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Smooth graphs

L. Soukup

Abstract. A graph G on ω1 is called < ω-smooth if for each uncountable W ⊂ ω1, G

is isomorphic to G[W \ W ′] for some finite W ′ ⊂ W . We show that in various models
of ZFC if a graph G is < ω-smooth, then G is necessarily trivial, i.e. either complete
or empty. On the other hand, we prove that the existence of a non-trivial, <ω-smooth
graph is also consistent with ZFC.

Keywords: graph, isomorphic subgraphs, independent result, Cohen, forcing, iterated
forcing

Classification: 03E35

1. Introduction

Answering a question of R. Jamison, H.A. Kierstead and P.J. Nyikos proved
in [3]: if the uncountable induced subgraphs of an uncountable n-uniform hy-
pergraph are pairwise isomorphic, then the hypergraph must be either empty or

complete. In this note we investigate how many uncountable subgraphs of a graph
G on ω1 can be isomorphic to G provided that it is non-trivial, i.e. it is not com-
plete nor empty. As a corollary of [1, Theorem 4.2] we can get the following
positive result: the existence of a non-trivial graph on ω1 which embeds into each
of its uncountable subgraphs is consistent with ZFC. To formulate this and the
forthcoming results precisely we need the following definition.

Definition 1.1. A graph G on ω1 is called κ-smooth (<κ-smooth) if for each
uncountable W ⊂ ω1, G is isomorphic to G[W \ W ′] for some W ′ ⊂ W with
|W ′| ≤ κ (|W ′| < κ).

Fact 1.2. If a graph G on ω1 is n-smooth for some n ∈ ω, then G is complete or
empty.

Proof: Pick ordinals x0, x1, . . . , xn from ω1 by finite induction such that for
each j ≤ n we have

xj ∈
⋂

i<j

G(xi) and

∣

∣

∣

∣

⋂

i≤j

G(xi)

∣

∣

∣

∣

= ω1.
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If we cannot find a suitable xj , then taking W =
⋂

i<j G(xi) we have |W | = ω1
but |W ∩G(w)| ≤ ω for each w ∈ W . Thus G[W ] contains an uncountable induced
empty subgraph and so G is empty.
Assume now that we could choose the sequence {xi : i ≤ n}. Then let W =

{xi : i ≤ n} ∪
⋂

i≤n G(xi). Since G is n-smooth there is W ′ ⊂ W , |W ′| ≤ n such

that G ∼= G[W \ W ′]. Fix i < n + 1 such that xi /∈ W ′. Since xi ∈ W \ W ′,
W ⊂ G(xi) ∪ {xi} and G ∼= G[W \ W ′] it follows that there is w ∈ ω1 such that
ω1 ⊂ G(w) ∪ {w} and so for each uncountable V ⊂ ω1 there is v ∈ V such that
|V \ G(v)| ≤ n. Thus G contains an uncountable complete subgraph and so G is
complete. �

On the other hand, in [1, Theorem 4.2] it was shown that ♦+ implies that
there is a Suslin tree T = 〈ω1,≺〉 such that for each uncountable X ⊂ ω1 there
is a countable X ′ ⊂ X such that T ∼= T ↾ (X \ X ′). Thus the comparability
graph of T is ω-smooth and clearly non-trivial. However, the question whether
a <ω-smooth graphs on ω1 is necessarily trivial was left open. This gap will be
filled up here: we show that (i) in different models of ZFC every <ω-smooth
graph on ω1 is complete or empty, (ii) the existence of a non-trivial, <ω-smooth
graph G on ω1 is consistent with ZFC.
The following question however remains unanswered:

Problem 1. Is there a non-trivial, ω-smooth or just ω1-smooth graph on ω1
(in ZFC)?

We use the standard set-theoretical notation throughout, cf. [2]. For a graph
G, V (G) denotes the set of vertices of G, E(G) the family of edges of G. If
H ⊂ V (G), G[H ] denotes the induced subgraphs of G on H . Given x ∈ V (G)
put G(x) = {y ∈ V (G) : {x, y} ∈ E(G)}. If G and H are graphs we write G ∼= H
if G and H are isomorphic.
If G and G′ are graphs, Isop(G, G′) denotes the family of isomorphisms between

finite induced subgraphs of G and G′.
If q is a function let supp(q) = dom(q) ∪ ran(q).
For a cardinal κ we denote by Cκ the standard poset 〈Fn(κ, 2;ω),⊇〉 which

adds κ Cohen reals to the ground model.

