2γ + |ut|
3+2γ)dx dt ≤ κ1(t1),

where t1 is determined by the parameters ν, µ2, h3, T , by C
1+1 characteristics of

∂Ω, and by the integral J0; the constant κ1(t1) also depends on ‖ut(·, t1)‖2+2γ,Ω.

The proof of this lemma is similar to the proof of Lemma 1.3 in [1] and we
omit it here.

Remark 6. The existence of uxt ∈ L2(Ω × (0, T − ε)) for any ε > 0, follows from
the assumption that u ∈ K{[0, T )}. Estimate (36) with γ = 0 guarantees that
‖uxt‖2,Ω×(t1,T ) < +∞. As a result, we have got the existence of the derivatives

uxt ∈ L2(Q).

We need also a local variant of Lemma 3.

Lemma 3◦. If the assumptions of Lemma 3 hold then for some t1 ∈ (0, T ) and
any γ ∈ [0, ν/(4µ2)] the following inequality is valid:

(37) sup
[t1,T )

∫

ΩR(x0)

|ut(x, t)|
2+2γdx +

T
∫

t1

∫

ΩR(x0)

(

|ut|
2γ |uxt|

2 + |ut|
3+2γ)dx dt

≤ κ1(t1; 2R), ∀x
0 ∈ Ω, R ≤

1

2
diamΩ,

where t1 depends on the same data as in Lemma 3, and κ1(t1; 2R) is deter-
mined by parameters ν, µ2, h3, T , by C

1+1 characteristics of ∂Ω, R−1 and
‖ut(·, t1)‖2+2γ,Ω2R(x0).
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Now we introduce the function class

Y (Q) =W
2,1
2 (Q) ∩ L

∞((0, T );W 12 (Ω)).

If u ∈ Y (Q) then ux ∈ V (Q) and from (10) with v = ux it follows that

(38) ‖ux‖4,Q ≤ c(q0, T )

{

sup
(0,T )

‖ux(·, t)‖2,Ω + ‖uxx‖2,Q

}

.

Remark 7. Let u be a weak solution of (2) from the class Y (Q) and let the
conditions A1, B1, . . . , C2 be valid. Then for a fixed τ > 0 the following estimate
holds:

(39) sup
[τ,T )

∫

Ω

|ut(x, t)|
2+2γdx+

T
∫

τ

∫

Ω

(

|uxt|
2|ut|

2γ+|ut|
3+2γ)dx dt

≤ c(T, τ−1)

∫

Q

(1 + |ut|
2)dQ.

Furthermore, a local variant of (39) is valid:

(40)

sup
[τ,T )

∫

ΩR(x0)

|ut|
2+2γdx+

T
∫

τ

∫

ΩR(x0)

(

|uxt|
2|ut|

2γ + |ut|
3+2γ)dx dt

≤ c0(T, τ
−1, R−1)

T
∫

0

∫

Ω2R(x0)

(1 + |ut|
2)dx dt, ∀x0 ∈ Ω, R ≤

1

2
diamΩ.

(To derive (39) see Remark 1.3 in [1]. To prove (40), see the derivation of inequal-
ity (1.15) in [1].)

Lemma 4. Let v be a smooth on [0, T ) solution of problem (24) and let the

integral J =

∫ T

0

∫

B+
3/2

|vy|
4dy dt be finite. Then there exist t2 ∈ (0, T ) and

γ0 ≤ ν/(4µ2) such that for any γ ≤ γ0

(41) sup
[t2,T )

∫

ωR/4(y0)

|vy(y, t)|
2+2γdy

≤ c1

T
∫

t2

∫

ω2R(y0)

(1+|v|4+|vt|
2+γ+R−2|vy |

2+2γ)dy dt

+ c2

∫

ω2R(y0)

|vy(y, t2)|
2+2γdy ≡ κ(t2, R), ∀ y0 ∈ B+1 , R ≤

1

4
.



