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Cartesian closed hull for (quasi-)metric spaces (revisited)

Mark Nauwelaerts

Abstract. An existing description of the cartesian closed topological hull of pMET∞,
the category of extended pseudo-metric spaces and nonexpansive maps, is simplified, and
as a result, this hull is shown to be a special instance of a “family” of cartesian closed
topological subconstructs of pqsMET∞, the category of extended pseudo-quasi-semi-
metric spaces (also known as quasi-distance spaces) and nonexpansive maps. Further-
more, another special instance of this family yields the cartesian closed topological hull
of pqMET∞, the category of extended pseudo-quasi-metric spaces and nonexpansive
maps (which has recently gained interest in theoretical computer science), and this hull
is also shown to be a nice generalization of Prost, the category of preordered spaces
and relation preserving maps.

Keywords: (extended) pseudo-(quasi-)metric space, (quasi-)distance space, preordered
space, demi-(quasi-)metric space, cartesian closed topological, CCT hull

Classification: 18D15, 18B99, 54C35, 54E99

1. Introduction

It is the intention of this paper to indicate a somewhat surprising analogy
between topological (i.e. convergence-like) spaces and metric (i.e. quasi-distance-
like) spaces in the following sense.
In [6], G. Bourdaud indicated the existence of a “family” of cartesian closed

topological constructs in CONV, the category of convergence spaces and con-
tinuous maps, where this “family” depended on (i.e. was “indexed” by) certain
choices of functors. Moreover, it turned out that the cartesian closed topological
hull (CCT hull) of TOP (described by Ph. Antoine ([3]), A. Machado ([17]) and
G. Bourdaud ([5])) is a particular instance of this family (meaning; with appro-
priate choices of functors). Not only that, the CCT hull of CREG, the category
of completely regular topological spaces and continuous maps, also arises as a
specific instance of this family (by again appropriate choices of functors) (shown
also in [6]).
It will now first be shown that such a family of CCT constructs also arises in

a quasi-distance-like setting, i.e. in pqsMET∞, the category of extended pseudo-
quasi-semi-metric spaces and nonexpansive maps (also known as qDist). Next,
it turns out that the description of the CCT hull of pMET∞ (which is the same
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as the CCT hull of MET), the category of (extended pseudo-)metric spaces and
nonexpansive maps, given by J. Adámek and J. Reiterman in [2] can be simplified
in such a way that this CCT hull is a particular instance of this family (indeed, as
the existence of this family was inspired by this particular hull). Next, it will be
shown that another specific instance of this family is the CCT hull of pqMET∞,
the category of extended pseudo-quasi-metric spaces (no symmetry required) and
nonexpansive maps.
Since these extended pseudo-quasi-metric spaces are a generalization of both

ordinary metric spaces and preordered spaces, they have recently received quite
some attention of researchers working in theoretical computer science as suitable
objects for domain theory (Smyth ([22], [23]), Bonsangue, van Breugel and Rutten
([4])), in spite of failing the important property of being cartesian closed, where
it is also demonstrated here that the CCT hull of pqMET∞ is a nice generali-

zation not only of (obviously) (pq)MET(∞), but also of Prost, the category of
preordered spaces and relation preserving maps.

2. Preliminaries

Since CCT categories (or constructs) will be considerably used, first note that
a topological construct will stand for a concrete category over Set which is a
well-fibred topological c-construct in the sense of [1], i.e.

(a) each structured source has an initial lift,
(b) every set carries only a set of structures,
(c) each constant map (or empty map) between two objects is a morphism.

Also recall that a construct A is CCT (cartesian closed topological) if A is
a topological construct which has canonical function spaces , i.e. for every pair
(A, B) of A-objects the set hom(A, B) can be supplied with the structure of an
A-object, denoted by [A, B], such that

(a) the evaluation map ev : A × [A, B] −→ B is an A-morphism,
(b) for eachA-object C andA-morphism f : A×C −→ B, the map f∗ : C −→
[A, B] defined by f∗(c)(a) = f(a, c) is an A-morphism (f∗ is called the
transpose of f). Observe also that given f : A × C −→ B, the transpose
f∗ : C −→ [A, B] is the map which makes the following diagram commute:

