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Combinatorial aspects of code loops

Petr Vojtěchovský

Abstract. The existence and uniqueness (up to equivalence defined below) of code loops
was first established by R. Griess in [3]. Nevertheless, the explicit construction of code
loops remained open until T. Hsu introduced the notion of symplectic cubic spaces and
their Frattini extensions, and pointed out how the construction of code loops followed
from the (purely combinatorial) result of O. Chein and E. Goodaire contained in [2].
Within this paper, we focus on their combinatorial construction and prove a more general
result 2.1 using the language of derived forms.
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1. Symplectic cubic spaces and code loops

Throughout this paper, let F = {0, 1} be the two-element field, and let V be a
finite-dimensional vector space over F . For v ∈ V , let |v| denote the number of
non-zero coordinates of v — the weight of v. When w is another vector in V , let
v ∗ w denote the vector whose ith coordinate is non-zero if and only if the ith
coordinate of both v and w is non-zero. A binary linear code C ≤ V is said to
be of level r if r is the biggest integer such that 2r divides the weight of every
codeword of C. We write lev(C) = r. A code C is doubly even if lev(C) ≥ 2.
For the rest of this section, let C be a doubly even code. Following Griess, a

mapping ϕ : C×C −→ F is called a factor set if ϕ(c, c) = |c|/4, ϕ(c, d)+ϕ(d, c) =
|c ∗ d|/2, and ϕ(c, d) +ϕ(c, d+ e) +ϕ(d, e) +ϕ(c+ d, e) = |c ∗ d ∗ e| is satisfied for
all c, d, e ∈ C. When ϕ is a factor set, then (F × C, ◦) with multiplication

(α, c) ◦ (β, d) = (α + β + ϕ(c, d), c + d)

becomes a Moufang loop, a code loop of C. R. Griess shows in [3] that every C
admits a factor set ϕ, and thus that there is a code loop for every doubly even
code C. Moreover, when ϕ, ψ are two factor sets for C, then they are equivalent
in the sense that the second derived form (ϕ + ψ)2 is the zero mapping. (See
Section 2 for the definition of derived forms.)
Note that a loop L is a code loop of C if there is a two-element central subgroup

Z ≤ Z(L) such that L/Z is isomorphic to C as an elementary abelian 2-group.
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The following ideas are due to T. Hsu [4]. Let L be a code loop of C. Let [γ, δ]
denote the commutator of γ, δ, and [γ, δ, ǫ] the associator of γ, δ, ǫ ∈ L. Define
functions σ : C −→ Z, χ : C × C −→ Z, and α : C × C × C −→ Z by

(1)

σ(c) = γ2,

χ(c, d) = [γ, δ],

α(c, d, e) = [γ, δ, ǫ],

where γ, δ, ǫ ∈ L are any preimages of c, d, e with respect to L −→ L/Z = C,
respectively. One can check that these functions are well defined, and that the
following equalities are satisfied for any c, d, e, f ∈ C, n ∈ N (cf. Theorems 3.3
and 4.6 of [4]):

(2)

σ(nc) = nσ(c),

σ(c+ d) = σ(c) + σ(d) + χ(c, d),

χ(c, c) = 0,

χ(c, d) = −χ(d, c),

χ(nc, d) = nχ(c, d),

χ(c+ d, e) = χ(c, e) + χ(d, e) + α(c, d, e),

α(c, d, d) = α(d, c, c) = α(d, d, c) = 0,

α(c, d, e) = −α(d, c, e) = α(d, e, c),

α(nc, d, e) = nα(c, d, e),

α(c+ d, e, f) = α(c, e, f) + α(d, e, f),

where the operation in Z is written additively.
The above situation is a special instance of a so-called symplectic cubic space

(V, σ, χ, α), where V is a vector space over F , and σ : V −→ Z2, χ : V ×V −→ Z2,
α : V × V × V −→ Z2 are mappings satisfying (2).
For any symplectic cubic space (V , σ, χ, α) it is reasonable to define a Frattini

extension L, which is a loop with two-element central subgroup Z such that L/Z is
isomorphic to V , and such that γ2 = σ(c), [γ, δ] = χ(c, d), and [γ, δ, ǫ] = α(c, d, e)
is satisfied for all γ, δ, ǫ in L. The existence and uniqueness of Frattini extensions
is discussed in detail in [4]. For our purposes it is sufficient to show that the code
loops are precisely the Frattini extensions of symplectic cubic spaces.
To see this, let L be a code loop of C. Then L is a Frattini extension of the

symplectic cubic space (C, σ, χ, α), where σ, χ, and α are defined as in (1).
Conversely, let L be a Frattini extension of (V, σ, χ, α). As remarked by T. Hsu;