706 A.Arkhipova

The proof of Lemma 4 is similar to the proof of Lemma 3.1 in [1]. We explain
only some details. It is not difficult to derive the inequality

(42)

1

2(1 + γ)

∫

ω2R(y0)

|vy |
2+2γξ2dy

∣

∣

∣

∣

t

t2

+
ν∗
2

t
∫

t2

∫

ω2R(y0)

|vy |
2γ |vyy |

2ξ2dy dt

≤ c3

t
∫

t2

∫

ω2r(y0)

|vy |
4+2γξ2dy dt+ c4

T
∫

t2

∫

ω2r(y0)

(1 + |v|4 + |vt|
2+γ

+ |vy |
2+2γ(1 +R−2))dy dt, ∀ y0 ∈ B+1 , R ≤

1

4
, (t2, t) ⊂ (0, T ),

where ξ is a cut-off function for B2R(y
0), ξ = 1 on BR(y

0) and t2 ≥ t1 (t1 is
fixed in Lemma 3). By (21) and(36), we estimate the integral with a constant c4
in (42). We denote by IR the integral with the coefficient c3. To estimate IR we
apply inequality (10) for the function |vy |1+γξ in Ω× (t2, t) and deduce:

(43) IR ≤ c(T, q0)

(

T
∫

t2

∫

ω2R(y0)

|vy |
4dy dt

)1/2{

sup
[t2,t]

∫

ω2R(y0)

|vy|
2+2γξ2dy

+

t
∫

t2

∫

ω2R(y0)

(|vy |
2γ |vyy |

2ξ2 + |vy|
2+2γξ2y)dy dt

}

.

As the integral J0 =

∫ T

0

∫

B+
3/2

|vy |
4dy dt is absolutely continuous, for fixed R > 0

and some t2 ≥ t1 the integral

∫ T

t2

∫

ω2R(y0)
|vy |
4dy dt will be small enough and

(41) follows from (42) and (43).

Remark 8. By (41), we find that

(44) sup
[t2,T )

‖vy(·, t)‖2+2γ0,B+1
≤ K1,

for some γ0 > 0.
Here and below we denote by Ki different constants that may depend on the

parameters from conditions (3), . . . , (7), T , R−1
0 , C

2+α0 characteristics of ∂Ω,
‖ϕ‖C2+α0(Ω̄), ‖ut(·, t2)‖2+2γ0,Ω, ‖ux(·, t2)‖2+2γ0,Ω (t2 ∈ (0, T ) and γ0 ∈ (0, 1)

are fixed in Lemma 4).
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From now on we put Λ0 = (t2, T ). According to Lemmas 3 and 4, we have the
estimates

sup
Λ0

‖ut(·, t)‖p,Ω ≤ K2,(45)

sup
Λ0

‖ux(·, t)‖p,Ω ≤ K3, p = 2 + 2γ0.(46)

As W 1p (Ω) →֒ Cβ(Ω), β = 1− 2/p > 0, we obtain that

(47) sup
Λ0

‖u(·, t)‖Cβ(Ω̄) ≤ K4, β = 1−
2

p
> 0.

Remark 9. If u ∈ Y (Q) is a weak solution of (2) then for any fixed τ ∈ (0, T ) and
γ ≤ γ0 (γ0 is defined in Lemma 4), ux(·, t) ∈ L2+2γ(Ω), ∀ t ∈ (2τ, T ) and

(48) sup
(2τ,T )

∫

Ω

|ux(x, t)|
2+2γdx

≤ c(1 + τ−1)

T
∫

τ

∫

Ω

(

1 + |ut|
2+γ + |u|4 + |ux|

2+2γ) dx dt.

To derive (48) we consider the local variant (24) of problem (2). The proof
is almost the same as the proofs of Lemma 3.1 and Remark 3.3 in [1]. The
appearance of a nonlinear boundary condition does not essentially change the
proof.
As a consequence of (39) and (48), we obtain estimates like (45)–(47).
The next step will be explained.

Lemma 5. There exist constants K5 and K6 such that

sup
Λ0

‖u(·, t)‖Cδ(Ω̄) ≤ K5, ∀ δ ∈ (0, 1),(49)

sup
Λ0

‖ux(·, t)‖Cδ0 (Ω̄) ≤ K6, with some δ0 > 0.(50)

Proof: As always, we denote by v = v(y, t) a smooth on [0, T ) solution to (24).
For a fixed number t ∈ Λ0, v is the solution to the elliptic problem

(51)
−

d

dyα
Ak

α(y, v, vy) + B
k(y, v, vy) = F

k(y, t), y ∈ B+2 ,

−Ak
2(y, v, vy) + ĝ

k(y1, v)
∣

∣

γ2
= 0,

where γ2 = B2(0) ∩ {y2 = 0}, F (y, t) = −vt(y, t).
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From estimates (45)–(47) it follows that

(52)
‖F (·, t)‖p,B+2

≤K7, ‖vy(·, t)‖p,B+2
≤K8, ‖v(·, t)‖Cβ(B+2 )

≤K9,

β = 1− 2/p>0.

