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Characterizations of spreading models of [!

P. KIRIAKOULI

Abstract. Rosenthal in [11] proved that if (fi) is a uniformly bounded sequence of real-
valued functions which has no pointwise converging subsequence then (fx) has a subse-
quence which is equivalent to the unit basis of ! in the supremum norm.

Kechris and Louveau in [6] classified the pointwise convergent sequences of continuous
real-valued functions, which are defined on a compact metric space, by the aid of a
countable ordinal index “y”. In this paper we prove some local analogues of the above
Rosenthal ’s theorem (spreading models of I') for a uniformly bounded and pointwise
convergent sequence (fx) of continuous real-valued functions on a compact metric space
for which there exists a countable ordinal ¢ such that v((fn,)) > w® for every strictly
increasing sequence (nj) of natural numbers. Also we obtain a characterization of some
subclasses of Baire-1 functions by the aid of spreading models of I1.

Keywords: uniformly bounded sequences of continuous real-valued functions, conver-
gence index, spreading models of [1, Baire-1 functions

Classification: 46B20, 46E99

1. Introduction

By N we mean the set of all natural numbers (i.e., N = {1,2,...}), by w we
mean the first infinite ordinal (i.e., w = {0,1,2,...}) and by w; we mean the first
uncountable ordinal. If X is a set then: |X| denotes the cardinal number of X,
[X]<% the set of all finite subsets of X and [X] the set of all infinite subsets of X.
Let S be the Schreier family (i.e., S = {0} U{4A C N: A4 # 0,|A] < min A}).
Alspach and Argyros in [1] defined the generalized Schreier families F¢, { < wi,
where Fo = {0} U {{n}:n € N} and F; = S.

A real-valued function f defined on a set X is bounded if |f|loo :=
supzex | f(z)] < 4o00. A sequence (fi) of real-valued functions defined on a
set X is uniformly bounded if supy, || fx|lco < +o00.

Rosenthal in [11] proved that if (fj) is a uniformly bounded sequence of real-
valued functions which has no pointwise converging subsequence then (f) has a
subsequence which is equivalent to the unit basis of {! in the supremum norm.

If (f%) is a sequence of real-valued functions and 1 < £ < w; an ordinal we say
that (f;) is lé—spreading model (or spreading model of /! of order &) if there are

positive real numbers C' and M such that

m m m
S lel < 1Y eifralloe < MY e
=1 =1 =1
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for every F' = {k1 < ... < km} € F¢ and for every real numbers ci,. .. , cm.

Kechris and Louveau in [6] defined the convergence index “y” of a sequence of
continuous real-valued functions defined on a compact metric space and proved
that v((f%)) < wi iff (fi) is pointwise converging.

This paper is a continuation of the paper [8]. By using some results of [1], [3]
and [8] and using few combinatorial lemmas we prove the following basic results:

If K is a compact metric space, (f) a uniformly bounded and pointwise con-
verging sequence of continuous real-valued functions on K and 1 < ¢ < wj then
the following hold: (a) If ¥((fn,)) > w¢ for every strictly increasing sequence (ny,)
of natural numbers then there exists a strictly increasing sequence (ny) of natural
numbers such that the sequence (fp,) is l%—spreading model (cf. Theorem 3.1).

(b) If (ng) is a strictly increasing sequence of natural numbers and (n}ﬂ) a subse-

quence of (ng) such that the sequence (f r
2

Y((fng)) > @& (cf. Theorem 3.2).
By using (b) we prove that: If the sequence (fy) is l%—spreading model then

—f)is lg—spreading model then

k+1 Mok

Y((fng)) > wt for every strictly increasing sequence (ny,) of natural numbers (cf.
Theorem 3.3). Combining these results and [8] we obtain some criteria (charac-
terizations) for l%—spreading models (cf. Theorem 3.4).

Also Kechris and Louveau in [6] classified the bounded Baire-1 functions, which

are defined on a compact metric space K, to the subclasses Bﬁ(K ), & < wi.
Professor S. Negrepontis and the author ([7] or [10; Theorem 3.8]) proved the
following: If K is compact metric space, 1 < ¢ < wy, f a Baire-1 function on K
with f ¢ Bf(K ) and (f3) a uniformly bounded sequence of continuous real-valued
functions on K pointwise converging to f, then (f;) has a subsequence which is
l%—spreading model (cf. Theorem 3.5(i)). In this paper we obtain this result as
consequence of Theorem 3.1. Also using Theorem 3.3 we obtain the following
result:

If K is a compact metric space, 1 < £ < wy, f a bounded real-valued function
on K and (f) a uniformly bounded sequence of continuous real-valued functions
defined on K and pointwise converging to f such that for every sequence (g;) of
convex blocks of (fj) (i-e., g € conv((fp)p>k) for all k) there exists a subsequence
of (gx) which is lg—spreading model then f ¢ Bf(K) (cf. Theorem 3.5(ii)). (Here
conv((hy)) denotes the set of convex combinations of the hy’s.) For £ = 1, the
above result has been proved by Haydon, Odell and Rosenthal in [5].

By using the above results we prove the following: (i) If every uniformly
bounded and pointwise converging to zero sequence ( fi) of continuous real-valued
functions on a compact metric space K with infy, || fx|lco > 0 has a subsequence
which is l%—spreading model then all bounded and non-continuous Baire-1 func-

tions on K do not belong to B§(K ). (ii) If every uniformly bounded and pointwise
converging to zero sequence of continuous real-valued functions on a compact met-
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ric space K does not have a subsequence which is l%—spreading model, then all

bounded Baire-1 functions on K belong to Bf(K) (cf. Theorem 3.6).