2. Models without non-trivial <ω-smooth graphs

Lemma 2.1. If G is a <ω-smooth graph on ω1 and G has a — not necessarily
spanned— subgraph isomorphic to the bipartite graph [ω;ω1], then G is complete.

Proof: Fix A ∈
[

ω1
]ω
and B ∈

[

ω1
]ω1 such that [A, B] ⊂ E(G). Let

X = {α ∈ ω1 : |ω1 \ G(α)| ≤ ω}.

We show that X is uncountable. Indeed, let α < ω1. Then for some finite
C ⊂ A ∪ B and D ⊂ ω1 \ α the graphs G[(A ∪ B) \ C] and G[(ω1 \ α) \ D] are
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isomorphic witnessed by a function f . Then f ′′(A \ C) ⊂ X , so X 6⊂ α, i.e.
|X | = ω1.
Now, by recursion, we can construct a set Y = {yη : η < ω1} ⊂ X such that

yη ∈ X ∩
⋂

ξ<η

G(yξ). Then G[Y ] is complete and so G is also complete which was

to be proved. �

Let us remark that the statement of Lemma 2.1 fails for ω-smooth graphs: the
comparability graph G of the Suslin tree T constructed in [1, Theorem 4.2] is
non-trivial and ω-smooth, but [ω;ω1] ⊂ G and [ω1;ω1] ⊂ G.
Let us recall the definition of splitting number s:

s = min{|A| : A ⊂
[

ω
]ω

∧ ∀X ∈
[

ω
]ω

∃A ∈ A |X ∩ A| = |X \ A| = ω}.

Theorem 2.2. Every <ω-smooth graph on ω1 is trivial provided (1) or (2) or
(3) below hold:

(1) ω1 < s,

(2) 2ω < 2ω1 ,
(3) in a model obtained by adding ω2 Cohen reals to some model V .

Proof of Theorem 2.2 (1): Assume that G is <ω-smooth. For each α ∈ ω1
let Fα = G(α) ∩ ω. The family F = {Fα : α < ω1} is not a splitting family for
s > ω1 so there is an infinite set B ⊂ ω such that B ⊂∗ Fα or B ⊂∗ ω \ Fα

for each α ∈ ω1. Then there is n ∈ ω and an uncountable I ⊂ ω1 such that
either B \ n ⊂ Fα for each α ∈ I or B \ n ∈ ω \ Fα for each α ∈ I. Thus either
[B \ n, I] ⊂ E(G) or [B \n, I]∩E(G) = ∅, i.e. [ω;ω1] is a subgraph of either G or
G, and so G is trivial by Lemma 2.1. �

Proof of Theorem 2.2 (2): Assume on the contrary, that G is <ω-smooth
and non-trivial. By Lemma 2.1, we can choose an uncountable set A ⊂ ω1 \ ω

such that G(α) ∩ ω 6=∗ G(β) ∩ ω for each {α, β} ∈
[

A
]2
.

For each uncountable X ⊂ A fix a finite set CX ⊂ ω1 and an isomorphism fX

between G[(ω∪X)\CX ] and G. Since 2ω < 2ω1 there are sets X, Y ∈
[

A
]ω1 such

that |X \ Y | ≥ ω, CX = CY and fX ↾ ω = fY ↾ ω. Let ξ ∈ X \ Y \ CX . Then

f = f−1
Y

◦ fX is an isomorphism between G[(ω ∪ X) \ CX ] and G[(ω ∪ Y ) \ CY ]
such that f ↾ (ω \ CX ) = id ↾ (ω \ CX ). Taking η = f(ξ) we obtain that
G(ξ) ∩ (ω \ CX ) = G(η) ∩ (ω \ CX) which contradicts the choice of A because
η 6= ξ for ξ /∈ ran(f). �

Proof of Theorem 2.2 (3): Assume that G is a graph on ω1 in V Cω2 . Fix

α < ω2 such that G ∈ V Cα . Since Cω2 = Cα∗Cω2\(α+ω1)∗C[α,α+ω1), by Lemma 2.1

it is enough to prove the following statement:

Lemma 2.3. If G is a graph on ω1, [ω;ω1] 6⊂ G, G, then G is not <ω-smooth

in V Cω1 .
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Proof of Lemma 2.3: Applying Lemma 2.1, we can find an uncountable A ⊂

ω1 \ ω such that G(α) ∩ ω 6=∗ G(β) ∩ ω for each {α, β} ∈
[

A
]2
. If G is the

Cω1 -generic filter over V , let X = {α ∈ A : ∃ p ∈ G p(α) = 1}. We show that

1Cω1
‖— “G and G[(ω ∪ Ẋ) \ Y ] are not isomorphic

for any Y ∈
[

ω1
]<ω
. ”

Assume on the contrary that p ∈ Cω1 , Y ∈
[

ω1
]<ω

and ḟ is a Cω1 -name of a
function such that

p ‖— “ḟ is an isomorphism between G and G[(ω ∪ Ẋ) \ Y ]”.