O. Chein and E. Goodaire proved in [2] that for any symplectic cubic space
(V, σ, χ, α) there is a doubly even code C isomorphic to V , and a basis {e1, . . . , en}
of C such that |ei|/4 = σ(ei), |ei ∗ej |/2 = χ(ei, ej), and |ei ∗ej ∗ek| = α(ei, ej , ek)
for all basis elements ei, ej , ek. All we have to check then is that σ

′ : c 7→ |c|/4,
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χ′ : (c, d) 7→ |c ∗ d|/2, and α′ : (c, d, e) 7→ |c ∗ d ∗ e| form — together with C
— a symplectic cubic space (C, σ′, χ′, α′), since then L is a Frattini extension of
(C, σ′, χ′, α′), too, and whence L is a code loop of C. It is straightforward to show
that σ′, χ′, and α′ satisfy (2).

2. Generalization

We have seen in the previous section that code loops can be characterized as
Frattini extensions of symplectic cubic spaces. The crucial step in the proof was
to show that any symplectic cubic space can be identified with (C, σ′, χ′, α′),
where C is a certain doubly even code, and σ′, χ′, and α′ are defined as above.
We need to introduce more notation in order to generalize this result.
Let I = {v1, . . . , vs} be a subset of V with possible repetitions. Then

∑

I is
defined to be the vector v1 + · · · + vs, and

∏

I stands for v1 ∗ · · · ∗ vs. To avoid
inconvenience, let

∑

∅ =
∏

∅ = 0, where ∅ denotes the empty set.
When P : V −→ F is a mapping with P (0) = 0, M. Aschbacher defined in [1]

the sth derived form Ps : V
s −→ F of P by

Ps(v1, . . . , vs) =
∑

J⊆I

P
(

∑

J
)

.

See [1, Section 11] for the basic properties of derived forms. At this point, let us
at least recall that the derived forms of P can be defined inductively by

(3) Ps+1(u, v, v2, . . . , vs) = Ps(u, v2, . . . , vs) + Ps(v, v2, . . . , vs)

+ Ps(u + v, v2, . . . , vs).

The smallest integer r such that Ps is the zero mapping for all s > r is called the
combinatorial degree of P , deg(P ). Such an integer is guaranteed to exist and
cannot exceed the dimension of V .
Since σ′, χ′, and α′ are related by polarization — σ′(c + d) = σ′(c) + σ′(d) +

χ′(c, d), χ′(c + d, e) = χ′(c, e) + χ′(d, e) + α′(c, d, e) — we see that χ′ = σ′2, and
α′ = σ′3. Therefore the Chein’s and Goodaire’s result can be restated as follows:

Given P : V −→ F with P (0) = 0, deg(P ) = 3, there is a doubly even code C
isomorphic to V such that P (c) = |c|/4 for all c ∈ C.

In the rest of the paper, we prove the main result:

Theorem 2.1. Let P : V −→ F be a mapping of combinatorial degree r + 1.
Then there is a binary linear code C of level r isomorphic to V such that P (c) =
|c|/2r is satisfied for each codeword c in C.

3. Constructing binary linear codes from derived forms

For the sake of brevity let us write P (I) instead of Ps(v1, . . . , vs), where still
I = {v1, . . . , vs}. Let P (∅) = 0. Using this notation, the reverse formula for
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derived forms can be elegantly written as

(4) P
(

∑

I
)

=
∑

J⊆I

P (J).

This follows from (3) by induction on |I|.
Also recall the explicit formulae for the weights of sums and products of vectors

in V :
∣

∣

∣

∑

I
∣

∣

∣
=

∑

J⊆I

(−2)|J |−1
∣

∣

∣

∏

J
∣

∣

∣
,(5)

2s−1
∣

∣

∣

∏

I
∣

∣

∣
=

∑

J⊆I

(−1)|J |−1
∣

∣

∣

∑

J
∣

∣

∣
.(6)

Proposition 3.1. Let P : V −→ F be a mapping with P (0) = 0. The following
conditions are equivalent:

(i) 2rP (
∑

I) ≡ |
∑

I| (mod 2r+1) for any subset I ⊆ V ,

(ii) 2r−|I|+1P (I) ≡ |
∏

I| (mod 2r−|I|+2) for any subset I ⊆ V .

