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Primes, coprimes and multiplicative elements

Melvin F. Janowitz, R.C. Powers, T. Riedel

Abstract. The purpose of this paper is to study conditions under which the restriction
of a certain Galois connection on a complete lattice yields an isomorphism from a set of
prime elements to a set of coprime elements. An important part of our study involves
the set on which the way-below relation is multiplicative.
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1. Introduction and preliminaries

In a finite lattice the set of coprime elements is order isomorphic to the set of
prime elements under the correspondence that sends an element x to the join of
the set of elements not greater than or equal to x. The associated inverse sends
y to the meet of the set of elements not less than or equal to y. These two unary
operations regarded on the whole lattice form a Galois connection and play an
important role in the theory of completely distributive lattices ([5], [3]). We refer
to these operations as “Raney’s mappings”. In this paper we investigate when
Raney’s mappings yield an isomorphism between certain subsets of prime and
coprime elements. Our results and techniques are strictly lattice theoretic but it
is possible to use a topological point of view, which we will pursue in a future
paper.
An important part of our investigation is the notion of a multiplicative element.

Specifically, an element x in a complete lattice L is multiplicative if the set of all
elements y such that x is way-below y is either empty or a lattice filter. If every
element of L is multiplicative then the way-below relation on L is said to be mul-
tiplicative, (see [2]). If L is a distributive continuous lattice, then there are several
interesting characterizations for when the way-below relation is multiplicative on
L, (see [2]). For some recent work in this direction we refer the reader to [6].
After introducing some notation in the remainder of this section, we present

in Section 2 results regarding Raney’s mappings and isolate a situation in which
a restriction of these maps provides an isomorphism between certain subsets of
prime and coprime elements. This leads to a connection with the set of elements
where the way-below relation is multiplicative. The section concludes with exam-
ples that show that this isomorphism cannot in general be extended. Section 3
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is devoted to topics such as continuous lattices, completely distributive lattices,
and the meaning of the way-below relation being multiplicative.
In order to keep this paper essentially self-contained we present here the needed

definitions. When terminology is not standard we will follow the conventions
used in [2]. Throughout this paper L will denote a complete lattice and Lop will
denote L with the order reversed. We begin with the way-below relation, for
x, y ∈ L we say x is way-below y, denoted x � y if for every directed set A ⊆ L,
y ≤ supA implies that there is an a ∈ A such that x ≤ a. Elements satisfying
x � x are called isolated from below or compact. Further for any x ∈ L, let
↑ x = {y ∈ L |x ≤ y}, ↓ x = {y ∈ L | y ≤ x}, ↓↓ x = {y ∈ L | y � x} and
↑↑ x = {y ∈ L |x � y}.
We now give a formal definition of Raney’s mappings. For x ∈ L let

Rv(x) = xv =
∨
(L \ ↑ x) and Ru(x) = xu =

∧
(L \ ↓ x) .

As mentioned above, the pair (Rv, Ru) is a Galois connection on L ([2]). Conse-
quently, Rv preserves arbitrary joins and Ru preserves arbitrary meets.
A lattice L is a complete Heyting algebra if L is a complete lattice in which

the following distributive property holds:

x∧
∨

Y =
∨

{x∧y | y ∈ Y }, for all x ∈ L, Y ⊆ L.

A complete lattice L is completely distributive if

∧
j∈J

∨
k∈K(j)

xj,k =
∨

f∈M

∧
j∈J

xj,f(j),

where M is the set of all functions f on J such that f(j) ∈ K(j). Further, a
continuous lattice L is a complete lattice with the property that x =

∨↓↓ x, for
every x ∈ L. We note that a distributive continuous lattice is the same as a
complete Heyting algebra. Furthermore, every completely distributive lattice is
continuous but the converse does not hold. The element p ∈ L is join irreducible
if a∨b = p implies a = p or b = p and q is completely join irreducible if, for any
nonempty subset S ⊆ L,