For a fixed y0 ∈ B+
3/2
, R ≤ 1/4, we study the model problem:

(53)

d

dyα

◦
Ak

α(θy) = 0 in ωR(y
0),

−
◦
Ak
2(θy) +

◦
gk
∣

∣

γR(y0)
= 0, k ≤ N ; θ

∣

∣

∂ωR(y)\γR(y0)
= v,

where
◦
Ak

α(θy) = Ak
α(y
0, v0, θy), v0 =

1

|ωR|

∫

ωR(y0)
v(y, t) dy,

◦
g = ĝ(y01 , v

0
Γ),

v0Γ =
1

|γR|

∫

γR(y0)
v ds, γR(y

0) = BR(y
0) ∩ {y2 = 0}.

The Campanato-type integral estimates were derived in [8] for solutions to (53),
dimωR = 2:

∫

ωρ(y0)

|θy |
2dy ≤ c0

( ρ

R

)2
∫

ωR(y0)

|θy|
2dy,(54)

∫

ωρ(y0)

|θy − (θy)y0,ρ|
2dy ≤ c0

( ρ

R

)2+2(1−2/q)
∫

ωR(y0)

|θy − (θy)y0,R|
2dy,(55)

where (θy)y0,r =
1

|ωr|

∫

ωr(y0)
θy(y, t) dy and the constants c0 > 0, q > 2 depend

on the parameters l2 and ν∗ from conditions (25). The integral identities for v
and θ provide the following equality:

(56)

∫

ωR

{

[Ak
α(y
0, v0, vy)−Ak

α(y
0, v0, θy)]η

k
yα
+∆Ak

αη
k
yα
+ B

k(y, v, vy)η
k}dy

+

∫

γR

[

ĝk(y1, v)− ĝk(y0, v0Γ)
]

ηkds =

∫

ωR

F kηkdy,

where ∆Ak
α = Ak

α(y, v, vy) − Ak
α(y
0, v0, vy), η is a smooth function in ω̄R,

η|∂ωR\γR
= 0, ωR = ωR(y

0) and γR = γR(y
0).

We denote w = v − θ and set η = w in (56) in order to derive the inequality

(57)

∫

ωR

|wy |
2dy ≤ c

∫

ωR

{

|vy|
2|w|+R2(1 + |vy |

2)

+ |v − v0|2(1 + |vy |
2) +R2|F |2

}

dy + JR,
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where the integral JR =

∫

γR

|ĝ(y1, v)− ĝ(y01, v
0
Γ)| |w| ds is estimated according to

conditions (27) by:

|JR| ≤ c

∫

γR

(R(1 + |v|) + |v − v0|)|w| ds ≤ cRβ
∫

γ

|w| dy

= CRβ
(

−

∫

ωR

(|w|)y2dy

)

≤
1

2

∫

ωR

|wy |
2dy +

c

ε
R2+2β .

Now by (57), we deduce the inequality

(58)

∫

ωR

|wy |
2dy ≤ c1{PR(y

0) + R4β + cFR
2+2β},

where PR(y
0) =

∫

ωR(y0)
|vy|
2|w| dy, cF = ‖F‖2

p,B+2
, and c1 > 0 depends on the

parameters from (25)–(27), K8 and K9.
To estimate PR(y

0) in (58), we consider the identity for the solution v:
∫

B+2

[

Ak
α(y, v, vy)h

k
yα
+ B

k(y, v, vy)h
k] dy +

∫

γ2

ĝk(y1, v)h
k ds =

∫

B+2

F khkdy

with the function h = (v − v0)|w|, y ∈ ωR(y
0), h = 0 in B+2 \ ωR(y

0). Using
estimates (52), we obtain from the last equality:

(59) PR(y
0) ≤ c2R

β
PR(y

0) + c3

[

ε

∫

ωR

|wy |
2dy +

1

ε

(

R4β + cFR
2+2β)

]

for any ε > 0, with constants c2 and c3 depending on the same parameters as c1.
We put ε = 1/(4c1c3) and suppose that the radius R ≤ 1/4 satisfies the additional
restriction c2R

β ≤ 1/2. Then by (58), (59), we find that

(60)

∫

ωR(y0)

|wy |
2dy ≤ c4(R

4β + cFR
2+2β),

c4 = c4(ν∗, l1, . . . , l4,K8,K9), cF = ‖F‖2
p,B+2

.