Fix ω ≤ ν < ω1 such that dom(p) ∪ Y ⊂ ν, p ‖— “ḟ ′′ν = ((ω ∪ Ẋ) \ Y ) ∩ ν” and

p ‖— “ḟ ↾ ν ∈ V [G ↾ ν].” From now on we work in V [G ↾ ν]. Let h = f ↾ ν and

B = h−1(ω \ Y ). Since G(α) ∩ ω 6=∗ G(β) ∩ ω for each {α, β} ∈
[

A
]2
it follows

that if {ζ, ξ} ∈
[

ω1 \ ν
]2
, then G(ζ) ∩ B 6=∗ G(ξ) ∩ B. Thus for each ξ ∈ ω1 \ ν

we have
f(ξ) = α iff h′′(G(ξ) ∩ B) =∗ (G(α) ∩ ω).

Hence f ↾ (ω1 \ ν) can be defined in V [G ↾ ν] and so X \ ν ∈ V [G ↾ ν], which is
impossible by the choice of X . �

The proof of Theorem 2.2 is complete. �

The following theorem claims that if CH holds in the ground model, then the
statement of Lemma 2.3 can be strengthened: we can find a set in the ground
model witnessing that G is not <ω-smooth in V Cω1 .

Theorem 2.4. If CH holds and G is a graph on ω1 such that [ω;ω1] 6⊂ G, G,
then there is an uncountable subset X of ω1 such that

V Cω1 |= “G is not isomorphic to G[X \ Y ] for any Y ∈
[

ω1
]ω1”.

The proof is quite long and technical, so we omit it.

3. Generic construction of a non-trivial <ω-smooth graph

Theorem 3.1. If 2ω1 = ω2, then there is a c.c.c poset P of size ω2 such that

V P |= there is a non-trivial, <ω-smooth graph G on ω1.

Proof: We construct P = C ∗ P ′ in two steps: in the first step, forcing with
C = Fn(ω1, 2;ω), we add ω1-many Cohen reals to V to introduce our desired
graph G. Then, in the second step, we add many isomorphisms between certain

subgraphs of G to V C to guarantee <ω-smoothness of G in V C∗P ′
.
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To simplify our notation we take C = Fn(
[

ω1
]2

, 2;ω) and define the graph G
on ω1 in V [G], where G is the C-generic filter over V , in the straightforward way:

{α, β} ∈ E(G) iff ∃ p ∈ G p({α, β}) = 1.

If c ∈ C let supp c =
⋃

dom c and Gc =
〈

supp c, c−1{1}
〉

. Let us remark that

if c, c′ ∈ C, c ≤ c′ and dom c′ =
[

supp c′
]2
, then Gc′ is a spanned subgraph of Gc.

To obtain P ′ = Pω2 we carry out a finite support iteration of c.c.c posets

〈Pα : α ≤ ω2, Qα : α < ω2〉

in the following way: in the αth step, we pick an uncountable subset Xα of ω1 in
the intermediate model V C∗Pα and then we try to find a finite set Yα and c.c.c
poset Qα such that

V C∗Pα∗Qα |= “G and G[Xα \ Yα] are isomorphic

witnessed by a function fα.”

The poset Qα will consist of certain isomorphisms between finite subgraphs of
G and G[Xα \Yα], ordered by the reverse inclusion. In other words, we force with
certain finite approximations of an isomorphism between G and G[Xα \ Yα].
The problem is the right choice ofQα because we should meet two contradictory

requirements. First, the poset Qα should satisfy c.c.c and forcing with Qα cannot
introduce an uncountable empty or complete subgraph of G, therefore Qα cannot
contain too many elements. On the other hand, to guarantee that a Qα-generic
filter gives an isomorphism between G and G[Xα \ Yα] we need some density
arguments, i.e. certain subsets of Qα should be dense in Qα, which involves that
Qα cannot be too small. As it turns out, it will be quite easy to meet the first
requirement, the hard part of the proof is how to cope with the second one.
Now assume that Pα is constructed and let us see the induction step.
First, using a bookkeeping function, we pick the set Xα ∈

[

ω1
]ω1 ∩ V C∗Pα in

such a way that

(∗) {Xα : α < ω2} =
[

ω1
]ω1 ∩ V C∗Pω2 .