∨
S = p implies p ∈ S. Meet irreducible and completely

meet irreducible are defined dually. An element p ∈ L is prime if x∧y ≤ p implies
that x ≤ p or y ≤ p and q ∈ L is coprime if q is prime in Lop, that is, L
with the order reversed. Note that every prime is meet irreducible and every
coprime is join irreducible, and in a distributive lattice the converse also holds.
A completely distributive lattice L is a ring of sets if the set of completely join
irreducible elements is a join dense subset of L. This is equivalent to the fact that
the set of completely meet irreducible elements is a meet dense subset of L.
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We will use the following notation for subsets of importance to our study:

Su = {xu | x ∈ S ⊆ L}
Sv = {xv | x ∈ S ⊆ L}

C(L) = {q ∈ L \ {0} | q is a coprime}
P (L) = {p ∈ L \ {1} | p is a prime}

Cu(L) =

{
(C(L) ∩ Lu) \ {1} if 1 is not completely join irreducible
(C(L) ∩ Lu) ∪ {1} if 1 is completely join irreducible

Pv(L) =

{
(P (L) ∩ Lv) \ {0} if 0 is not completely meet irreducible
(P (L) ∩ Lv) ∪ {0} if 0 is completely meet irreducible

M(L) = {x ∈ L | ↑↑ x is a filter or empty}.
The set M(L) is the set of multiplicative elements of L and x ∈ M(L) is

equivalent to x � a and x � b implies x � a∧b. Further note that {0, 1} ⊆ M(L).

2. Results on complete lattices

In this section we study the connection betweenM(L) and properties of Raney’s
mappings Rv and Ru.

Lemma 2.1. Let L be a complete lattice.

(i) If p = qv for some q ∈ C(L), then L\ ↓ p = ↑↑ q.
(ii) If q = pu for some p ∈ P (L), then L\ ↑ q = ↑↑

Lop
p.

Proof: (i). Let p =
∨
(L\ ↑ q). Since q is coprime, L\ ↑ q is an ideal. Note that

q �� p. Hence, if q � x, then x �≤ p. Thus ↑↑ q ⊆ L\ ↓ p.
To show the opposite containment, note that p =

∨
(L\ ↑ q) implies that L\ ↑

q ⊆↓ p. So ↑ q ⊇ L\ ↓ p. Let x ∈ L\ ↓ p and suppose that x ≤ ∨
D for some

directed set D. Then there exists d ∈ D such that d �≤ p (otherwise x ≤ ∨
D ≤ p).

So d ∈ L\ ↓ p ⊆↑ q, i.e., q ≤ d. Thus q � x and we have L\ ↓ p ⊆ ↑↑ q.

(ii). Since ↑↑
Lop

p means that we take the way-below relation in Lop, thus this
follows from a dual argument. �
Note that under the assumptions of item (i) we have that pu =

∧
(L\ ↓ p) =∧↑↑ q and thus q = pu if and only if q =

∧↑↑ q furthermore this is the same as
qv =

∨
(L \ ↑↑ q). Similarly, under the assumptions of (ii) p = qv if and only if

p =
∨↑↑

Lop
p which is the same as pu =

∧
(L \ ↑↑

Lop
p).

Lemma 2.2. Let L be a complete lattice.

(i) If q ∈ C(L) then q ∈ M(L) if and only if qv ∈ P (L) ∪ {1}.
(ii) If p ∈ P (L) then p ∈ M(Lop) if and only if pu ∈ C(L) ∪ {0}.

Proof: (i) (⇒). Let q ∈ C(L) and p = qv. By Lemma 2.1 ↑↑ q = L\ ↓ p. Since
q ∈ M(L), ↑↑ q is a filter or empty, which implies that p ∈ P (L) ∪ {1}.
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(⇐). If p ∈ P (L)∪{1}, then ↑↑ q = L\ ↓ p is a filter or empty, hence q ∈ M(L).
Dually (ii) follows. �
The above lemmas are the key to the following theorem:

Theorem 2.3. Let L be a complete lattice. The restriction R̂v of Rv to Cu(L)∩
M(L) is an isomorphism of Cu(L) ∩ M(L) onto Pv(L) ∩ M(Lop) whose inverse
is R̂u, the restriction of Ru to Pv(L) ∩ M(Lop).

