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On centrally nilpotent loops

L.V. Safonova, K.K. Shchukin

Abstract. Using a lemma on subnormal subgroups, the problem of nilpotency of multi-
plication groups and inner permutation groups of centrally nilpotent loops is discussed.

Keywords: group, subnormal subgroup, loop, multiplication group, inner permutation
group

Classification: 20N05, 20B35

R. Baer proved, among others, the following result ([1, Lemma 2.3]): a sub-
group H of a group G is subnormal in G if and only if H is subnormal in the
subgroup 〈H, X〉 for every denumerable subset X of G. Moreover, in the same pa-
per, an easy counterexample shows that it is impossible to replace “denumerable”
by “finite”. As an extension of both this idea and another one [2], we deduce its
new variant.
First, we recall some notions. For a subgroup H of a group G we put H0 = G,

Hi+1 = HHi = 〈xhx−1 |h ∈ H, x ∈ Hi〉, i = 0, 1, . . . . If there exists an n such

that Hn = HHn−1 = H then H is called a subnormal subgroup of depth (or
defect) at most n in G. H is of depth (exactly) n if, moreover, Hn−1 6= H . In
the last case, G = H0 ⊲ H1 ⊲ . . . ⊲ Hn−1 ⊲ Hn = H and H is nonnormal in Hn−2

for n > 1.

Lemma. Let H be a subgroup of a group G and n be a nonnegative integer.
Then the following conditions are equivalent:

(i) H is subnormal of depth at most n in G;
(ii) H is subnormal of depth at most n in the subgroup 〈H, X〉 of G for every
denumerable subset X of G;

(iii) H is subnormal of depth at most n in the subgroup 〈H, X〉 of G for every
finite subset X of G.

Proof: The implications (i) ⇒ (ii) ⇒ (iii) are clear. As for (iii) ⇒ (i), its proof
can be deduced from the proof of [1, Lemma 2.1]. Nevertheless we present a
direct proof here. Let us assume that the condition (iii) of Lemma is fulfilled

but H 6= Hn. Then there is x0 ∈ Hn−1 such that x0Hx−10 = Hx0 6⊆ H . Since

Hn−1 = HHn−2 , there exists a finite subset X1 ⊆ Hn−2 such that x0 ∈ HX1 . Let

us assume that Xi ⊆ Hn−i−1 is selected so that Xi−1 ⊆ HXi . Then Hn−i−1 =

HHn−i−2 implies the existence of a subset Xi+1 ⊆ Hn−i−2 such thatXi ⊆ HXi+1 .
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Now, for the finite subset Xn−1 ⊆ H0, we construct the subgroup 〈H, Xn−1〉 =
K. Since by (iii) the subgroup H is subnormal in K of depth n, we obtain

HK,n = H , where K = HK,0, HK,i+1 = HHK,i , i = 0, 1, . . . , n− 1. On the other
hand, Xn−1 ⊆ K = HK,0. If Xi ⊆ HKn−i−1 then Xi−1 ⊆ HXi ⊆ HKn−i−1 =

HKn−i . From this x0 ∈ HX1 ∈ HHK,n−2

= HK,n−1 and hence Hx0 ⊆ HHX1 ⊆

HHK,n−1

= H in contradiction to our assumption. �

Remark. For n = 2, there is the fourth equivalent condition:

(iv) H is subnormal of depth at most 2 in the subgroup 〈H, X〉 of G for every
subset X of G, |X | = 1.

Proof: Let, on the contrary, condition (iv) be satisfied and H2 6= H . Since H

is a nonnormal subgroup in G, there is an element x0 ∈ G such that x0Hx−10 =
Hx0 6⊆ NG(H) (the normalizer of H in G) Then there are elements h0 ∈ H and

x0h0x
−1
0 = x1 such that x1Hx1 = Hx1 ⊆ HH1 = H2 and H 6⊇ Hx1 . Now we

construct the subgroup A = 〈H, x0〉 and then HA,0 = A, HHA,0 = HA,1 ∋ x0
and Hx1 ⊆ HHA,1 = HA,2 = H in contradiction to our assumption. �

The equivalence of (i) and (iv) is false for n = 3: there is a group of order 520

and exponent 5 with the properties that every 2 elements generate a subgroup of
class 3 and that the group itself has class precisely 5 ([6, Theorem 4]). For n > 3,
an expected answer is also negative.
As an immediate corollary of Lemma we obtain a new version of well known

Theorem 1 ([3, 2.19]). Let Q be a loop with inner permutation group I(Q) and
multiplication group M(Q). Then the following statements are equivalent:

(1) I(Q) satisfies at least one (and then every) of the conditions of Lemma;
(2) Q is centrally nilpotent of class at most n.

It can also be proved that the multiplication group M(Q) of a centrally nilpo-
tent loop Q is soluble ([3, Proposition 2.22]). This leads to a natural

Question. For which class of centrally nilpotent loops their multiplication groups
are nilpotent?

Moreover, the question is under which hypotheses the following statements:

(3) M(Q) is nilpotent of class at most m;
(4) I(Q) is subnormal and nilpotent of class at most n − 1;

are equivalent to the condition (2) of Theorem 1?

In an attempt to answer this question, we examine in a loop Q the (upper)
central series

(α) e = Z0 ⊂ Z1 ⊂ . . . ⊂ Zi ⊂ Zi+1 ⊂ . . . ⊂ Zn = Q,
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where Zi+1/Zi = Z(Q/Zi), i = 0, 1, . . . , n − 1 (Z(Q) denotes the center of the
loop Q), which induces invariant series both in M(Q) = G

(β) 1 = C̄0 ⊂ C̄1 ⊂ Z∗

1 ⊂ C̄2 ⊂ . . . ⊂ Z∗

i ⊂ C̄i+1 ⊂ Z∗

i+1 ⊂ . . .