2. Preliminaries

Let K be a compact metric space and C(K) the set of continuous real-valued
functions on K. By R we mean the set of all real numbers. A function f: K — R
is Baire-1 if there exists a sequence (fz) in C(K) that converges pointwise to f.
Let By (K) be the set of all bounded Baire-1 real-valued functions on K. Haydon,
Odell and Rosenthal in [5], Kechris and Louveau in [6] defined the oscillation index
B(f) of a general function f: K — R and proved that f is Baire-1 iff 5(f) < wy.

Definition 2.1 (cf. [5], [6]). Let K be a compact metric space, f : K — R,
P C K and € > 0. Let Peof = P and for any ordinal a let Peajj'l be the set of
those x € Peo‘f such that for every open set U around x there are two points x

and xg in Pedf N U such that |f(z1) — f(z2)| > €.

At a limit ordinal o we set P, = Np<a ng.
Let B(f,€) be the least o with Kf‘f = () if such an « exists, and B(f,€) = w1,
otherwise. Define the oscillation index S(f) of f by

B(f) = sup{B(f,€) : € > 0}.

For every £ < w; we define Bf(K) ={feBi(K): B(f) <uwb}.

The complexity of pointwise convergent sequences of continuous real-valued
functions defined on a compact metric space is described by a countable ordinal
index “y” which is defined in the following way.

Definition 2.2 (cf. [6]). Let K be a compact metric space, (f;) a sequence of

continuous real-valued functions defined on K, P C K and € > 0. Let PEO( f) = P
a—+1

and for any ordinal « let P’ (fe) be the set of those x € PEO‘( ) such that for every

open set U around z and for every p € N there are m,n € N with m > n > p and
a point z in Pea(fk) NU such that | fom(z') — fu(z))] > e

o . _ 8 .
At a limit ordinal o we set Pg(fk) = Ng<a Ps,(fk)' (It can be noticed that
Pf‘(fk) is a closed subset of P in the relative topology of P.) Let v((fx),€) be the
least a with Kg(fk) = () if such an « exists, and v((f%), €) = w1, otherwise. (Notice

that if v((fx), €) < wi then it is a successor ordinal.) Define the convergence index

Y((f)) of (fx) by
Y((fx)) = sup{v((fx),€) : € > 0}.

Also in [6] it is proved that, v((fx)) < w1 iff (fx) is pointwise converging.
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Generalized Schreier families.

Definition 2.3 (cf. [1]). If F and H are finite non-empty subsets of N and
n € N, then we define F' < H iff maxF < minH, n < F iff n < min F. Let
Fo = .7-"(/) ={{n}:n e N}U{0} and F; = .7-"1 be the usual Schreier family, i.e.,
F1 = .7:1 = {0} U{ACN:A#0,[A] <min A}. If F, fé have been defined then

we set

00 k
Feri=U {UFi:Fl,...,erff with k§F1<...<Fk}
k=1 =1

and

00 k
Foor=U{UR: A, Foer wih k<R <. <F}
k=1 i=1

If € is a limit ordinal with F¢, ]—'é defined for each ¢ < &, choose and fix a strictly
increasing sequence of ordinals (£) and a strictly increasing sequence of successor
ordinals (£;) with & = sup &, = sup &, and let

k k

0 e}
Fe=|J{F € Fe, :minF >k}, Fe= U{Fe]—"sgc :min F > k}.
k=1 k=1

It can be noticed that the families Fp,, 1 < m < w, appeared for the first
time in an example constructed by Alspach and Odell [2]. (Also it is obvious that

Fm = Foy, for every m < w.)

Lemma 2.4. (a) For every ( < £ < wy there exists n = n(¢,&) € N such that
if n < F € F; then FF € F¢ and, if n < F € .7:2 then I € fé (see also [3;
Lemma 2.1.8(a)]).

(b) For every § < wi, whenever F' = {n1 < ... <mny} € F¢ (resp. F'={n1 <
o< npt € .7-2) and m; > n; for 1 < i < k then we have {my,... ,my} € F¢

(resp. {mq,... ,my} € fé) (see also [3; Lemma 2.1.8(b)]).

(c) If ¢ <& < wq then there exists a strictly increasing sequence (\) of natural
numbers such that if F' € ]—'é then {\;:j € F} € Fe.

(d) If ¢ < & < wy then there exists a strictly increasing sequence (ji,) of natural
numbers such that if F' € F then {;;: j € F} € F¢.

PRrROOF: (a) and (b) are proved easily by induction on £ < wj. We shall prove
(¢) by induction on £ < wj. For £ = 0 it is obvious by Definition 2.3. Suppose
that £ > 1 and that the conclusion holds for every n < . Assume that £ =n+1,
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where < wy. If ¢ < n then there exists a strictly increasing sequence (A\j) of
natural numbers such that if F' € fé then {)\; : j € F'} € Fy C Fyq1 = F¢. Let
¢ = & = n+ 1. By the induction assumption, there exists a strictly increasing
sequence (A) of natural numbers such that if F' € }}; then {\; : j € F'} € .
Then we easily see that if F' € ]—'é = ‘7:7/7+1 then {)\; :j € F'} € Fyp1 = Fe.
Assume £ is a limit ordinal and let (£;) be the strictly increasing sequence of
ordinals with supy, § = § that defines the family F,. If ¢ < § then there exists

ng € N with ¢ < &, for all n > ng. We set )\ZO = k for all £ € N. By induction
on n > ng, there exists a subsequence (A}}) of ()\Z_l) such that if F' € ]—'é then

{A} :j € F'} € F¢,. Consider the sequence (/\Zgillz) By using the assumption and
(b) we have that if F' € F; and k = min F' then F' = {\)077: j € F} € Fe,
and F' > /\Zgig > ng + k. Therefore I € Fe.