Proof: Note that R̂v and R̂u are injective. Now let q ∈ Cu(L) ∩ M(L), then
by Lemma 2.2 qv ∈ Pv(L) ∪ {1} and it suffices to show that p = qv �= 1 and
p ∈ M(Lop). Suppose p = 1, then q = (qv)u = pu = 1 ∈ Cu(L). This implies
that 1 is a complete join irreducible and hence that 1 > 1v =

∨{x |x < 1}
contradicting that 1v = qv = p = 1. Further, pu = (qv)u = q ∈ Cu(L) and thus
by Lemma 2.2(i) p ∈ M(Lop). Thus R̂v is an injective map from Cu(L) ∩ M(L)
to Pv(L)∩M(Lop). By a dual argument we can establish the corresponding result
for R̂u. Since (Rv, Ru) forms a Galois connection on L, we have that R̂u is the
inverse of R̂v, and thus the proof is complete. �
Note that if L is a complete Heyting algebra, then the set of completely join

irreducible elements is contained in Cu(L)∩M(L) and the set of completely meet
irreducible elements is contained in Pv(L)∩M(Lop). Furthermore, these sets are
isomorphic under Raney’s mappings.
The following corollary is immediate.

Corollary 2.4. If L is a complete lattice and the way-below relations on L and
Lop are multiplicative, then the restriction of Rv to Cu(L) is an order isomorphism
from Cu(L) onto Pv(L) with Ru as the associated inverse.
The interesting aspect of Corollary 2.4 is that the converse does not hold, not

even in the case when L, and hence Lop, is a ring of sets.

Example 2.5. Let N = {1, 2, 3, . . .} denote the natural numbers. Let P(N) be
the power set of N and L = P(N) ∪ {a, b, 1} where a and b are not comparable,
a, b ≥ {n} for all n ∈ N and 1 is the largest element of L.

�
φ

1

L = N P(N)

a b
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Here we have N � a, N � b but N �� a∧b and hence the way-below relation is
not multiplicative. It is clear, however, that Rv is an isomorphism from Cu(L) =
the atoms of P(N)∪{a, b} to Pv(L) = the coatoms of P(N)∪{a, b} whose inverse
is Ru.

Example 2.6. Even in view of the above example, one might expect that the
associated isomorphisms Rv and Ru extend to isomorphisms between the coprime
and prime elements of L. This example shows that even if a pair of isomorphisms
exists between C(L) and P (L), they need not be extensions of Rv and Ru, re-
spectively, not even if L is a ring of sets.

�
0

1

L = p

w v

x y

{n, x}

{n}

x is an atom
v is a coatom
w covers p, p covers y

the remaining intervals are
isomorphic to Z ∪ {−∞,∞}

Observe that:

0u = 0,
1u = 1,
wu = p,
t ∈ [x, p)⇒ tu ∈ [0, y],
t ∈ [0, y]⇒ tu = x,
Lu = {[0, y), x, p, w, [p, v), 1},
Cu(L) = {(0, y), x, (p, v), w},
Pv(L) = {(x, p), y, (w, 1), v},
y ∈ C(L) and yv =

∨
(L\ ↑ y) = p /∈ P (L).

This indicates that Theorem 2.3 is as far as we can go to use the Rv and Ru

mappings as candidates for isomorphisms between C(L) and P (L) (unlike in the
finite case).

3. Results for completely distributive lattices

The previous section showed that if there are “enough” multiplicative elements
then the Rv and Ru mappings are isomorphisms between Cu(L) and Pv(L) and
vice versa. We begin this section by investigating conditions that provide enough
multiplicative elements, in particular we characterize those completely distributive



612 M.F. Janowitz, R.C.Powers, T. Riedel

lattices for which the way below relation is multiplicative on all of L and Lop,
thus providing us with a class of lattices for which these isomorphisms exist.
We first recall that a subset B of L is a basis for a lattice L if 0 ∈ B, B is closed

under finite joins and x =
∨
(↓↓ x ∩ B) for all x in L. This is Definition III.4.1

in [2]. Further note that if L is completely distributive then B is a basis for L if
and only if B is closed under finite joins and is join dense in L, [2, I.3.42].
The crucial result for this section is contained in the following theorem.