A × [A, B]
ev // B

A × C

1×f∗

OO

f

66
m

m
mm

m
m

m
m

m
m

m
mm

m
m

In general, categorical concepts and terminology used in the sequel (and possi-
bly not recalled here), in particular regarding categorical topology, can be found
in [1] and [20]. Furthermore, a functor shall always be assumed to be concrete
(unless this is clearly not the case from its definition) and subcategories to be full
and isomorphism-closed.
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The CCT hull of a construct A (shortly denoted by CCTH(A)) (if it exists)
is defined as the smallest CCT construct B in which A is closed under finite
products (see [10]). Also from [10], recall that given a CCT construct C in which
A is finally dense (i.e. each C-object is a final lift of some structured (epi-)sink
in A), the CCT hull of A is the full subconstruct of C determined by

CCTH(A) := {C ∈ C | there exists an initial source (fi : C −→ [Ai, Bi])i∈I

where ∀ i ∈ I : Ai, Bi ∈ A}.

In short, the CCT hull of A is the initial hull in C of the power-objects of A-
objects.
A more recent survey of such properties and hull concepts can be found in [9]

and [21].

Now, let us turn to recalling some necessities regarding (extended pseudo-quasi-
semi-)metric spaces, where terminology and notations will be as in [15].
Given a set X , a function d : X × X −→ [0,∞] is called a metric if it fulfills

the properties:

(1) ∀x ∈ X : d(x, x) = 0;
(2) triangle inequality : ∀x, y, z ∈ X : d(x, z) ≤ d(x, y) + d(y, z);
(3) symmetry : ∀x, y ∈ X : d(x, y) = d(y, x);
(4) separatedness : ∀x, y ∈ X : d(x, y) = 0⇒ x = y;
(5) finiteness: ∀x, y ∈ X : d(x, y) < ∞.

If d is not necessarily finite, then it is called an extended metric, denoted by∞-
metric for short. If it is not necessarily separated, then it is called a pseudo-metric,
denoted by p-metric for short, and if it is not necessarily symmetric, then it is
called a quasi-metric, denoted by q-metric for short. If it does not necessarily
satisfy the triangle inequality, then it is called a semi-metric, denoted by s-metric
for short.
Any combination of these is also possible; for instance an ∞p-metric is quite

common (and also known as écart), as is its quasi-counterpart ∞pq-metric, in
the study of (quasi-)uniform spaces (see e.g. Weil [24], Császár [7], Fletcher and
Lindgren [8] and Künzi [11], [12]).
A pair (X, d) where d is an ∞pqs-metric on X is called an extended pseudo-

quasi-semi-metric space, ∞pqs-metric space for short. Analogous conventions
regarding ∞-, p-, q- and s- hold for spaces. For instance, ∞pq-metric spaces are
a common generalization of both ordinary metric spaces and preordered spaces
(because a preorder relation can be viewed as a discrete quasi-distance function
(see also further)), and as such they are considered suitable objects in domain
theory in theoretical computer science (e.g. Lawvere ([13]), Smyth ([22], [23]) and
Bonsangue, van Breugel and Rutten ([4])).
Given two ∞pqs-metric spaces, (X, dX) and (Y, dY ), a function f : X −→ Y

is said to be nonexpansive if it fulfills the property

∀x, y ∈ X : dY (f(x), f(y)) ≤ dX (x, y).
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Extended pseudo-quasi-semi-metric spaces and nonexpansive maps form the
objects and morphisms of a construct which is denoted by pqsMET∞. The
other types of spaces which have been considered so far give rise to subconstructs
of pqsMET∞ and here too we follow the same notational and terminological
conventions. For instance, psMET∞ is also known as Dist, pqsMET∞ is also
known as qDist and MET consists of (ordinary) metric spaces.

Recall the following properties.

2.1 Proposition. pqsMET∞ is a cartesian closed topological construct. More-

over, given a source (fi : X −→ (Xi, di))i∈I , the initial lift d is given by

d(x, y) := sup
i∈I

di(fi(x), fi(y)),

and given a sink (fi : (Xi, di) −→ X)i∈I , the final lift d is given by

d(x, y) := inf{di(xi, yi) | i ∈ I, xi, yi ∈ Xi, fi(xi) = x and fi(yi) = y}.

Given ∞pqs-metric spaces A := (X, dX) and B := (Y, dY ), the power-object
[A, B] is (hom(A, B), d), where

d(f, g) := sup {dY (f(x), g(y)) | x, y ∈ X : dY (f(x), g(y)) > dX(x, y)}.