. . . ⊂ Z∗

n−1 ⊂ C̄n = G,

where Z∗

i = {Ψ ∈ G |Ψ(x) ≡ x (modZ1), x ∈ Q }, C̄i+1/Z
∗

i = C(G/Z∗

i ), i =
0, 1, . . . , n − 1, and in the inner permutation group I(Q) = I

(γ) 1 = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ii ⊂ Ii+1 ⊂ . . . ⊂ In−1 = I,

where Ii = I ∩ Z∗

i , i = 0, 1, . . . , n − 2.
When the series (α) induces also the upper central series of M(Q)

(δ) 1 = C0 ⊂ C1 ⊂ C2 ⊂ . . . ⊂ Ci ⊂ Ci+1 ⊂ . . . ⊂ Cm = G,

where Ci+1/Ci = C(G/Ci) and C1 = C̄1 ∼= Z1?
Besides the trivial case Ci = Z∗

i , i = 0, 1, . . . , n−1, when Q ∼=M(Q) is Abelian,
a central refinement of (β) by (δ) is possible in the following situations:

(A) Z∗

i & Ci+1 = C̄i+1, i = 0, 1, . . . , n − 1, and evidently M(Q) will be
nilpotent of class m = n;

(B) Z∗

i = C2i, and then C̄i+1 = C2i+1, i = 0, 1, . . . , n − 1, so that M(Q) will
be nilpotent of class m = 2n − 1.

In both cases (A) and (B), we have the following conclusion:

(Γ) Z∗

1 ⊆ C2 ⇔ Z∗

1∩I = C2∩I = I1, in particular I1 ⊆ C(I) and Z∗

1 = C1 ·I1,
C1 ∩ I1 = 1.

In fact, every Ψ ∈ Z∗

1 has a unique representation as Ψ = LzΘ, z ∈ Z1, Θ ∈
I1 = Z∗

1 ∩I and I1∩C1 = 1, so that the converse implication is trivial. If Z
∗

1 ⊆ C2
then (C2/Z

∗

1 ) ∩ I/Z∗

1 ∩ I ⊆ (C̄2/Z
∗

1 ) ∩ (I/Z∗

1 ∩ I) = 1, i.e. Z∗

1 ∩ I = C2 ∩ I = I1.

Now for Θ ∈ I1, η ∈ I we have Θ−1η−1Θη ∈ (C1 ∩ I1) = 1, hence Θ ∈ I1 ⊆ C(I).

Using (Γ) and induction on i, we can easily deduce:

(∆) In both cases (A) and (B), the inner permutation group I(Q) = I of Q is
nilpotent of class (at most) n − 1.

Now, according to what has been said above, we can formulate

Proposition. Under hypotheses of Theorem 1 and provided that either (A) or
(B) is fulfilled, the following statement is valid: (1)⇔ (2)⇔ (3)⇒ (4).

Indeed, it is clear that (1) ⇔ (2) ⇒ (3) ⇒ (4). Since the series (α) and (β)
are dual, (3) ⇒ (2) is also correct. Moreover, the implication (4) ⇒ (2) will be
correct in a particular case of (Γ):

(Γ0) Z∗

1 ⊆ C2 ⇒ Z∗

1 ∩ I = Z∗

1 ∩ C2 = I1 = C(I).

For example, this condition is true for commutative Moufang loops ([4, Lemma
11.6, Chapter VIII]). The case (B) is realized by
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Theorem 2 (cf. [4, 11.4, Chapter VIII]; [5]). Let Q be a commutative A-loop
(I(Q) ⊆ Aut(Q)) with inner permutation group I = I(Q) and multiplication
group M(Q). Then the following statements are equivalent:

(I) Q is centrally nilpotent of class at most n;
(II) M(Q) is nilpotent of class at most 2n − 1.

Proof: According to Proposition, it is sufficient to establish Z∗

1 = C2 and to
use easy induction on i. For every Θ ∈ Z∗

1 ∩ I, x ∈ Q and some z ∈ Z1, we

have Θ(x) = xz. Using Θ ∈ Aut(Q) we get Θ−1LxΘ = LΘ(x) = LxLz and hence

L−1
x Θ

−1LxΘ = Lz ∈ C1, i.e. Θ ∈ C2. According to (Γ) we have Z∗

1 ⊆ C2. For
the proof of the inverse inclusion, writing Ψ ∈ C2 as Ψ = LaΘ, a = Ψ(e), Θ ∈ I
and using I ⊆ Aut(Q), we get a chain of equalities and congruences: LaLΘ(x)Θ =

LaΘLx ≡ LxLaΘ(modC1), i.e. LaLΘ(x) = LxLaLz for every x ∈ Q and suitable

z ∈ Z1. From this Θ(x) = LΘ(x)(e) = L−1
a LzLxLa(e) = L−1

a (a · xz) = xz, i.e.

Θ ∈ Z∗

1 . Since Laz = LaLz, we get LaLxLz = LxLaLz, i.e. LaLx = LxLa for
every x ∈ Q. Hence a ∈ Z1 and LaΘ = Ψ ∈ Z∗

1 . Therefore Z∗

1 = C2. �

As an immediate consequence of Theorem 2, the case (A) is impossible for
commutative A-loops.
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