For the function Hρ(y
0) =

∫

ωρ(y0)
|vy|
2dy, (54) and (60) imply the inequality

(61) Hρ(y
0) ≤ c5

[

( ρ

R

)2
HR(y

0) + R4β + cFR
2+2β

]

,

∀ p ≤ R, c5 = c5(c0, c4).
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Note that β = 1− 2/p = γ0/(1 + γ0) < 1/4. By a well-known algebraic lemma
(see, for example, [9, Chapter III, Lemma 2.1]), we derive from (61) that

(62) Hρ(y
0) ≤ c6

{

( ρ

R

)4β
HR(y

0) + (1 + cF )ρ
4β
}

, ∀ρ ≤ R.

Inequality (62) is valid for any y0 ∈ B+
3/2
and the constant c6 does not depend

on y0. It provides the estimates

(63) ‖vy(·, t)‖
2
L2,4β (B+

3/2
)
≤ K10, ‖v(·, t)‖2

L2,2+4β(B+
3/2
)
≤ K11.

In the case of two spatial variables, the Campanato space L2,2+4β(B+
3/2
) is iso-

morphic to the Hölder space Cβ1(B+
3/2
) and

‖v(·, t)‖
Cβ1(B+

3/2
)
≤ K12, β1 = 2β.

Now we can repeat our considerations interchanging β by β1 and B
+
3/2
by

B+
1+(1/4)2

, R ≤ 1/16. As a result, we obtain estimate (62) with β1 instead of β

and
‖v(·, t)‖

Cβ2(B+
1+(1/4)2

)
≤ K13, β2 = 2β1 = 4β.

It is obvious that for a finite number M of steps, we get to the situation
2βM = 2

M+1β ≥ 1.
Then by (61) with βM instead of β, we obtain the estimate

(64) Hρ(y
0) ≤ c

{

( ρ

R

)2−2ε
HR(y

0) + (1 + cF )ρ
2−2ε

}

,

valid for any ε > 0, ρ ≤ R ≤ 1/4M and y0 ∈ B+1 .
It ensures us that for any fixed ε > 0

(65) ‖vy‖L2,2(1−ε)(B+1 )
≤ K14, ‖v(·, t)‖L2,2+2(1−ε)(B+1 )

≤ K15,

and as a result we have the estimate

(66) ‖v(·, t)‖
C1−ε(B+1 )

≤ K16, ∀ ε > 0.

From (66) the global estimate (49) follows.

To derive (50) we note that for a fixed t ∈ Λ0 and ωR(y
0) ⊂ B+1 , the solution

v satisfies the inequalities

(67)

max
ωR(y0)

|v(·, t)|+Rε−1 osc
ωR(y0)

v(·, t) ≤ K17,

‖vy(·, t)‖
2
2,ωR(y0)

≤ K18R
2(1−ε), ∀ ε > 0.
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Instead of (60) we have the inequality

(68)

∫

ωR(y0)

|wy |
2dy ≤ c(R4(1−ε) + cFR

2+2β).

Using (55) and (68) for the functionMρ(y
0) =

∫

ωρ(y0)
|vy−(vy)y0,p|

2dy, ρ ≤ R,

we derive:

(69) Mρ(y
0) ≤ c

{

( ρ

R

)2+2β0
MR(y

0) +R4(1−ε) + cFR
2+2β

}

, ∀ ρ ≤ R,

where β0 = 1− 2/q > 0, q > 2 is the exponent from (55).

We put ε = (1−β)/2, β̂ = min(β0, β). Due to the algebraic lemma mentioned
above, it follows from (69) that

(70) Mρ(y
0) ≤ c

{

( ρ

R

)2+2δ0
MR(y

0) + cF ρ
2+2δ0

}

, ∀ ρ ≤ R, if δ0 < β̂.

Inequality (70) is valid for any y0 ∈ B+
1/2
and R ≤ 1/2. It provides that

‖vy(·, t)‖
2
L2,2+2δ0 (B+

1/2
)
≤ c{‖vy(·, t)‖

2
2,B+1

+ ‖vt(·, t)‖
2
p,B+1

} ≤ K19.