The following relations hold (where r (c) : A −→ B means that A is a
bi(co)reflective subconstruct of B):

psMET∞ r

c
// pqsMET∞

pMET∞ r

c
//

r

OO

pqMET∞

r

OO

In particular, all indicated subconstructs are topological constructs. Also, the

pqMET∞-bireflection of (X, d) is denoted by (X, d∗) and is given by

d∗(x, y) := inf

{

n
∑

i=0

d(ui, ui+1) | u0, . . . , un+1 ∈ X, u0 = x, un+1 = y

}

.

The psMET∞-bicoreflection of (X, d) is (X, d∨d−1), where d−1(x, y) := d(y, x).
Furthermore, various preservations hold. More precisely, power-objects in

psMET∞ are formed as in pqsMET∞ and if (X, d) is an (extended) pseudo-
semi-metric space, then (X, d∗) is an (extended) pseudo-metric space. Also note
that the bicoreflection in the bottom row is the restriction of the bicoreflection in

the top row. �

As mentioned earlier, one obtains some interesting subcategories of pqsMET∞

by restricting one’s attention to those spaces that are discrete in the following
sense.
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2.2 Proposition. The topological construct Rere of reflexive relations and
relation preserving maps is concretely isomorphic to the full subconstruct of

pqsMET∞ determined by {(X, d) ∈ pqsMET∞ | d(X × X) ⊂ {0,∞}} (and
these shall therefore be identified with each other whenever convenient).
Further, using this identification, it follows that pqMET∞ ∩ Rere = Prost

(where the latter is the full subconstruct of Rere consisting of preordered spaces)
and the following relations hold:

pqMET∞ r // pqsMET∞

Prost

r c

OO

r // Rere

r c

OO

In particular, all indicated constructs are topological, and moreover, Rere and
Prost are cartesian closed topological constructs (see e.g. [20, (4.2.4)]), where
in both cases the bicoreflection (X, dr) of a space (X, d) is obtained by letting
dr(x, y) := 0 if d(x, y) = 0 and dr(x, y) :=∞ otherwise. �

2.3 Proposition. MET is finally dense in psMET∞. Moreover, letting Dǫ :=
({0, 1}, dǫ) where dǫ(0, 1) := ǫ =: dǫ(1, 0), then the class {Dǫ | 0 < ǫ < ∞} is
finally dense in psMET∞.

Furthermore, qMET∞ is finally dense in pqsMET∞. Again moreover, letting

Sǫ := ({0, 1}, d
q
ǫ) where d

q
ǫ (0, 1) := ǫ and d

q
ǫ(1, 0) := ∞, then the class {Sǫ | 0 <

ǫ < ∞} is finally dense in pqsMET∞. �

2.4 Proposition. Let (X, d) be an ∞pq-metric space and let Bd(x, ǫ) := {y ∈
X | d(x, y) < ǫ} and Vd(x) := {V ⊂ X | ∃0 < ǫ : Bd(x, ǫ) ⊂ V }, then the
following hold:

(1) (Vd(x))x∈X determines the neighbourhoods of a topology Td, called the

topology underlying d;

(2) T : pqMET∞ −→ TOP : (X, d) 7→ (X, Td) determines a concrete functor.

�

2.5 Definition. The right-order topology Tr on [0,∞] is the topology whose open
sets are {]a,∞] | a ∈ [0,∞]} ∪ {[0,∞]}.

3. Some CCT subconstructs of pqsMET∞

Let us first introduce the necessary concepts in order to define the previously
mentioned “family” of CCT constructs, which inspires and allows to simplify (the
description of) the CCT hull of pMET∞ given in [2].
Also note that CCTH(pMET∞) = CCTH(MET) (where it is actually the

latter one that is considered in [2]), which follows from the well-know facts that
pMET∞ is the topological hull (that is, smallest finally dense topological exten-
sion) of MET, and that such related constructs have the same CCT hull (recall
that a CCT hull is also the smallest finally dense CCT extension).
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3.1 Definition. Let A be a category and denote B := MP(A) for the category
such that Ob(B) := Ob(A) and homB(A, B) := {(f, g) | f, g ∈ homA(A, B)}.
Furthermore, if (f1, f2) ∈ homB(A, B) and (g1, g2) ∈ homB(B, C), then define
(g1, g2) ◦B (f1, f2) := (g1 ◦A f1, g2 ◦A f2). Clearly, this composition is associative

and the identity elements are given by (1A
A

, 1A
A
) (A ∈ Ob(B)).

The resulting category MP(A) is called the morphism pairing (category) (or
the point-point-morphism category) of A.