Proof: Suppose (i) is satisfied. Let I be a subset of V . We have

P (I) ≡
∑

J⊆I

P
(

∑

J
)

≡
∑

J⊆I

(−1)|J |−1P
(

∑

J
)

(mod 2).

Multiplying this congruence by 2r, and using (i), we immediately obtain

2rP (I) ≡
∑

J⊆I

(−1)|J |−1
∣

∣

∣

∑

J
∣

∣

∣
(mod 2r+1).

Using (6), we finally get

2r−|I|+1P (I) ≡ 21−|I| ·
∑

J⊆I

(−1)|J |−1
∣

∣

∣

∑

J
∣

∣

∣
≡

∣

∣

∣

∏

I
∣

∣

∣
(mod 2r−|I|+2).

Now assume that (ii) is satisfied. By the reverse formula (4), and after some
convenient rearrangements, we see that

2rP
(

∑

I
)

≡
∑

J⊆I

(−1)|J |−12rP (J) (mod 2r+1).

Condition (ii) says that 2rP (J) ≡ 2|J |−1|
∏

J | (mod 2r+1). Thanks to (5), we
get

2rP
(

∑

I
)

≡
∑

J⊆I

(−2)|J |−1
∣

∣

∣

∏

J
∣

∣

∣
≡

∣

∣

∣

∑

I
∣

∣

∣
(mod 2r+1),
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as desired. �

Let us first outline the construction of C in words.
Let {v1, . . . , vm} be a basis for V . Suppose that we have found linearly in-

dependent vectors c1, . . . , cm, which generate a linear code C of level r. Let us
identify vi with ci, for 1 ≤ i ≤ m. Every codeword c ∈ C can be expressed as

∑

I
for some I ⊆ {c1, . . . , cm}. We would like to have P (

∑

I) ≡ |
∑

I|/2r (mod 2)
for every I. According to Proposition 3.1, we only need to guarantee condition

(I) 2r−|I|+1P (I) ≡
∣

∣

∣

∏

I
∣

∣

∣
(mod 2r−|I|+2)

for every I ⊆ {c1, . . . , cm}.
We construct the vectors c1, . . . , cm in 2

m−1 steps. Let us label these steps by
non-empty subsets of {1, . . . ,m}, and order them as follows: if I = {i1, . . . , ik},
J = {j1, . . . , jl}, where i1 > · · · > ik, j1 > · · · > jl, then I ≤ J if and only if
(i1, . . . , ik) ≤ (j1, . . . , jl) lexicographically.
Vector ci is introduced in step {i}. In each step, a certain number of coordinates

is adjoint to each of the previously introduced vectors. If i /∈ I, and if ci has
already been mentioned, we extend ci by zeros in step I. Let us identify subsets
of {1, . . . ,m} with subsets of {c1, . . . , cm} in the natural way. After each step I,
we check that all conditions (J), J ≤ I, are satisfied, and that the previously
introduced vectors generate a linear code of level at least r. In fact, after the
construction is finished, we necessarily get lev(C) = r, otherwise P is the zero
mapping.
Moreover, note that when |I| > 1, then all vectors ci ∈ I have already been

introduced. In order to make the construction more transparent, we will construct
the vectors in such a way that

∏

I = 0 is satisfied before step I, for |I| > 1.
Now, we are ready to begin with the construction.

Steps {i}:

Add 2r+1 coordinates to all previously introduced vectors. Define a new vector
ci whose only non-zero coordinates are among the last 2

r+1 coordinates, which
consist of 2r ones and 2r zeros if P (vi) = 1, and of 2

r+1 ones if P (vi) = 0.
Then 2rP (vi) ≡ |ci| (mod 2), and condition (J) remains valid for every J ≤ {i}

because i /∈ J . All introduced vectors generate a linear code of level at least r.

Steps I, for |I| > 1:

We need the following rather general proposition. It is the key to the whole
construction.