As a consequence, we get the estimate

‖vy(·, t)‖
Cδ0 (B+

1/2
)
≤ K20,

and now (50) follows. �

Lemma 6. The following estimates hold:

‖u‖Cδ,δ1(Q̄0)
≤ K21, ∀ δ ∈ (0, 1), δ1 =

δ

2(1 + δ)
,(71)

‖ux‖Cγ,γ/2(Q̄0)
≤ K22 for some γ ∈ (0, 1), Q0 = Ω× Λ0.(72)

Proof: Inequality (71) is a consequence of the estimate ‖ut‖2,Q ≤ E0 and rela-
tion (49). (See, for example, [10, Lemma 4].) It is known that estimates (50) and

(71) guarantee the validity of (72) ([4, Chapter 2, Lemma 3.1]). In (72) γ = 2δ0δ11+δ0
,

where δ0 and δ1 are the exponents from (50) and (71), respectively. �

Remark 10. In the case of the quasilinear system (2) (see Remark 1), the in-
formation we have got in Lemma 6 is sufficient to consider problem (2) as a
linear one and to derive further regularity of u(x, t). In the case of nonlinear
Cauchy-Neumann problem (2) estimates (71) and (72) do not guarantee stronger
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regularity of the solution in the frame of the linear theory. In such situation some
additional considerations are required.
We also recall here that estimates (71), (72) provided further regularity of

a solution of the Cauchy-Dirichlet problem both for nonlinear and quasilinear
operators ([1], [2]).
Now we shall describe some regularity results for weak solutions of the linear

boundary-value problem in a local coordinate system.
Assume that Q+ = B+2 × Λ, Γ+ = γ2 × Λ, B

+
2 ⊂ R

2, Λ = (t0, T ) with any
t0 < T .
Let S:Q+ → R

N , be a weak solution of the problem

(73)

Sk
t − (Aαβ

kl (ξ)S
l
yβ
+ rαkm(ξ)S

m + λk
α(ξ))yα +M

α
kl(ξ)S

l
yα

+Nkl(ξ)S
l + P

k(ξ) = 0, ξ = (y, t) ∈ Q+,

A2βkl (ξ)S
l
yβ
+ r2km(ξ)S

m + λk
2(ξ) +Dkl(ξ)S

l + dk(ξ)
∣

∣

Γ+ = 0,

S
∣

∣

t=t0
= ρ(ξ), ξ ∈ B+2 .

We suppose that the following conditions hold:

I. A ∈ Cγ(Q+; δ), ρ ∈ Cγ(B+2 ), where γ ∈ (0, 1) is a fixed number; r,M,N ∈

L∞(Q+), λ∈L2,2+2γ(Q+; δ), P∈L2,2γ(Q+; δ), D∈L∞(Γ+), d ∈ L2,1+2γ(Γ+; δ);

〈A(ξ)η, η〉 ≥ ν|η|2 for any η ∈ R
2N and ∀ ξ ∈ Q+, ν = const > 0.

II. In addition to I we suppose that

r, λ ∈ Cγ(Q+; δ), D, d ∈ Cγ(Γ+; δ), P ∈ L2,2+2γ(Q+; δ), ρ ∈ C1+γ(B+2 )

and the compatibility condition holds:

(74) A2βkl (ξ)ρ
l
yβ
+ r2km(ξ)ρ

m + λk
2(ξ) +Dkl(ξ)ρ

l + dk(ξ)
∣

∣

ξ∈γ2
t=t0

= 0, k ≤ N.

Proposition 1. Let S ∈ V (Q+) be a solution to the linear problem (73).

(1) If conditions I hold then S ∈ Cγ(Q′; δ), Sy ∈ L2,2+2γ(Q′; δ), Q′ = B+
3/2

×Λ,

and the following estimate is valid:

(75)
‖S‖Cγ(Q′;δ) + ‖Sy‖L2,2+2γ(Q′;δ) ≤ c

{

||S||Q+ + ‖λ‖L2,2+2γ(Q′;δ)

+ ‖P‖L2,2γ(Q′;δ) + ‖d‖2,L2,1+2γ(Γ+;δ) + ‖ρ‖
Cγ(B+2 )

}

,

with the constant c depending on ν, ‖A‖Cγ(Q′;δ), ‖r‖L∞(Q+), ‖M‖L∞(Q+),

‖N‖L∞(Q+) and ‖D‖L∞(Γ+).

(2) If conditions II hold then S, Sy ∈ Cγ(Q′; δ) and

(76)
‖S‖Cγ(Q′;δ) + ‖Sy‖Cγ(Q′;δ) ≤ c

{

||S||Q+ + ‖λ‖
Cγ(Q+;δ)

+ ‖P‖L2,2+2γ(Q′;δ) + ‖d‖Cγ(Γ+;δ) + ‖ρ‖
C1+γ(B+2 )

}

,
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with the constant c depending on ν, ‖A‖
Cγ((Q+;δ)

, ‖r‖
Cγ(Q+;δ)

, ‖M‖L∞(Q+),

‖N‖L∞(Q+) and ‖D‖Cγ(Γ+;δ).