3.2 Definition. Let G : MP(pqsMET∞) −→ TOP be a (non-concrete) functor
such that

∣

∣G
(

(f, g) : (X, dX ) −→ (Y, dY )
)
∣

∣ = f × g : X × X −→ Y × Y , which
will be called a paired functor (or a point-point-functor ).
A space (X, d) ∈ pqsMET∞ is called a G-demi-metric space if it satisfies the

following condition:

(D) : d : G(X, d) −→ ([0,∞], Tr) is a continuous map.

The full subconstruct of pqsMET∞ whose objects are G-demi-metric spaces
is denoted by G-dpqsMET∞.

3.3 Remark. Since the foregoing may seem (overly) complicated, let us first
indicate a more usual and natural way in which such a paired functor G may
arise (as they will in most of the sequel).
Let Gi : pqsMET∞ −→ TOP (i = 1, 2) be concrete functors. The paired

functor G := (G1, G2) : MP(pqsMET∞) −→ TOP (called pairing of G1 and
G2) is defined by

G
(

(f, g) : (X, dX) −→ (Y, dY )
)

:=

f × g : G1(X, d)× G2(X, d) −→ G1(Y, dY )× G2(Y, dY ).

3.4 Proposition. Let G : MP(pqsMET∞) −→ TOP be a paired functor, then
G-dpqsMET∞ is cartesian closed topological. Moreover, G-dpqsMET∞ is bire-

flective in pqsMET∞ and [(X, dX), (Y, dY )] is a G-demi-metric space whenever

(Y, dY ) is.

Proof: Let (fi : (X, d) −→ (Xi, di))i∈I be an initial source in pqsMET∞ such
that all (Xi, di) ∈ G-dpqsMET∞ (and assume that I 6= ∅, otherwise (X, d) is an
indiscrete space which trivially satisfies (D)). To show that (X, d) satisfies (D),
assume that A ∈ Tr, then it follows from Proposition 2.1 that

d−1(A) =
⋃

i∈I

(

di ◦ (fi × fi)
)

−1
(A).

From the nonexpansiveness of all fi (and therefore the continuity of all G
(

(fi, fi) :

(X, d) −→ (Xi, di)
)

= fi × fi : G(X, d) −→ G(Xi, di), i ∈ I) and the fact that all
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(Xi, di), i ∈ I, satisfy (D) it follows that d−1(A) is open (in G(X, d)). Hence d is
continuous and (X, d) is a G-demi-metric space.
Now let (Y, dY ) satisfy (D) and (X, dX ) ∈ pqsMET∞, then it needs to be

shown that (Z, d) := [(X, dX), (Y, dY )] also satisfies (D). To this end, assume
that [0,∞] 6= A ∈ Tr, then it follows from the formula of d in Proposition 2.1 that

d−1(A) =
⋃

(x,y)∈X×X

(

(

dY ◦ (evx × evy)
)

−1(
A ∩ ]dX(x, y),∞]

)

)

.

Hence it follows from the fact that all evx, x ∈ X , are contractions (and therefore
the continuity of all G

(

(evx, evy) : (Z, d) −→ (Y, dY )
)

= evx × evy : G(Z, d) −→

G(Y, dY ), x, y ∈ X) and the fact that dY satisfies (D) that d−1(A) is open (in
G(X, d)). Hence, (Z, d) is a G-demi-metric space. �

Using Remark 3.3 now provides us with a (natural) example.

3.5 Example. Let R : pqsMET∞ −→ pqMET∞ : (X, d) 7→ (X, d∗) be the
pqMET∞-bireflection and let T : pqMET∞ −→ TOP be as before (i.e. the un-
derlying topology functor). Combining these properly leads to the paired functor

D := (T ◦ R, T ◦ R) : MP(pqsMET∞) −→ TOP

which allows us to define dpsMET∞ := psMET∞ ∩ D-dpqsMET∞.

This example is not entirely new, if one recalls that the cartesian closed topo-
logical hull of pMET∞ was described in [2] by J. Adámek and J. Reiterman
as consisting of demi-metric spaces, where a demi-metric space is a ∞ps-metric
space satisfying

(i) positivity : d(x, y) = 0 whenever d∗(x, y) = 0;
(ii) lower semi-continuity: d : T ((X, d∗) × (X, d∗)) −→ ([0,∞], Tr) is contin-
uous.

Clearly, dpsMET∞-objects are precisely those ∞ps-metric spaces which sat-
isfy lower semi-continuity, a property that characterizes demi-metric spaces just
by itself, as the following shows.