Now suppose that ¢ = £ and let (C];) be the strictly increasing sequence of
successor ordinals with supy, C,; = ( that defines the family ]—"é. For every n € N

there exists j, € N such that j, > n and ¢, < &,. We set A) = k for all
k € N. By induction on n > 1, there exists a subsequence (A}}) of ()\Z_l) such
that if F € ., then {/\? :j € F} € Fg,; . The proof can be finished by taking

n

the sequence ()\gfk) and using (b) and Definition 2.3. Similarly, we prove the
condition (d). O
Repeated Averages.

S. Argyros, S. Mercourakis and A. Tsarpalias [3] defined a family {(M,¢) :
M € [N],¢& < w1} called Repeated Averages Hierarchy. The definition of this
family follows.

Definition 2.5 (cf. [3]). Let S’l"’l' be the positive part of the unit sphere of I!. For

A = (ag) in S’l"l' and F = (xj,) bounded sequence in a Banach space X we denote
by A - F' the usual matrices product, that is:

e’}
A B = Z ATl
k=1

For an A = (ag) in S’l"l' we set supp A = {k € N: ap # 0}. A sequence (Ay) C
Sl"’{ is said to be block sequence if supp Ay < supp Ag4q for every k=1,2,... .

For an M € [N] an M-summability method is a block sequence (Ay) with
A € Sl"{ and M = (J2 supp Ag.

For every M € [N] and ¢ < wi, an M-summability method (£}) is defined

inductively in the following way. (The notation (M, ¢) is also used for the same
method.)
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(i) For £ = 0, M = (my,) we set {,JCVI = em,,, where (e},) is the unit basis of /!
(ie., e = (0,0,...,1,0,...), the 1 occurring in the k** place).

(i) If € = ¢+ 1, M € [N] and (¢(}) has been defined then we define (¢2)
inductively as follows. We set k1 = 0, s1 = min supp Q{V[ , and

My v

M _
&1 o1

Suppose that for j =1,2,... ,n — 1, kj;, s; have been defined and

M M
§M _ ij-i-l tot Ck?j"rSj
J .

55

Then we set kyp, = kp_1 + Spn_1, Sn, = minsupp C,i\f and

M M
M _ Ckn‘f‘l +...F Ckn"l‘sn

n

Sn

This completes the definition for successor ordinals.

(iii) If £ is a limit ordinal and if we suppose that for every ¢ < &, M € [N] the
sequence (C,JQV[ ) has been defined, then we define (5,16‘/[ ) as follows: We denote by
(¢k) the strictly increasing sequence of successor ordinals with supy = £ that
defines the family fé.

For M = (mj) we define inductively M1 = M, n1 = my, My = {m; : m; ¢
supp[{nl]i‘/h}, no = min Mo, M3 = {mj tmy ¢ supp[cm]iwz} and ng = min M3,
and so on. " " o

We set g{\l = [Cnl]]_ 1,€é\l = [<n2]1 27 cee afljgw = [an]]_ kv ... . Hence (gljgw) has
been defined. This completes the definition of Repeated Averages Hierarchy.

Remark 2.6 (cf. [3]). By induction on £ < wj it is easy to show that for every
M € |N] and £ < w; we have {suppfé’ :Le[M],k=1,2,...} C ]—'é.

Notation 2.7 (cf. [3]). For F € [N]<“ and A = (ay) in I' we denote by (A, F)
the quantity ), ag.

Definition 2.8. A family F of finite subsets of N is said to be hereditary if F € F
and G C F implies G € F. A family F C [N]<¥ is said to be compact if the set
of all characteristic functions x g, where F' € F, is a compact subspace of {0, 1}N
with the product topology. The family F is said to be adequate if F is hereditary
and compact.

By Proposition 2.3.2 of [3], Theorem 2.2.6 of [3] and Lemma 2.4(d) we have
the following theorem:
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Theorem 2.9. Let £ < w; be an ordinal, F an adequate family of finite subsets
of N, M € [N] and § a positive real number such that for every N € [M] and for
every n € N we have that supper(&Y, F) > 6.

Then there exists a strictly increasing sequence (my,) of members of M such
that {m; :j € E} € F forall E € F¢.

Trees.

Definition 2.10 (cf. [4]). Let X be a set. For every n € N we set X" :=
{(x1,...yzp) s 21,... ,2n € X}
(i) A tree T on X will be a subset of J72; X™ with the property that
(z1,... ,on) € T whenever n € N and (21,... ,Zp,Zn+1) €T.
(ii) Proceeding by induction we associate to each ordinal o a new tree T% as
follows: We set 70 = T'. If T® is obtained, let

[e.e]
7ot = U{(a:l, ,xn) €ETY: (21,... ,n,2) €T for some z € X}.
n=1

If 3 is a limit ordinal we set 77 = Na<p T

Notation 2.11. If T is a tree on a set X and Y C X then we set:

o
Ty =Tn|J Y™

n=1

In the proofs of the main results (Theorems 3.1, 3.2, 3.3 and 3.4) we shall use
some results from [8] which are contained in the following theorem.