The second statement of Proposition 1 (the case r = M = N = D = 0) was
proved in [5, Theorem 2.1]. Here we are interested in the result for the complete
form (73) of linear operators. Analyzing the proof of the mentioned theorem it is
not difficult to verify both of the statements of Proposition 1.

Now we continue the proof of Theorem 1.

Lemma 7. Under assumptions of Theorem 1, ut, uxx ∈ Cα0(Q0; δ), and uxt ∈
L2,2+2α0(Q0; δ), where Q0 = Ω× Λ0, Λ0 = (t2, T ).

Proof: Suppose that v(y, t) = u(x(y), t) is a solution of the local problem (see
(24)):

(77)
vk
t −

d

dyα
(Ak

α(y, v, vy)) + B
k(y, v, vy) = 0, (y, t) ∈ Q+ = B+2 × Λ0,

−Ak
2(y, v, vy) + ĝ

k(y1, v)
∣

∣

Γ+ = 0, k ≤ N.

From Lemma 6 it follows that

(78) ‖v‖
Cβ(Q+;δ)

+ ‖vy‖Cβ(Q+;δ)
≤ K23

with some β ∈ (0, 1).
Moreover, due to estimates (13), (35) and Remark 6 we know that

(79) ||vt||Q+ ≤ K24, ||vy ||Q+ ≤ K25,

where we denote by ||w||Q+ the norm in the space V (Q
+):

||w||2Q+ = sup
Λ0

‖w(·, t)‖2
2,B+2

+ ‖wy‖
2
2,Q+ .

Now we differentiate in t system and boundary condition (77). Function θ = vt
is a solution from V (Q+) of the linear problem

(80)
θkt − (Aαβ

kl (ξ)θ
l
yβ
+ rαkm(ξ)θ

m)yα +M
α
kl(ξ)θ

l
yβ
+Nkl(ξ)θ

l = 0, ξ ∈ Q+,

− (A2βkl (ξ)θ
l
yβ
+ r2km(ξ)θ

m) +Dkl(ξ)θ
l
∣

∣

Γ+ = 0, k ≤ N,

where

Aαβ
kl (ξ) =

∂Ak
α

∂pl
β

(ξ, v(ξ), vy(ξ)), rαkm(ξ) =
∂Ak

α(. . . )

∂vm , Mα
kl(ξ) =

∂B
k(. . . )

∂pl
β

,

Nα
kl(ξ) =

∂B
k(. . . )

∂vl
, ∀ ξ ∈ Q+, Dkl(ξ) = −

∂ĝk

∂vl
(y1, t, v(ξ)), ξ ∈ Γ+.
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We denote by (. . . ) the same arguments as functions
∂ak

α

∂pl
β

have.

Function θ satisfies the initial condition θ
∣

∣

t=t2
= ρ, where

ρ =
d

dyα
Ak

α(y, v(y, t2), vy(y, t2))− B
k(y, v(y, t2), vy(y, t2)) ∈ Cα0(B+2 );

α0 is the exponent from condition B2, ‖ρ‖
Cα0(B+2 )

≤ c(1+‖v(y, t2)‖
C2+α0 (B+2 )

).

Now we can assert that all coefficients of problem (80) satisfy conditions I of

Proposition 1 with γ = β · α0, β is defined in (78), λ
k
α = P

k = dk = 0, Λ = Λ0.
In a result we obtain for S = θ = vt the estimate (75). From it follows that

(81) ‖vt‖Cγ(Q′;δ) + ‖vty‖L2,2+2γ(Q′;δ)

≤ c{K23 +K24 + ‖v(·, t2)‖
C2+α0 (B+2 )

+ 1} ≡ K26.

Differentiating (77) with respect to y1, we derive that θ = vy1 is a solution of the
linear problem that is similar to (80). In this case, the coefficients of the linear
system and of the boundary condition satisfy the conditions II of Proposition 1

with γ = βα0 and θ
∣

∣

t=t2
= vy1(y, t2) ∈ C1+α0(B+2 ). Furthermore, for the linear

system the compatibility condition holds on the set {y ∈ γ2, t = t2}. It provides
estimate (76) for S = θ = vy1 and

(82) ‖vy1‖Cγ(Q′;δ) + ‖(vy1)y‖Cγ(Q′;δ)

≤ c{K23 +K25 + ‖v(·, t2)‖
C2+α0 (B+2 )

+ 1} ≡ K27.