3.6 Proposition. Let (X, d) ∈ dpsMET∞, then (X, d) satisfies positivity.

Proof: Let d∗(x, y) = 0 for some x, y ∈ X and assume that d(x, y) > K > 0.
By lower semi-continuity, there exists some δ > 0 such that d∗(x, x′) < δ and
d∗(y, y′) < δ implies that d(x′, y′) > K. However, as d∗(x, y) = 0 < δ and
d∗(y, y) = 0 < δ, it follows that d(y, y) > K > 0, a contradiction. Consequently,
it must be that d(x, y) = 0. �

In particular, the previous proposition justifies the choices in notation and
terminology, as well as the following as an immediate consequence of the (main)
result in [2].
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3.7 Theorem. The construct dpsMET∞ of demi-metric spaces and nonexpan-

sive maps is the cartesian closed topological hull of MET,
i.e. CCTH(MET) = CCTH(pMET∞) = dpsMET∞. �

3.8 Remark.

(1) The presence of symmetry in the previous description is quite naturally to
be expected, since psMET∞ is already a topological universe containing
MET and all natural operations such as initial lifts, power-objects, . . .
preserve symmetry. In particular, such a “family” of subconstructs (as
presented) could also easily be considered in a psMET∞ setting.

(2) This symmetry has to be explicitly demanded, as lower semi-continuity
does not imply symmetry, as shown by the following example.
Let X := R and define the ∞q-metric d by d(x, y) := x − y if y ≤ x and
d(x, y) := ∞ if y > x. It is then easily verified that d is a quasi-metric
with dE(x, y) := |x − y| as pMET∞-bireflection. Having this, one easily
sees that d is even lower-semi continuous w.r.t. dE and d∗, but obviously
not symmetric.

4. The CCT hull of pqMET∞

By reasonably adapting the previous example of a particular instance to a non-
symmetric (quasi) setting, one also obtains the cartesian closed topological hull
of pqMET∞ as a specific instance of this “family”.

4.1 Definition. As before, let R : pqsMET∞ −→ pqMET∞ : (X, d) 7→ (X, d∗)
be the pqMET∞-bireflection and let T : pqMET∞ −→ TOP be the underlying
topology functor. Furthermore, letW : pqMET∞ −→ pqMET∞ be the concrete
functor such that W (X, d) := (X, d−1), where d−1(x, y) := d(y, x) (∀x, y ∈ X).
This leads to the paired functor

Dq := (T ◦ R, T ◦ W ◦ R) : MP(pqsMET∞) −→ TOP
and denote dpqsMET∞ := Dq-dpqsMET∞, whose objects are called demi-quasi-
metric spaces.
Expressing the condition (D) in this particular case, it follows that a demi-

quasi-metric space must satisfy:

d : T ((X, d∗)× (X, (d∗)−1)) −→ ([0,∞], Tr) is a continuous map.

The following lemma is inspired by an analogous lemma in [16].

4.2 Lemma. Let dP be the∞pq-metric on [0,∞] defined by dP(x, y) := (x−y)∨0
(∀x, y ∈ X) and let (X, d) ∈ pqsMET∞, then the following are equivalent:

(1) d satisfies the triangle inequality, i.e. (X, d) ∈ pqMET∞;

(2) d : (X × X, d∗ ◦ (pr1× pr1) + (d
∗)−1 ◦ (pr2× pr2)) −→ ([0,∞], dP) is

nonexpansive;

(3) ∀x ∈ X : d(x,−) : (X, (d∗)−1) −→ ([0,∞], dP) is nonexpansive;
(4) ∀ y ∈ X : d(−, y) : (X, d∗) −→ ([0,∞], dP) is nonexpansive.
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Proof: 1⇒2 Let d satisfy the triangle inequality and (x, y), (x′, y′) ∈ X × X ,
then

(d(x, y) − d(x′, y′)) ∨ 0 ≤ (d(x, x′) + d(x′, y′) + d(y′, y)− d(x′, y′)) ∨ 0

≤ d(x, x′) + d(y′, y) = d∗(x, x′) + (d∗)−1(y, y′).

2⇒3 and 2⇒4 This is obvious.

3⇒1 In this case, it holds for all x, y, z ∈ X that:

d(x, y)− d(x, z) ≤ (d(x, y) − d(x, z)) ∨ 0 ≤ d∗(z, y) ≤ d(z, y),

hence d(x, y) ≤ d(x, z) + d(z, y).