Theorem 2.12. Let K be a compact metric space, 1 < ¢ < wj and (fi) a
sequence of continuous real-valued functions on K. The following hold:

(1) If ¥((fn,)) > W for every strictly increasing sequence (nj) of natural
numbers then there exist e > 0 and a strictly increasing sequence (ny,) of natural
numbers such that for every subsequence (n;g) of (ny) and for every E = {k1 <
.. <kx} € Fe, (N €N), there exists xp € K with |f (xp)—f, (zp)l >¢

2kj 1 2kj
forall1<j <A\

(ii) If € > 0, (ny) a strictly increasing sequence of natural numbers and (n}g)
a subsequence of (ny,) such that for every £ = {k1 < ... < kx} € F¢, (A € N),
there exists xp € K with |f (zg)—f+ (xg)| >eforalll <j <\ then

Mok j+1 M2k,

(fri) ) > b
PROOF: (i) We start with the next claim.

Claim. There exist a strictly increasing sequence (ny) of natural numbers and
€ > 0 such that v((f,/ ). €) > w¢ for every subsequence (n}g) of (ng).
k
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[Proof of Claim. Assume the contrary. Then for every € > 0 and (ny,) strictly
increasing sequence of natural numbers there exists a subsequence (n}ﬂ) of (ng)
such that y((f /). €) < wt. We set ng = k for every k € N. By induction on

k

i > 1, there exists a subsequence (n%) of (n?g_l) such that *y((fn}-c), %) < W for
every ¢ € N. Then 7((fn;lz)) < wt, a contradiction.]

Therefore, by Claim and [8; Theorem 3.3 (i) = (iii)], there are ¢ > 0 and a
strictly increasing sequence (nj) of natural numbers such that for every subse-
quence (n;g) of (ny) and for every ' = {k1 < ..., ky\} € F¢, (A € N), there is
zp € K with |f / (zg)—f (zg)>eforalll <j <A

M2k +1 M2k,
(ii) By [8; Lemma 3.1.3, Definition 3.1.1], 7((fn;c), €) > w& and hence y((fn, ), €)

> WS, O

3. Main results

In this section the complexity of pointwise convergent sequences of contin-
uous real-valued functions defined on a compact metric space as described by
the convergence index “y” produces some local analogues (spreading models) of
Rosenthal’ s theorem (cf. Theorems 3.1, 3.2 and 3.3). By using these results and
[8] we obtain a characterization of l%—spreading models (cf. Theorem 3.4) and a
characterization of those bounded Baire-1 functions which have the oscillation
index greater than w¢, where 1 < ¢ < wy (cf. Theorem 3.5). We start with the

following theorem.

Theorem 3.1. Let K be a compact metric space, 1 < £ < wy and (f;) a uni-
formly bounded and pointwise converging sequence of continuous real-valued func-
tions on K such that v((fn,)) > w¢ for every strictly increasing sequence (ny,) of
natural numbers.

Then there exists a strictly increasing sequence (ny) of natural numbers such
that the sequence (fy, ) Is l%—spreading model.

For the proof of this theorem we need Lemmas 3.1.4, 3.1.5, 3.1.7, 3.1.8 which
are proved by using a method, developed by Professor S. Negrepontis and the
author (cf. [7] or [10; Definition 3.6, Lemma 3.7]). We start the next definition.

Definition 3.1.1 (cf. [1]). Let K be a compact metric space and (f) C C(K)
pointwise converging on K. Fix € > 0 and let

A = {2 € K+ fo(2) = fm(2) > e}, An = {2 € K : ful2) = fm(2) < —e¢}.

For each countable ordinal o we define inductively a subset of K by O%(e, (f3), K)
= K7

0T Le, (f), K) = {z € 0%(e, (fx), K) : for every neighborhood U of



Characterizations of spreading models of 11

there is ng € N such that for all n > ng there exists m, € N such that

) AL NO%e (fi), K)NU#0 or () An,nNO%e, (f), K)NU # 0},

m>mnp, m>mn,

If 8 is a limit ordinal, O (e, (f3), K) = Na<p O* (€ (fr), K).

Remark 3.1.2. It is easy to show that if (n},) is a strictly increasing sequence of
natural numbers and x € O%(e, (fn,, ), K) for some o < wy, then for every strictly
increasing sequence (my,) of natural numbers and [ € N with m; € {n; : k =
1,2,...} for all j > [ we have z € O%(e, (fm, ), K).

Definition 3.1.3. For n € N and &,...,&, < w; we say that the n-tuple

(&1,-..,&n) has property (A) if whenever K is a compact metric space, (f;) C

C(K) pointwise converging to f, (nj) a strictly increasing sequence of natural

numbers, m € N and € > 0 such that for every subsequence (n}f) of (ng) and for

every By € F¢y, ..., BEn € Fg, with m < F1 < ... < Ej, there exists x € K such

that |fn/2 - (z)— fn'z (z)| > efor all j € (J;— E;, then there exists a subsequence
J J

(n},) of (ng) such that 0% *-+51 (g (f ). K) # 0.

Lemma 3.1.4. For every { < wy, whenever (£1,...,&,) has property (A) then
(§:€15- -+ ,&n) has property (A).