Theorem 3.1. Let L be a complete lattice.
(i) If L is continuous then the following are equivalent:

(a) the way-below relation is multiplicative on L,
(b) there is a basis B for L such that B ⊆ M(L) and B is a sublattice of L,
(c) there is a basis B for L which satisfies b1∧b2 ∈ M(L) for all b1, b2 ∈ B.

(ii) If Lop is continuous then the following are equivalent:

(a) the way-below relation is multiplicative on Lop,
(b) there is a basis B for Lop such that B ⊆ M(Lop) and B is a sublattice
of Lop,

(c) there is a basis B for Lop which satisfies b1∨b2 ∈ M(Lop) for all b1, b2 ∈ B.

Proof: (i) (a) ⇒ (b). Take B = L. (b) ⇒ (c) obvious. (c) ⇒(a). Let a ∈ L
with a � x and a � y. By [2, Proposition III.4.2, p. 168], there exist b1, b2 ∈ B
such that a ≤ b1 � x and a ≤ b2 � y. Thus a ≤ b1∧b2 and b1∧b2 � x as
well as b1∧b2 � y. Since b1∧b2 ∈ M(L) it follows that b1∧b2 � x∧y and hence
a � x∧y.
Item (ii) follows by a dual argument. �
The preceding theorem says that the way-below relation is multiplicative on L

if and only ifM(L) contains a sublattice of L which is a basis for L. In particular,
the way-below relation on an algebraic lattice is multiplicative if and only ifK(L),
the set of compact elements of L, is a sublattice of L, that is, L is arithmetic. This
can be found in [2, Proposition I.4.7, p. 86] and thus Theorem 3.1 is an extension
of this result.
Our next result is a similar fact about completely distributive lattices, and is

based on the fact that, for any completely distributive lattice L, the set C(L) is
a join dense subset of L.

Theorem 3.2. Let L be a completely distributive lattice.

(i) The way-below relation is multiplicative on L if and only if q1∧q2 ∈ M(L)
for any q1, q2 ∈ C(L).

(ii) The way-below relation is multiplicative on Lop if and only if p1∨p2 ∈
M(Lop) for any p1, p2 ∈ P (L).

Proof: (i) (⇒). This direction is obvious.
(⇐). Let q ∈ C(L) and set p = qv. Then L\ ↓ p = ↑↑ q by Lemma 2.1(i). Since

p is prime, ↑↑ q is a filter or empty, hence C(L) ⊆ M(L). Let B = {x ∈ L |x =
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q1∨ . . .∨qr for qi ∈ C(L)}. Then B ∪ {0} is a basis for L and B ∪ {0} ⊆ M(L).
Furthermore, b1∧b2 ∈ M(L) for any b1, b2 ∈ B ∪ {0} and by Theorem 3.1(i) the
way-below relation is multiplicative on L.

(ii) This part follows using (ii) of Theorem 3.1. �
The next example shows that distributivity is crucial in the above theorem.

Example 3.3. Following [2, p. 249], we take L to be

�
L =

Then q1∧q2 ∈ M(L) for any q1, q2 ∈ C(L) is true vacuously since C(L) is empty,
but M(L) �= L.

An interesting problem is to see whether Theorem 3.2 holds for distributive
continuous lattices (that is for complete Heyting algebras). For example, if L =
{(0, 0)} ∪ (0, 1]× (0, 1], then L is distributive and continuous but not completely
distributive. C(L) ⊆ M(L) again holds vacuously and M(L) = L. Indeed, all
characterizations of the multiplicativity of the way-below relation given in [2] are
for distributive continuous lattices.
The next lemma is an analog of Lemma 2.2 for completely distributive lattices:

Lemma 3.4. Let L be a completely distributive lattice.

(i) Lv ⊆ P (L) ∪ {0, 1} if and only if Pv(L) ∪ {1} is closed under arbitrary,
nonempty joins and C(L) ⊆ M(L).

(ii) Lu ⊆ C(L) ∪ {0, 1} if and only if Cu(L) ∪ {0} is closed under arbitrary,
nonempty meets and P (L) ⊆ M(Lop).