4⇒1 In this case, it holds for all x, y, z ∈ X that:

d(x, y)− d(z, y) ≤ (d(x, y)− d(z, y)) ∨ 0 ≤ d∗(x, z) ≤ d(x, z),

hence d(x, y) ≤ d(x, z) + d(z, y). �

4.3 Proposition. dpqsMET∞ is a cartesian closed topological construct con-

taining pqMET∞.

Proof: The first part immediately follows from Proposition 3.4 and the latter
part follows from the previous lemma by observing that T (X×X, d∗◦(pr1× pr1)+
(d∗)−1 ◦ (pr2× pr2)) = Dq(X, d) (given (X, d) ∈ pqsMET∞), hence d being a
nonexpansive map (if (X, d) ∈ pqMET∞) implies continuity of d. �

4.4 Remark. The foregoing actually gives a bit more than lower semi-continuity
in the case of pqMET∞-objects, as the topology on [0,∞] underlying dP is finer
than the right-order topology, in particular {∞} is open in TdP

. Hence, if some
distance between points is ∞, then it is also∞ between points belonging to some
properly chosen neighbourhoods.
An example given later (see Example 4.8 (4)) will however show that this prop-

erty is no longer valid for a general demi-(quasi-)metric space.

4.5 Lemma. Let (X, d) be a demi-quasi-metric space, then (X, d) satisfies posi-
tivity, i.e. d∗(x, y) = 0 implies d(x, y) = 0.

Proof: The argument is along the same lines as before.
Let d∗(x, y) = 0 for some x, y ∈ X and assume that d(x, y) > K > 0. By

continuity of d : T ((X, d∗)× (X, (d∗)−1)) −→ ([0,∞], Tr), there exists some δ > 0
such that d∗(x, x′) < δ and d∗(y′, y) < δ implies that d(x′, y′) > K. However,
as d∗(x, y) = 0 < δ and d∗(y, y) = 0 < δ, it follows that d(y, y) > K > 0,
a contradiction. Consequently, also d(x, y) = 0. �

Now we are in a position to show that demi-quasi-metric spaces are a common
generalization of both extended pseudo-quasi-metric (= generalized metric) spaces
(and therefore of ordinary metric spaces) and preordered spaces.
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4.6 Proposition. dpqsMET∞ ∩Rere = Prost.
Moreover, Prost is bireflective and bicoreflective in dpqsMET∞ such that the

bicoreflection is the restriction of the Rere-bicoreflection in pqsMET∞.

Proof: The inclusion ⊃ of the first claim clearly holds. As for ⊂ , let (X, d) ∈
dpqsMET∞∩Rere, then it follows immediately from the formula of d∗ in Propo-
sition 2.1 that also (X, d∗) ∈ Rere, hence the foregoing lemma (and the fact that
always d∗ ≤ d) implies that d∗ = d (as both d and d∗ only attain the values 0
and ∞), consequently (X, d) = (X, d∗) ∈ pqMET∞ ∩Rere = Prost.
The claim regarding bireflectiveness follows immediately from Propositions 2.2

and 3.4 and to prove the required bicoreflectiveness, let (X, d) ∈ dpqsMET∞,
then it suffices to show that also (X, dr) ∈ dpqsMET∞. Since 1X : Dq(X, dr) −→
Dq(X, dr) is continuous (as 1X : (X, dr) −→ (X, d) is a nonexpansive map) and
d : Dq(X, d) −→ ([0,∞], Tr) is continuous, it follows that d : Dq(X, dr) −→
([0,∞], Tr) is continuous. In particular, let 0 ≤ K < ∞, then it holds that
dr

−1(]K,∞]) = d−1(]0,∞]) is open in Dq(X, dr), hence dr : Dq(X, dr) −→
([0,∞], Tr) is continuous. �

In view of the following result and the fact that Prost is its own CCT hull (as
it is cartesian closed topological), the following diagram nicely summarizes the
resulting situation:

pqMET∞ r // dpqsMET∞ r // pqsMET∞

Prost

r c

OO

CCTH(Prost)

r c

OO

r // Rere

r c

OO

4.7 Theorem. The construct of demi-quasi-metric spaces and nonexpansive
maps is the cartesian closed topological hull of pqMET∞, i.e. CCTH(pqMET∞)
= dpqsMET∞.