Proposition 3.2. Let W = F 2
k

be a vector space over F . Let 0 < l + 1 < k.
There are linearly independent vectors w0, . . . , wl ∈ W such that for every proper

subset A of {w0, . . . , wl} we have |
∏

A| = 2k−|A|, and |w0 ∗ · · · ∗ wl| = 2
k−l−2.
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Proof: First, we define real vectors u0, . . . , ul ∈ F 2
l

, where ui = (ui,j)
2l−1
j=0 , 0 ≤

i ≤ l. Let us identify the number j =
∑l−1

i=0 ji2
i with the vector (j0, . . . , jl−1) ∈

F l. Let j⊥ denote the complement of j in F l. Let ϕ : F l −→ F be a mapping
defined by ϕ(j) ≡ |j⊥| (mod 2). For 0 ≤ i < l, 0 ≤ j < 2l, put ui,j = ji. For

0 ≤ j < 2l, define ul,j = 1/4 + 1/2 · ϕ(j), i.e. ul,j ∈ {1/4, 3/4}.
To construct vectors wi from ui, 0 ≤ i ≤ l, replace each ui,j with a block of

2k−l · ui,j ones and 2
k−l · (1− ui,j) zeros.

We need to check that vectors w0, . . . , wl have the desired properties. Let us
get started with |w0 ∗ · · · ∗wl|. There is only one coordinate j, namely 2

l − 1, for
which 1 = ji = ui,j , 0 ≤ i < l. Since ϕ(j) = 0, we have ul,j = 1/4. Therefore

|w0 ∗ · · · ∗ wl| = 2
k−l−2.

Let A be a proper subset of {w0, . . . , wl}. Suppose, for a while, that wl /∈ A.

Define M = {0 ≤ j < 2l | ui,j = 1 for all wi ∈ A}. Clearly, |
∏

A| = 2k−l|M |.

Because ui,j is arbitrary for wi /∈ A, we have |M | = 2l−|A|. In other words,

|
∏

A| = 2k−|A|.

Suppose that wl ∈ A. For t = 0, 1, put Mt = {0 ≤ j < 2l | ui,j = 1 for

wi ∈ A \ {wl}, and ϕ(j) = t}. Then M0 ∩M1 = ∅, and |M0 ∪M1| = 2
l−|A|. Since

|M0| = |M1| = 2
l−1−|A|, we get |

∏

A| = 1/4 · 2k−l · |M0| + 3/4 · 2
k−l · |M1| =

2k−l · 2l−|A| = 2k−|A|. �

If P (I) = 0, we do not need to make any changes. Condition (I) is satisfied
because |

∏

I| = 0 has been true before step I.
Suppose that P (I) = 1. Then r + 1 = deg(P ) ≥ |I|, and we may use Proposi-

tion 3.2 with parameters l = |I| − 1, k = r + 2 to obtain vectors w0, . . . , w|I|−1.

We extend vectors from I by these vectors wi, one by one (in any order). By

Proposition 3.2 we have |
∏

I| = 2r+2−(|I|−1)−2 = 2r−|I|+1P (I). Let J < I. If J
is not a proper subset of I, then |

∏

J | did not change (vectors not involved in I
are extended by zeros), and that is why condition (J) still holds. If J is a proper

subset of I, then |
∏

J | increased by 2r+2−|J | (according to Proposition 3.2),
therefore condition (J) holds, too.
All introduced vectors generate a linear code of level at least r, and we are

done.

Remark 3.3. For the sake of completeness, let us consider the (much easier) inverse
problem of Theorem 2.1: given a binary linear code C of level r, construct P :
C −→ F by P (c) = |c|/2r, c ∈ C. Then deg(P ) ≤ r + 1. (See [1, Lemma 11.4],
or [5].)

References

[1] Aschbacher M., Sporadic Groups, Cambridge Tracts in Mathematics 104 (1994), Cambridge
University Press.

[2] Chein O., Goodaire E., Moufang loops with a unique nonidentity commutator (associator,
square), J. Algebra 130 (1990), 369–384.



Combinatorial aspects of code loops 435

[3] Griess R.L., Jr., Code loops, J. Algebra 100 (1986), 224–234.
[4] Hsu T.,Moufang loops of class 2 and cubic forms, Math. Proc. Camb. Phil. Soc., to appear.
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