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Boundedness of linear maps

T.S.S.R.K. Rao

Abstract. In this short note we consider necessary and sufficient conditions on normed
linear spaces, that ensure the boundedness of any linear map whose adjoint maps extreme
points of the unit ball of the domain space to continuous linear functionals.
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Introduction

Let X , Y be normed linear spaces and T : X → Y be a linear map. In
this note we are interested in studying some “weak” continuity conditions on T ,
that will imply continuity. Motivation for this work comes from a recent work
of Labuschagne and Mascioni [6], where they characterize linear maps between
C∗ algebras whose adjoints preserve extreme points. A small step in their work
consists of showing, using C∗ algebra methods, the continuity of such a map. In
this note we first show that if X and Y are normed linear spaces such that for
each extreme point y∗ of the dual unit ball Y ∗

1 , y
∗ ◦ T is an extreme point of X∗

1 ,
then T is bounded.
Let X1 denote the closed unit ball of X and let ∂eX1 denote the set of extreme

points. Since boundedness of the set T (X1) in the weak topology implies the
boundedness of T , a natural question that can be asked now is: Is T bounded if
one merely assumes that for all y∗ ∈ ∂eY

∗
1 , y

∗ ◦ T ∈ X∗? Here we give necessary
and sufficient conditions on X and Y so that any such linear map T is bounded.

Main results

We first show the continuity of T when the “adjoint” preserves extreme points
of the dual ball. Let L(X, Y ) denote the space of bounded operators from X to Y .

Proposition 1. Let X , Y be normed linear spaces. Let T : X → Y be a linear

map such that for each y∗ ∈ ∂eY
∗
1 , y

∗ ◦ T ∈ ∂eX
∗
1 ; then T ∈ ∂eL(X, Y )1.

Proof: Let x ∈ X . Choose a y∗ ∈ ∂eY
∗
1 such that ‖T (x)‖ = y∗(T (x)). By

hypothesis y∗ ◦ T is a functional of norm one. Thus ‖T ‖ ≤ 1. That T is an
extreme point can be proved using the hypothesis and the Krein-Milman theorem
(see [2, p. 148]). �
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Remark 1. Operators whose adjoints preserve extreme points are known as
“nice” operators (see [7] and the references listed therein). The analogous ques-
tion, “when are elements of ∂eL(X, Y )1 nice operators ?” received considerable
attention, we again refer the reader to [7] and the references listed there for more
information.
From now on we study conditions onX or Y that will result on the boundedness

of T under the assumption y∗ ◦ T ∈ X∗ for every y∗ ∈ ∂eY
∗
1 . We may assume

w.l.o.g. that Y is a Banach space. To show the weak boundedness of T (X1), it
is enough to show that y∗ ◦ T ∈ X∗ for every y∗ ∈ Y ∗

1 . If Y
∗
1 is the convex hull

of its extreme points then T is bounded without any further assumptions. This
for example is the case when Y is a finite dimensional space or the space of trace
class operators on a complex Hilbert space.
We recall that any infinite dimensional C∗ algebra contains an isometric copy

of c0.

Theorem 1. Let Y be a Banach space containing no isomorphic copy of c0.

For every normed linear space X , every linear operator T : X → Y such that

y∗ ◦ T ∈ X∗ for all y∗ ∈ ∂eY
∗
1 , is bounded.

Proof: Let X be a normed linear space and T : X → Y be a linear map such
that y∗ ◦ T ∈ X∗ for all y∗ ∈ ∂eY

∗
1 . To show that T is bounded it is enough to

show that for every sequence {xn}n≥1 ⊂ X1, {T (xn)}n≥1 is a bounded sequence
in Y . For any y∗ ∈ ∂eY

∗
1 , since y∗ ◦ T ∈ X∗, we have that {y∗(T (xn))}n≥1 is a

bounded sequence of scalars. Therefore it follows from [3] that {T (xn)}n≥1 is a
bounded sequence in Y . �

Example. Let Y = c0 and X = span{en}n≥1, where {en}n≥1 is the canon-

ical Schauder basis of c0. Then by defining T : X → Y by T (
∑

k

n=1 αnen) =∑
k

n=1 αnnen, we see that T is a linear map and y∗ ◦ T ∈ X∗ for all y∗ ∈ ∂eY
∗
1

and T is not bounded.