PRrOOF: We proceed by induction on & < wy.

Case 1. (£ = 0). Assume that (£1, ... ,&y,) have property (A) and we shall show
that (0,&1,...,&,) has property (A). Indeed, let K be a compact metric space,
(fr) € C(K) pointwise converging to f, ¢ > 0, (ny) a strictly increasing sequence

of natural numbers and m € N such that for every subsequence (n;f) of (ny) and

keN, By € Feyy..o s Bn € Fg, withm <k < Ey <...< Ep there exists z € K

with [f » (2)— [ (x)| > eforall j € {k} UL, E;. We shall prove that there
2j+1 2j

exists a subsequence (n;g) of (n,) such that O“’En+"'+w§1+1(i, (fn' ), K) # 0.
We set P1 = {x € K : |fuyni1 (%) = fron (@) > €}. By the continuity of
Jroms framy1, 1 18 a closed subset of K and hence it is a compact subspace of K.
Also we set n% =Nomakt+1 forall k=1,2,... . Then for every subsequence (n}g)
of (ngz we c/onsider the subsequence (1) of (ny) with n, =nj for 1 <k <2m+1
and n, = n, for k > 2m + 2. By applying the assumption we have that for every
E1 € Fepyooo s En € Fe, withm +1 < Ey <...< Ej there exists z € P such
that [f ,  (z)—f , (z)] > eforallje Ui E;. Since (&1, ... ,&n) has property
2j+1

237
(A), there exists a subsequence (n}.) of (n?) and z1 € oW+ fwtl (%, (fni), P).
Then clearly |fny, 11 (21) = frgm (21)] > €
By induction on j > 1 and using that (&1, ... ,&,) has property (A), there exists
a strictly increasing sequence ( ?_1) of elements of {ném-i-k-i-l :k=1,2,...} and
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i1 € K with zj41 € OV ekt (g (fn£+1)7pj+1), where Pj11 := {z € K :
@)= fy @]
Since K is compact metric space, there exists a subsequence (z),) of (z;) and

z € K such that lim; .o z); = z. Then [f ;jjrll(aa\j) —f ;j71(:c)\j)| > e for

all j = 1,2,... . Then it is easy to choose a subsequence (\,;) of (\;) and
/ Ap;—1 Ap—1

n; € {nzzj ’"2;3—1-1 } for j =1,2,..., such that one of the following holds:

(1) fn;(:r)\uj) - f(:c)\#j) >gforalj=12,...,
(2) fn;(ac)wj) — f(x)\uj) <-—gforalj=12....

We shall prove that =z € Owén"'"""wgl"'l(i,(f 1), K). Indeed, let U be a

n
neighborhood of x. Since lim;_, Tr,, = T there exists jo € N such that T, €

U for all j > jo.
Suppose that (1) holds. Since (fi) converges pointwise to f for every j > jo
there exists m; € N such that

fn;(wxuj) = far (@n,,) =

So, by using Remark 3.1.2, z , € )
J

3>— for all m > m;.

&n 13
A+ N Ow™" +-tw 1(4 (fn;),K)ﬂU
for all j > jg. Therefore z € O‘“&”"'"""“&H‘l(z, (f),K). A similar argument
k

shows that = € O™ T+ H1(¢ (f /) ) if (2) holds.
k

m>m;

Case 2. (£ > 1). Suppose that the conclusion holds for every ¢ < £ and we
shall show it for £. Assume that (£1,... ,&n) has property (A) and we shall show
that (&,&1,...,&n) has property (A). Indeed, let K be a compact metric space,
(fr) € C(K) pointwise converging to f, € > 0, (ng) a strictly increasing sequence
of natural numbers and m € N such that for every subsequence (n;f) of (ny) and
E € Fe, By € Feyyooo s En € Fe, with m < E < Ej < ... < Ej there exists
xEwah lf /_H(:z:)— ), r (z)| > e forall j € EUJ;L, E;. We set njl* = ny,

for all £ € N. Consider these two subcases:

(a) £ = ¢+ 1. Then for every subsequence (n;) of (ng), 7 € Nwith j > m
and F1,..., F; € Fe,B1 € Fepyoo BEp € Fe, with j < Fp < ... < F; <
Ey < ... < Ep there exists € K such that [f, (z) — f . (z)| > € for

2k+1 Mok

all k € UJ_, ;U E;. By the induction hypothesis, ((,...,( &1, ... ,&) has

j—times
property (A) for all j € N. So, by induction on j > m, there exists a subsequence

(nk) of (nk 1) such that O“‘E""' +w51+]w4( ,(f,0), K) # 0. We set n;ﬂ = nﬁi’é
k

for all k¥ € N. Therefore, by the compactness of K and using Definition 3.1.1 and
Remark 3.1.2, we get that the set Ow " ottt +“’£(i, (f 1), K) is non-empty.

Ty,
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(b) £ is a limit ordinal. Let ({) be the strictly increasing sequence of ordinals
with supy, ¢, = £ that defines the family F¢. Then for every subsequence (n}f) of
(ng), j € Nwith j >m and E € Fen B € Feyyooo JEn € Fe, with j < B <
Ey < ... < By there exists € K such that |[f  (z) — f/ (z)] > € for all

2k+1 2k
k € EUU;—, E;. By the induction hypothesis, ((;,&1,...,&n) has property (A)
for‘ every j € N. So, by inductio(n on j > m, there exists a subsequence (ni) of
(ni_l) such that QW +-Fwsl+w" (7, (f,3), K) is non-empty. We set n;c = pmth
k

m+k
for all £k € N. By the compactness of K and using Definition 3.1.1 and 3.1.2, we
y g
&n 13 3
get O% +FwsSl 4w (iv(fn;)’K)#@ O
Lemma 3.1.5. For everyn € Nand&y,...,&, < wi the n-tuple (§1,...,&,) has

property (A).