By (81) and (82), we derive from system (77) that

(83) ‖vy2y2‖Cγ(Q′;δ) ≤ K28.

Now we assert that estimate (78) is valid in Q′ with β = 1. It provides that

vt, vyy ∈ Cα0(Q′′; δ) and vty ∈ L2,2+2α0(Q′′; δ), where Q′′ = B+1 ×Λ0. The result
of Lemma 7 follows. �

Remark 11. It is assumed in Theorem 1 that u ∈ K{[0, T ′]} for any T ′ < T .

Considering the local problem (77) in the cylinder B+2 × (0, T ′) and repeating the

proof of Lemma 7, one can derive that vyt ∈ L2,2+2α0(B+1 × (0, T ′); δ). It implies

that uxt ∈ L2,2+2α0(Ω × (0, T ′); δ). Taking into account the result of Lemma 7
we obtain that uxt ∈ L2,2+2α0(Q; δ).

The last step to prove Theorem 1 is the estimation of 〈ux〉
(1+α0)/2
t,Q0

.

Definition. A bounded domain Ω is said to be of type (A) if for a fixed number
A > 0 and all x ∈ Ω and r < diamΩ,

|Ωr(x)| ≥ Arn.

Now we prove the following statement.
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Proposition 2. Let Ω be a bounded domain of type (A) in R
n, n ≥ 2, Q =

Ω × (0, T ). Suppose that the function w: Q → R
N is continuously differentiable

in Q with respect to x1, . . . , xn and that wt ∈ L2,n+2α(Q; δ) for some α ∈ (0, 1).
If

〈wx〉
α/2
t,Q = l1 < +∞, ‖wt‖L2,n+2α(Q;δ) = l2,

then there exists a constant c = c(l1, l2) such that

〈w〉
(1+α)/2
t,Q ≤ c.

Proof: We fix x ∈ Ω, t, t′ ∈ [0, T ], t < t′, and denote ∆ = t′−t > 0, R = ∆1/2.
For y ∈ ΩR(x) we have the inequalities

|w(x, t) − w(x, t′)| ≤

∣

∣

∣

∣

1
∫

0

d[w(y + s(x − y), t)− w(y + s(x− y), t′)]

ds

∣

∣

∣

∣

+ |w(y, t) − w(y, t′)| ≤
(∗)

∣

∣

∣

∣

1
∫

0

[wyj (ỹ, t)− wyj (ỹ, t
′)] ds (xj − yj)

∣

∣

∣

∣

+

t′
∫

t

|wτ (y, τ)| dτ ≤ l1∆
α/2R+

t′
∫

t

|wτ (y, τ)| dτ.

Inequality (∗) holds for almost all y ∈ ΩR(x), ỹ = y+s(x−y). Now we integrate
the result with respect to y over ΩR(x) and divide by |ΩR|:

|w(x, t)−w(x, t′)| ≤ l1∆
(1+α)/2+

|ΩR|1/2|∆|1/2

ARn

(

t′
∫

t

∫

ΩR(x)

|wτ (y, τ)|
2dy dτ

)1/2

≤ (l1 + c(A, n)l2)∆
(1+α)/2.

We apply Proposition 2 to the function w = ux on Q0 = Ω × Λ0, where u is
the solution of (2) under investigation. Here n = 2, α = α0 and the estimates of

〈uxx〉
α0/2
t,Q0

and ‖uxt‖L2,2+2α0 (Q0;δ)
were derived in Lemma 7. It implies that

(84) 〈ux〉
(1+α0)/2
t,Q0

≤ K29.

From Lemma 7, Remark 11 and estimate (84) it follows that u ∈ K{[0, T ]}.
Theorem 1 is proved. �

Remark 12. Suppose that for a domain Ω1 ⊂ Ω the inequality

(11′) sup
[0,T )

sup
x0∈Ω̄1

‖ux(·, t)‖
2
2,BR0

(x0) < ε0
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holds instead of (11) with some R0 and ε0 as in Theorem 1. Then u ∈ K{Ω0 ×
[0, T ]} for any Ω0 ⊂ Ω1 with dist (Γ0,Γ1) > 0, Γi = ∂Ωi ∩ Ω, i = 0, 1. To
prove this assertion we analyze the proof of Theorem 1. In particular, we take
into account the local estimates (14), (29), (37), (41) and the local method of the
proof of Lemmas 5 and 7.

Further, analyzing the proof of Theorem 1, we can state the smoothness result

for the solution u ∈ Y (Q) =W 2,12 (Q) ∩ L
∞((0, T );W 12 (Ω)).