Proof: For this to be the case, it is needed (as noted before) that dpqsMET∞

is a cartesian closed topological construct (which is stated in Proposition 4.3) and
that pqMET∞ is finally dense in dpqsMET∞ (which follows from Propositions
4.3 and 2.3). It also needs to be shown that the class

H := { [(X, dX), (Y, dY )] | (X, dX ), (Y, dY ) ∈ pqMET∞}

is initially dense in dpqsMET∞, and this will be done very analogously to the
respective part of [2], making modifications where necessary.
Let (X, d) be a demi-quasi-metric space. First, recall that Sǫ = ({0, 1}, d

q
ǫ)

where d
q
ǫ(0, 1) := ǫ and d

q
ǫ (1, 0) := ∞. Now, given a pair (x, y) ∈ X × X

with d(x, y) > K and K > 0, we will find some ǫ > 0 and a nonexpansive
map f : (X, d) −→ [Sǫ, ([0,∞], dP)] such that the distance of f(x) and f(y) in
[Sǫ, ([0,∞], dP)] is larger or equal to K. Consequently, by Proposition 2.1, all
those morphisms f form an initial source, hence (X, d) ∈ CCTH(pqMET∞).
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As (X, d) is a demi-quasi-metric space, there exists some δ′ > 0 such that
d∗(x, x′) < δ′ and d∗(y′, y) < δ′ implies that d(x′, y′) > K. Define the pseudo-

quasi-metric ρ by letting ρ(u, v) := d∗(u, v)∧ K
2 and choose some 0 < δ < δ′ ∧ K

2 .
Also, define

f : X −→ [SK−δ, ([0,∞], dP)] by

f(u)(0) := K − ρ(x, u) and f(u)(1) := ρ(u, y)

and denote (Z, dZ) := [SK−δ, ([0,∞], dP)].
Now it has to be verified that

(a) ∀u ∈ X : f(u) ∈ Z,
(b) f : (X, d) −→ (Z, dZ) is a nonexpansive map,
(c) dZ(f(x), f(y)) ≥ K.

To this end, it will first be shown that

(∗) (f(u)(i)− f(v)(i)) ∨ 0 ≤ d(u, v) for i = 1, 2

and that

(∗∗) (f(u)(0)− f(v)(1)) ∨ 0 > K − δ implies (f(u)(0)− f(v)(1)) ∨ 0 ≤ d(u, v).

As for the first inequalities, one obtains that

(f(u)(0)− f(v)(0)) ∨ 0 = (K − ρ(x, u)− K + ρ(x, v)) ∨ 0

= (ρ(x, v)− ρ(x, u)) ∨ 0

≤ (ρ(x, u) + ρ(u, v)− ρ(x, u)) ∨ 0

= ρ(u, v) ≤ d∗(u, v) ≤ d(u, v)

and

(f(u)(1)− f(v)(1)) ∨ 0 = (ρ(u, y)− ρ(v, y)) ∨ 0

≤ (ρ(u, v) + ρ(v, y)− ρ(v, y)) ∨ 0

= ρ(u, v) ≤ d∗(u, v) ≤ d(u, v).

As for (∗∗), assume that

(f(u)(0)− f(v)(1)) ∨ 0 = (K − ρ(x, u)− ρ(v, y)) ∨ 0 > K − δ,

henceK−ρ(x, u)−ρ(v, y) > K−δ, consequently ρ(x, u)+ρ(v, y) < δ, in particular

ρ(x, u) < δ and ρ(v, y) < δ. Since δ < K
2 , the definition of ρ implies that also

d∗(x, u) < δ < δ′ and d∗(v, y) < δ < δ′, hence (by choice of δ′) also d(u, v) > K.
It follows that

(f(u)(0)− f(v)(1)) ∨ 0 = (K − ρ(x, u)− ρ(v, y)) ∨ 0 ≤ K < d(u, v).
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Next, turning our attention to (a), it needs to be shown that f(u) ∈ Z (given
some u ∈ X), i.e. (f(u)(0)−f(u)(1))∨0 ≤ K−δ. Assume the contrary, then (∗∗)
(where we take u = v) implies that K − δ < (f(u)(0)− f(u)(1))∨0 ≤ d(u, u) = 0,
a contradiction. Also, having (a), (∗) and (∗∗) precisely express what is needed
to show (b).
As for (c), since

(f(x)(0)− f(y)(1)) ∨ 0 = K > K − δ = d
q
K−δ(0, 1),

it follows that

dZ(f(x), f(y)) ≥ (f(x)(0)− f(y)(1)) ∨ 0 = K.
�

Some analogous examples and remarks as in [2] can now be given.