PROOF: By Lemma 3.1.4, it is enough to show that the 1-tuple (£) has property
(A) for every £ < wi. We shall prove it by induction on ¢ < wy. For £ = 0, let
K be a compact metric space, (fi) € C(K) pointwise convergent to f, (n) a
strictly increasing sequence of natural numbers, m € N and € > 0 such that for
every subsequence (n;f) of (ng) and for every E = {k} € Fp there exists v € K
such that |f”l2k+1 (z) — fn;k ()| > €. Then working as in the proof of the case 1

of Lemma 3.1.4 we prove that there exists a subsequence (n;f) of (ng) such that

Now suppose that £ > 1, the 1-tuple ({) has property (A) for every ¢ < £ and

we shall prove that (¢) has property (A). If € = ¢ + 1, then for every k € N,

the k-tuple (¢,...,({) has property (A) by Lemma 3.1.4. If £ is a limit ordinal
——

k—times
and (&) the strictly increasing sequence of ordinals with supy, &, = £ that defines
F¢ then for every k € N, the 1-tuple (&) has property (A) by the induction
assumption. Therefore, by using the definition of the property (A) and using a
diagonal argument we get the desired conclusion (as in the case 2 of Lemma 3.1.4).

O
Definition 3.1.6. For any n € N and &,...,&, < w; we say that the n-
tuple (£1,...,&n) has property (B) if whenever T is a tree on w such that
0 <mp < ...< my for every (0,mq,...,mg) € T and M € [N] such that
(0) € (T|NU{0})“’§”""""“"51 for every N € [M], then there exists a strictly increas-
ing sequence (my,) of elements of M such that for every £y € F¢,... , Ep € F¢,

with By < ... < Ep and Ui E; = {k1 < ... < ky}, (where A € N), we have
(O,mkl,... ,mkk) eT.

Lemma 3.1.7. For every £ < wj, whenever (£1,...,&y,) has property (B) then
(57615 e afn) haS property (B)
PRrOOF: We proceed by induction on & < wy.
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Case 1. (£ =0). Let (&1, ... ,&,) have property (B), let T be a tree on w such
that 0 < m; < ... < my for every (0,m1,...,mg) € T and M € [N] such that

(0) € (Tinugoy) ™" T+ +1 for every N € [M].

Claim. There exists My € [M] such that for every M € [Mp)] there is m € M’
such that (0,m) € (Tjp o))" T+ for all L € [M'] with min L > m.

[Proof of Claim. Assume the contrary. Then there exists a decreasing
sequence (M) ) of infinite subsets of M such that if m) = min M, then m) <
myr1 and (0,my) ¢ (T‘{O’mA}UZ\/AH)“’gn"""""“ﬁl for all A € N. Consider
the set L = {my : A = 1,2,...}. Then from the assumption we have that
(0) € (ﬂLU{O})“’E""'“""wgl"'l. Hence there exists A € N such that (0,m)) €

(ﬂLU{O})“’E"""“‘"“’El. Then (0,m)) € (/11|{07m)\}uM/\+1)w§7l+.“+w£1, a contradic-
tion. This completes the proof of the claim.)

For every m € M we define the tree

T ={(0)}U{(0,n1,...,n5):j €N, (0,m,nq1,...,n;) €T}

By induction on a < wy, it is easy to show that (0,m,n1,... ,n;) € (T|nuio})”
iff (0,n1,...,15) € (T nugoy)® and (0,m) € (T)nugoy)® i (0) € (Thnnugoy)”
for every N € [M].

By repeated application of Claim and using that (1, ... ,&,) has property (B),
we find strictly increasing sequences M) = (mg), A € N of elements of M and a
strictly increasing sequence (mj)) of elements of M such that for every A € N it

holds my € My, mﬁ < my < min M) and for every 1 € F¢,...,Ep € F¢,

with F1 < ... < Ey and Jj—; E; = {k1 < ... < ku}, (where p € N), we have

(O,méj‘l, e ,mz"'l) € Tm,. The proof can be finished by taking the sequence
w

(my) and using Lemma 2.4 (b).

Case 2. (£ > 1). Assume that the conclusion of our Lemma is true for every
¢ < ¢ and we shall show that it is true for . Suppose that (£1,...,&,) has
property (B) and we shall show that (£,&1,...,&,) has property (B). Let T be
a tree on w such that 0 < my < ... < my, for every (0,mq,...,m;) € T and
M € [N] such that (0) € (Tjyyqoy) "t "+ for all N € [M]. Consider
these two subcases:

(a) € = ¢ +1. Then (0) € (Tjyugoy)™ T+ 2 for all N € [M], A € N
and by the induction hypothesis, (¢,...,(,&1,. .. ,&,) has property (B) for every
A€EN. A—times

(b) ¢ is a limit ordinal. Let ({;) be the strictly increasing sequence of ordinals
with supy, ¢, = & that defines the family F¢. Then (0) € (T|NU{0})W€7L+,,,+W51 Fwi
for every N € [M], A € N and by the induction assumption, ({y,&1,...,&,) has
property (B) for every A € N.