Theorem 2. Suppose that for a fixed α0 ∈ (0, 1) conditions A1, B1, B2, C1 and
C2 hold. If u ∈ Y (Q) is a solution to problem (2) then u ∈ K{(0, T ]} and the
derivatives uxt ∈ L2,2+2α0(Ω× (δ, T )) for any δ > 0.

Proof: From Remarks 7 and 9 it follows that for any τ > 0

(85) sup
[τ,T )

‖ut(·, t)‖p,Ω ≤M1, sup
[τ,T )

‖ux(·, t)‖p,Ω ≤M2

with some p > 2, M1 and M2 being constants depending on the parameters from
conditions (3)–(7), on C2+α0 -characteristics of ∂Ω, T , ‖ϕ‖W 1

2 (Ω)
, ‖u‖Y (Q) and

τ−1. By estimate (85), we derive higher regularity of u in the same way as it was
done in Theorem 1. As a result, u ∈ K{[τ, T ]} and uxt ∈ L2,2+2α0(Ω× ((τ, T ); δ).

�

To construct a weak global in time solution of problem (2) we shall use the
following uniqueness result.

Theorem 2′. Problem (2) has not more than one solution in the class Y (Q).

The proof of Theorem 2′ is trivial when taking into account that diamΩ = 2
and, in particular, applying inequality (10) (see [2, Theorem 3] for the case of the
Dirichlet boundary condition).

On the singular set of the solution.

To describe the singular set, we follow M. Struwe’s idea [3]. Suppose that
u ∈ K{[0, T )} is a solution of problem (2) and T > 0 defines the maximal interval
of the existence of the smooth solution. It means that it is impossible to extend
u(x, t) as a smooth function up to t = T . According to Theorem 1, there exists a
point (x̂, T ), x̂ ∈ Ω, where condition (11) is not fulfilled, that is

(86) lim
tրT

‖ux(·, t)‖
2
2,ΩR(x̂)

≥ ε0,

where ε0 > 0 is defined by the data of (2). Let σ denote the set of all such points
x̂ from Ω and put ΣT = σ × {T }.
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Let us fix points x1, . . . , xM ∈ σ and choose a number R ∈ (0, 1) such that
B2R(x

i) ∩ B2R(x
j) = ∅ for any i 6= j, i, j ≤ M and c3R < ε0/16. (Here and

below, c3, . . . , c5 are the constants from inequality (14).)
We fix a positive number θ from the condition θ(c3+ c5E0) < ε0/8 and choose

a tk ∈ (0, T ) such that tk ≥ T − θR2 ≡ t̂ for any k = 1, . . . ,M and

(87) ‖ux(·, t
k)‖22,ΩR(xk) ≥

ε0
2
.

By inequality (14), we obtain the estimate

(88) ‖ux(·, t
k)‖22,ΩR(xk) <

ε0
4
+ c4E

[

u(t̂),Ω2R(x
k)
]

.

From (87)and (88) it follows that

c4E
[

u(t̂),Ω2R(x
k)
]

>
ε0
4
.

Taking into account that sup
[0,T ]

E[u(t)] ≤ E0 (see (13)), we have

E0 ≥
M
∑

k=1

E
[

u(t̂),Ω2R(x
k)
]

>
ε0
4c4

M.

It means that M < 4c4E0/ε0, i.e., the singular set σ consists of at most a finite
number of points.
Moreover, Remark 12 allows us to assert that the solution u can be extended

smoothly to the set Q \ ΣT . We have proved the following result.

Theorem 3. Suppose that conditions A1–C2 hold and u ∈ K{[0, T )} is a solution
of problem (2). If T > 0 defines the maximal interval of the existence of a smooth

solution u then there exist at most a finite number of points x̂1, . . . , x̂M in Ω such
that the function u loses its smoothness in (x̂j , T ), j ≤M , more exactly

lim
tրT

‖ux(·, t)‖
2
2,ΩR(x̂j) > ε0, ∀R > 0,

where ε0 is defined by parameters from conditions (3)–(7).

Remark 13. If we suppose that h0 6= 0 in (6) then the constants c1, . . . , c5 in (13),
(14) are independent of T . In this case, analyzing the proof of Theorem 3, one
can show that M (the number of singular points of the solution) is dominated
by a constant that does not depend on T . The same fact is valid if we consider
G = 0 on ∂Ω and put E[u(t)] = ‖ux(t)‖22,Ω in (13) and (14).
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