4.8 Example.

(1) First define (X, d), where

X := {(x, y) ∈ [0,∞]2 | (x − y) ∨ 0 ≤ ǫ}

and d((x, y), (x′, y′)) is the maximum of

(x − x′) ∨ 0

(y − y′) ∨ 0

(x − y′) ∨ 0 counted only if (x − y′) ∨ 0 > ǫ.

One then easily sees that actually (X, d) ∼= [Sǫ, ([0,∞], dP)], hence S
(2)
ǫ :=

(X, d) is a (typical) demi-quasi-metric space.

(2) Each subspace of a product
∏

i∈I S
(2)
ǫi
is a demi-quasi-metric space.

(3) Conversely, each T0 demi-quasi-metric space (i.e. such that d(x, y) = 0 =

d(y, x) implies that x = y) is a subspace of a product of S
(2)
ǫ ’s. This

follows from the fact that ([0,∞], dP) is initially dense in pqMET∞ and
{Sǫ | ǫ > 0} is finally dense in pqMET∞.

(4) Now consider an example referred to in Remark 4.4 by defining an ∞s-
metric space (X, d) as follows:

X := {x, y, xn | n ∈ N0} and

x
∞ y

xn

1

n n

}
}

}
}

}
}

}
}

(where some distances are indicated and all the others are equal to∞). It
is then easily verified that (X, d) is a demi-metric space, but clearly, the
stronger property mentioned in Remark 4.4 does not hold.
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4.9 Remark. Although the following is (obviously) to be expected, it is never-
theless not uninteresting to be checked and noted here in light of aspects in [16]
and (counter-)examples in [5].
For instance, unlike as in Lemma 4.2, one really needs combined continuity of d

in the definition of demi-quasi-metric space, i.e. it does not suffice to be separately
continuous in the first component and also in the second component. In fact, the
s-metric space (X, d) defined by

X := {x, y, xn, yn | n ∈ N0} and

x
1 y

xn

1

n
1

2 yn

1

n

(where some distances are indicated and all the others are equal to 1) has this
separate continuity, but is not a demi-(quasi-)metric space.
Furthermore, one can also obtain an∞pqs-metric d which is continuous in one

component, but not in the other component (hence does not yield a demi-quasi-
metric space), e.g. defined by

X := {x, y, xn | n ∈ N0} and

x
1 // y

xn
��

1

n 1

2

>>
}

}
}

}
}

}
}

}

(where some distances are indicated (since there is no symmetry, the arrow x → y

refers to the distance from x to y) and all the others are equal to ∞). It is then
easily verified that d has the proper continuity in the second component, but not
in the first component.

(Final) Remark. A similar situation to the one described here also occurs
in a convergence-approach-like setting. More precisely, in [18], the author de-
scribes a family of cartesian closed topological constructs in CAP, the cate-
gory of convergence-approach spaces and contractions (which is a unification of
convergence-like and (quasi-)distance-like concepts), introduced by E. Lowen and
R. Lowen in [14] as a topological quasitopos containing AP, the category of ap-
proach spaces and contractions (which is a unification of topological and (extended
pseudo-)quasi-metric concepts) (see e.g. R. Lowen [15]).
Further similarities are the results that both the CCT hulls of AP and of

UAP (a subconstruct of AP unifying completely regular topological spaces and
(extended pseudo-)metric spaces) occur as instances of the previously mentioned
family in CAP (see also [16], [18], [19]). In particular, a similar situation to the
one illustrated by the diagram preceding Theorem 4.7 occurs in those cases (where
the relation-level is replaced by a convergence-level and the quasi-distance-level
by a convergence-approach-level, but where the equality in the lower level is just
a bireflective embedding).
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While the (quasi-)distance situation described here is one of the “components”
of the combined convergence-approach-setting, the more general situation also
provides some feedback, such as the (small but useful) change w.r.t. positivity.
More precisely, it was brought to attention by a remark of G. Bourdaud in [5]
stating that the limit set of a principal ultrafilter in an Antoine space (i.e. an
object of CCTH(TOP)) is the same as the limit set (of that principal ultrafilter)
regarded w.r.t. convergence in its TOP-bireflection; and: convergence is to be
equated with “distance = 0”.

Acknowledgment. The author would like to thank the referee for his/her help-
ful suggestions on an earlier version of this paper.
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