By using the definition of the property (B) and using a diagonal argument we
get the desired conclusion in the two subcases. (]
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Lemma 3.1.8. For every n € N, &1,...,&, < wi, the n-tuple (&1,...,&y) has
property (B).
PrROOF: By Lemma 3.1.7, it is enough to show that (§) has property (B) for
every £ < wi. We shall use induction on £. Let £ = 0, T be a tree on w such
that 0 < m; < ... < my for every (0,m1,...,mg) € T and M € [N] such
that (0) € (T\Nu{o})l for every N € [M]. Then there exist a strictly decreasing
sequence M1 D Mo D ... D My D ... of infinite subsets of M and a strictly
increasing sequence (my) such that m; € My and (0,my) € T for all k € N.
Therefore the sequence (my) is the desired sequence.

Now let 1 < ¢ < wy such that (¢) has property (B) for every ¢ < &. If § =(+1
then for every k € N, ((,...,() has property (B) by Lemma 3.1.7. If £ is a limit

k—times
ordinal and (j) is the strictly increasing sequence with supy, ¢, = € that defines
the family F¢ then the 1-tuple ((j,) has property (B) for all k£ € N.
By using the definition of the property (B) and using a diagonal argument we
prove that (§) has property (B). O

PROOF OF THEOREM 3.1: By Lemma 3.1.5, the 1-tuple (£) has property (4). So,

by Theorem 2.12(i) and by the definition of the property (A), there exist § > 0

and a subsequence (n;g) of (ng) such that o+ (6,(f,), K) # 0. By Remark 3.1.2,
k

ow* (6, ( f"k ), K) # 0 for every subsequence (n};) of (n;ﬁ) Consider the next tree
on w:

T:= {0} Ul {(0,m1,...,mp) €™ :my <... <my and
130 cifmlloo = 0> i |ei| for all eq,..., ¢, € R}

We set M := {n;C :k=1,2,...}. By using a result of Alspach and Argyros
([1; Theorem 3.1]), it is easy to see that (T|Nu{0})w§ # () for every N € [M]. By
Lemma 3.1.8, (£) has property (B). Therefore, by the definition of the property
(B) there exists a subsequence (n};) of (n}ﬂ) such that for every £ = {k; < ... <
kx} € F¢, (where A € N), the finite sequence (O,n};l, . ,n};/\) belongs to T and
since (fy) is uniformly bounded we get that the sequence ( fna]; ) is l%—spreading
model. (]

Combining some results of [3] and [8] we obtain the following theorem.

Theorem 3.2. Let K be a compact metric space, 1 < & < wi, (fg) a uniformly

bounded and pointwise converging sequence of continuous real-valued functions

on K, (ng) a strictly increasing sequence of natural numbers and (n;) a subse-

quence of (ny,) such that the sequence ( fn/ — fn/ ) is l% -spreading model. Then
2k+1 2k

V(fnr)) > Wt

PROOF: By using Lemma 2.4(c) (for ¢ = ) and the definition of l%—spreading

model for the sequence ( fn/ — fn’ ) there exist a strictly increasing sequence
2k+1 2k
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(Ar) of natural numbers and 6 > 0 such that

(%) 5 el < Hz:Ci(fn/2A
i=1 1

=

—f o < 2(8121) 1 fklloo) D leil

kT 2k i=1

for every {k1 < ... < km} € ]—'é, €ly..-,cm € R. For every x € K let Fy ={l €
N:|f, (x)=f, (@)]> g} Since (fx) is pointwise converging the sequence
Tax+1 Tax

(f
2A,+1 ,
We set F = {F € [N|<¥: F C F, for some z € K}. We shall prove that F
is adequate. By Definition 2.8 and the definition of F it is enough to show that
the set {xp : F € F} is closed subspace of {0,1}" with the product topology.
Indeed, If A C N, A = (an), with x4 € clgo yw({xF : F' € F}) then for every
n € N there exists z, € K such that {aj,...,an} C Fy,. Then a; € Fy, for
every n > k. Since K is a compact metric space there exist a subsequence (zy, )
of (zp,) and z € K with lim, z;,, = x. By the continuity of f;’s we have A C F;
and so A is finite and A € F. Hence {xp : F' € F} is closed.
By (¥) it is easy to see that [|£& - ((f. —f 1 Do = 6 for every L €
Toxp+1 Toxg

[N], n € N. Then for every L € [N] and n € N there exists # € K such that
&k ((f, = Fs M) >4 Also
22 +1 2Xp

=1 ) converges pointwise to zero and so Fy is finite for every z € K.
2X),

)
L L
o< (& - ((fy =T @< (s Fa) - 2sup [ frlloo + 5 -
2241 2Xp, k
Then (¢&, F,) > m. So, by Theorem 2.9, there exists a strictly increas-

ing sequence (ji) of natural numbers such that {j; : [ € E} € F for all £ € F.

” / / ” /
t = = d = f k . Then th
We set ny - nys Mopin = Moy, 41 and nqy, o), or every k € N en the
sequence (n,,) is a subsequence of (n) and for every £ = {k1 < ... < kp} € F¢
there is 25 € K such that |f, - — for > S foralll <j<m.
re is T u |fn2kj+1($E) fn%j (rg)| > g for <j<m

Therefore, by Theorem 2.12 (ii), y((fn, ), g) > W&, Hence v((fn,)) > w¥. O

Theorem 3.3. Let K be a compact metric space, 1 < £ < wy and (f}) a uni-
formly bounded and pointwise converging sequence of continuous real-valued func-
tions on K which is lg—spreading model. Then y((fn,)) > w¢ for every strictly

increasing sequence (ny) of natural numbers.