In the next proposition we show that the Example described above works as a
counterexample whenever the range space contains an isomorphic copy of c0. Our
proof involves the notion of an M -ideal whose definition we now recall from [5].

Definition. Let Z be a Banach space. A closed subspace Y ⊂ Z is said to be an

M -ideal if Z∗ is the ℓ1 direct sum of Y ⊥ and another closed subspace N ⊂ Z∗.

It is easy to see (Lemma I.1.5, [5]) that ∂eZ
∗
1 = ∂e(Y

⊥)1 ∪∂eN1. We also note
that N is canonically isometric to Y ∗.

Proposition 2. Let Y be a Banach space containing an isomorphic copy of c0.

Then Y can be renormed such that for the new norm on Y there is a normed linear

space X and a linear map T : X → Y such that for every y∗ ∈ ∂eY1, y
∗ ◦T ∈ X∗,

but T is not bounded.
Proof: Since we are interested in renorming Y , by applying Lemma 8.1 in
Chapter 2 of [1], we may assume that Y contains an isometric copy of c0. It now
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follows from Proposition II.2.10 in [5] that we can renorm Y so that c0 becomes
an M -ideal in Y . We also note that c0 still has the supremum norm. Now let X

and T be as in the above Example. For any y∗ ∈ ∂eY
∗
1 (w.r. to the new norm)

either y∗ ∈ ∂eℓ
1
1 or y∗ ∈ c0

⊥. Thus y∗ ◦ T ∈ X∗. Also T is not bounded. �

Our next theorem gives a necessary and sufficient condition on the domain
space for the validity of a similar result.

Theorem 2. Let X be a normed linear space. For every Banach space Y , every

linear operator T : X → Y such that y∗ ◦ T ∈ X∗ for all y∗ ∈ ∂eY
∗
1 is bounded,

iff X is barrelled.

Proof: Let X be barrelled and let T : X → Y be a linear map such that
y∗ ◦ T ∈ X∗ for all y∗ ∈ ∂eY

∗
1 . It is easy to see that {y

∗ ◦ T : y∗ ∈ ∂eY
∗
1 } is

a pointwise bounded family of functionals on X . Now by invoking the uniform
boundedness theorem for barrelled spaces (Theorem 9-3-4 in [8]) we conclude that
T (X1) is a bounded set.
Conversely suppose that X is a normed linear space such that for all Banach

spaces Y every linear operator T : X → Y such that y∗◦T ∈ X∗ for all y∗ ∈ ∂eY
∗
1

is bounded. We shall show that every weak∗ compact set K ⊂ X∗ is a norm
bounded set. It would then follow from Theorem 9-3-4 of [8] again that X is
barrelled.
Let K ⊂ X∗ be a weak∗ compact set. Take Y = C(K), the Banach space of

continuous functions on K. If we now define T : X → Y by T (x)(k) = k(x) for
x ∈ X and k ∈ K, then clearly T is a linear map. Since elements of ∂eC(K)

∗
1 are

given by evaluation functionals δ(k), k ∈ K it is easy to see that T satisfies the
hypothesis and hence it is a bounded operator. Since T ∗(δ(k)) = k, we conclude
that K is a norm bounded set. �

Remark 2. When the range space is a separable, real Banach space and contains
no copy of c0, it follows from Theorem 4 in [4] that one can weaken the hypothesis
in Theorem 1 to y∗ ◦ T ∈ X∗ for all weak∗ exposed points y∗ ∈ Y ∗

1 . Similarly
when X is separable, since any weak∗ compact set K ⊂ X∗ is metrizable we see
that for any k ∈ K, δ(k) is a weak∗ exposed point.

Acknowledgment. Thanks are due to Professor Y. Abramovich for suggesting
that I consider barrelled spaces.
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