Proof: (⇒). Let q ∈ C(L), then p = qv ∈ Lv. If p = 0 then 0u = pu =
(qv)u ≥ q > 0 and 0 ∈ P (L) (since it is completely meet irreducible), and thus
qv ∈ P (L) ∪ {1} and Lemma 2.2 yields C(L) ⊆ M(L). Let ∅ �= S ⊆ Pv(L) ∪ {1}.
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Since, if 1 ∈ S then
∨

S = 1 ∈ Pv(L)∪ {1}, we may assume that 1 /∈ S and hence
S ⊆ Pv(L). This in turn implies that s = (su)v for each s ∈ S. Since the Rv map
preserves joins and Lv ⊆ P (L) ∪ {0, 1} we obtain∨

S =
∨

{(su)v | s ∈ S} =
(∨

{su | s ∈ S}
)

v
∈ Lv ⊆ P (L) ∪ {0, 1}.

But if
∨

S = 0 then 0 ∈ S, since S �= ∅ and thus 0 ∈ P (L) ∪ {1}. Hence∨
S ∈ Pv(L) ∪ {1}.
(⇐). By Lemma 2.2(i) we have that Rv(C(L)) ⊆ P (L) ∪ {1}. Since L is

completely distributive we have x =
∨{q ≤ x | q ∈ C(L)} for all x ∈ L. Since

Rv preserves joins, we have xv =
∨{qv | q ≤ x and q ∈ C(L)}. But since C(L) ⊆

M(L) we have qv is a prime or 1 and thus in Pv(L)∪ {1}. Since this set is closed
under joins we have Lv ⊆ P (L) ∪ {0, 1}.
(ii). This again follows dually. �
If L is completely distributive then so is Lop and one might expect that (i) and

(ii) of Lemma 3.4 are equivalent. The next example shows that this is not the
case:

Example 3.5. If L is the vertical sum of 22 and the interval (0, 1], as in the
picture below, then L is completely distributive and satisfies (i) of Lemma 3.4,
but Lop does not satisfy (ii).

�
0

1

L = c

a b

≡ [0, 1]

This motivates our final theorem which shows what happens when we combine
the two items in Lemma 3.4.

Theorem 3.6. Let L be a completely distributive lattice. Then the following
are equivalent:

(i) the way-below relations on L and Lop are multiplicative, Pv(L) ∪ {1} is
closed under arbitrary, nonempty joins, and Cu(L) ∪ {0} is closed under
arbitrary, nonempty meets,

(ii) Lv ⊆ P (L) ∪ {0, 1} and Lu ⊆ C(L) ∪ {0, 1}.
Proof: (i) ⇒ (ii). Apply Lemma 3.4(i) and (ii).
(ii)⇒ (i). By Lemma 2.2(i) it follows that C(L) ⊆ M(L) and that Pv(L)∪{1}

is closed under arbitrary joins. Recall that Lu is join dense in L ([3], [5]) and
that we are assuming Lu ⊆ C(L) ∪ {0, 1}, hence Lu ⊆ M(L). Since the Ru map
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preserves meets we have that q1∧q2 ∈ Lu for any q1, q2 ∈ Lu. By Theorem 3.2(i)
(using Lu instead of C(L)) we get that the way-below relation is multiplicative
on L. The remaining parts of (i) now follow from a dual argument. �
The part of (i) in Theorem 3.6 requiring L ⊆ M(L) and Lop ⊆ M(Lop) can

be weakened to the following condition: there exists a join dense subset B and a
meet dense subset B′ of L such that B ⊆ M(L) and B′ ⊆ M(Lop). If we take
B = C(L) and B′ = P (L), then Theorem 3.6 is exactly the combination of items
(i) and (ii) in Lemma 3.4. If L is a ring of sets, then, automatically,M(L) contains
a join dense subset of L and M(Lop) contains a meet dense subset of L. Conse-
quently, item (ii) in Theorem 3.6 is equivalent to: (i)′ Pv(L)∪{1} is closed under
arbitrary nonempty joins and Cu(L) ∪ {0} is closed under arbitrary nonempty
meets. Moreover, we do not have an example of a completely distributive lattice
L where (i)′ and (ii) are not equivalent.
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