PROOF: By induction on 1 < ¢ < wy, it is easy to show that if £ = {k; < ... <
kx} € F¢ then F = {2k < 2ky +1 < ... < 2ky < 2ky + 1} € F¢. By using
this fact, it is easy to see that if (f}) is l%—spreading model then for every strictly
increasing sequence (ny,) of natural numbers the sequence (fp,, 1 — fnyy,) is also
ll

¢-spreading model and so, by Theorem 3.2, Y((frp)) > Wb, O
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Combining Theorems 3.1, 3.3, 2.12 and Theorem 3.3 of [8] we get the following
criteria (characterizations) for the l%—spreading model.

Theorem 3.4. Let K be a compact metric space, 1 < £ < wy and (f}) a uni-
formly bounded and pointwise converging sequence of continuous real-valued func-
tions on K. Then the following are equivalent:

(i) there exists a subsequence (fl;) of (fy) which is lg—spreading model;

(ii) there are € > 0 and a strictly increasing sequence (ny) of natural numbers

such that for every subsequence (n;ﬁ) of (ng) and for every E = {k1 < ... <
ky} € Fe (where A € N) there is xp € K with |f (xg) — f / (IE)| > ¢ for
all 1 <j <\ Zhyt

(iil) there are € > 0 and a strictly increasing sequence (ny,) of natural numbers
such that for every = {k1 < ... < ky} € F¢ (where X > 2) there is v, € K
with |fnkj+1 (zg) — fnkj (zg)| >ecforalll <j< A—1.

Theorem 3.5. Let K be a compact metric space, f a bounded real-valued func-
tion on K and 1 < ¢ < wy. Then the following hold:

W) If f ¢ B§(K) and (fy) € C(K) a uniformly bounded sequence pointwise
converging to f, then (fy) has a subsequence which is l% -spreading model (cf. [7]
or [10; Theorem 3.8)).

(ii) If (fr) € C(K) is a uniformly bounded sequence pointwise converging
to f such that for every sequence (g;) of convex blocks of (fy) (i.e., grp €
conv((fp)p>k)) there exists a subsequence of (g,) which is l%—spreadjng model,

then f ¢ Bf(K ). (Here conv((hy)) denotes the set of convex combinations of the
h.s.)
PRrROOF: The condition (i) is obvious by Theorem 3.1 and using that G(f) <
v((fx)) (cf. [6; Proposition 1.1]).

(ii) By [6; Theorem 1.3] there exists a sequence (93) of convex blocks of (f%)
such that 8(f) = v((gx))- By the hypothesis, let (gk) a subsequence of (g;,) which
is lg—spreadmg model. By Theorem 3.3 we have ((gk)) > wé. Also ”y((gk)) <

7((gx)) = B(f). Hence B(f) > ot ie., f & B5(K). O

It can be noticed that Theorems 3.3 and 3.5 have been proved for the first
time in the preprint [9], but for completeness we gave new proofs. Also for £ =1,
Theorem 3.5 has been proved by Haydon, Odell and Rosenthal in [5].

Theorem 3.6. Let K be a compact metric space and 1 < ¢ < wi. Then the
following hold:

(i) If every uniformly bounded and pointwise converging to zero sequence
(fx) C C(K) with infy, || fx|lco > 0 has a subsequence which is l%—spreading model,

then By (K) \ C(K) C By (K) \ B (K).
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(ii) If no uniformly bounded and pointwise converging to zero sequence (f;) C
C(K) has a subsequence which is lg—spreading model then By (K) C Bf(K)

Proor: (i) Let f € Bi(K) \ C(K). By [6; Theorem 1.3] there exists a uni-
formly bounded sequence (g;) € C(K) pointwise converging to f such that
v((gx)) = B(f). Then for every strictly increasing sequence (n) of natural num-
bers the sequence (gn,, ,; —9gno;,) is pointwise converging to zero and infy, [|gn,, , , —
Gnop lloo > 0 because f is not continuous. Hence there exists a subsequence (hy,) of
(9nap41 — Gngy,) Which is lg—spreading model. Choose a strictly increasing sequence

(ji) of natural numbers such that hy = Gnaj 41 — 9oy, for all k € N. We set
nll =nq, nlzk = ngj, and n;k+1 = ngj, +1 for every k € N. So, hy, = gn;kﬂ —gn;k
for all k € N. Therefore, by Theorem 3.2, v((g)) > w®. Hence (f) > ¥, ie.,
fé B%(K) This completes the proof of (i).

(ii) Assume the contrary. Then there exists f € By (K) \ Bf(K) Let (fx) C
C(K) be a uniformly bounded sequence which converges pointwise to f. By

Theorem 3.5(i), there exists a subsequence ( f];) of (fy) which is lf—spreading
model. Then the sequence ( fék 1 fék) converges pointwise to zero. Also, by
using that if F = {k1 < ... <ky} € F¢ then F' = {2k; < 2k; +1 < ... < 2ky <
2ky + 1} € Fg, it is easy to show that the sequence (fék—i-l - fék) is l%—spreading
model, a contradiction. (]

Acknowledgment. I am grateful to referee for his (her) useful corrections.
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