To construct the poset Qα we need the following induction hypotheses. To
formulate it we use two notions. A graph G is strongly non-trivial provided that
each uncountable family of pairwise disjoint, finite subsets of V (G) contains four
distinct elements, a, b, c, d such that [a, b] ⊂ E(G) and [c, d]∩E(G) = ∅. If G is a
graph, a set A ⊂ V (G) is called dense in G iff for each pair B and B′ of disjoint
finite subsets of V (G) there is α ∈ A such that G(α) ⊃ B and G(α) ∩ B′ = ∅.

Induction hypothesis.

(I) V C∗Pα |= “G is strongly non-trivial”,

(II) V C∗Pα |= “∀X ∈
[

ω1
]ω1 ∃Y ∈

[

X
]<ω

∀ δ < ω1 ∃A ∈
[

X \ δ
]ω

A is dense
in G[X \ Y ]”.
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The preservation of the induction hypotheses (I) and (II) during the iteration
will be verified later in Lemmas 3.5 and 3.9.
We continue the construction of the poset Qα. Using (II) fix Yα ∈

[

Xα

]<ω

and pairwise disjoint countable subsets {Dξ : ξ < ω1} of Xα \ Yα which are dense
in G[Xα \ Yα].

Let us recall that for each β < α in the βth step we already constructed an
isomorphism fβ between G and G[Xβ \ Yβ ]. For each β < α the set Cβ = {ν <

ω1 : fβ
′′ν ⊂ ν} is clearly club and Cβ belongs to V C∗Pβ∗Qβ ⊂ V C∗Pα . Since Pα

satisfies c.c.c and |α| < 2ω1 = ω2, there is a club set C ⊂ ω1 even in V such that
|C \ Cβ | ≤ ω for each β < α.
The club set C = {γν : ν < ω1} gives a natural partition Aα = {Aα

ν : ν < ω1}
of ω1 into countable pieces: let Aα

ν = [γν , γν+1) for ν < ω1. We can thin out C to
contain only limit ordinals and in this case every Aα

ν is infinite. Define the map
rkα : ω1 → ω1 by the formula ξ ∈ Aα

rkα(ξ)
.

If β < α, then |C \Cβ | ≤ ω and so all but countably many Aα
ν ’s are fβ-closed.

By shrinking C we can assume every Aα
η contains some Dξ and so

(i) Aα
η ∩ (Xα \ Yα) is dense in G[Xα \ Yα].

Since Aα
η ∈ V and infinite, it follows

(ii) Aα
η is dense in G.

For η < ω1 let Oη = [ωη, ωη + ω) and Bα
η =

⋃

{Aα
η : ν ∈ Oη}. Put Bα =

〈

Bα
η : η < ω1

〉

.

Given two sets Z andW , denote by Bijp(Z, W ) the family of bijections between
finite subsets of Z and W .
If p ∈ Bijp(ω1, X \ Y ), a sequence ~x = 〈x0, x1, . . . , xn, 〉 of countable ordinals

is a p-loop iff n ≥ 1, x0 = xn and there is a sequence 〈k0, . . . , kn−1〉 ∈
n{−1,+1}

such that

(iii) rkα(xi+1) = rkα(p
ki(xi)) for each i < n,

(iv) there is no i < n such that {ki, ki+1} = {−1,+1}, xi+1 = pki(xi) and

xi+2 = pki+1(xi+1).

We say that p is loop-free if there is no p-loop.
Now we are in the position to define the poset Qα. We put a finite function

p ∈ Isop(G, G[Xα \ Yα]) into Qα iff

(v) p′′Bη ⊂ Bη for each η < ω1,
(vi) p is loop-free.

As promised, Qα is ordered by the reverse inclusion: Qα = 〈Qα,⊇〉.
Let us recall that supp p = dom(p) ∪ ran(p) for p ∈ Qα.
We need to show that Qα satisfies c.c.c and a Qα-generic filter gives an iso-

morphism between G and G[Xα \ Yα]. First we prove an auxiliary lemma.

Lemma 3.2. If p, q ∈ Bijp(ω1, ω1), rkα
′′ supp p ∩ rkα

′′ supp q = ∅ and ~x =

〈x0, . . . , xn〉 is a (p ∪ q)-loop, then ~x is either a p-loop or a q-loop.
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Proof: Assume that x0 ∈ supp p. Then x0 /∈ supp q, so rkα(x1) = rkα(p
k0(x0))

for some k0 ∈ {−1,+1}. Since pk0(x0) ∈ supp p we have rkα(x1) = rkα(p
k0(x0))

/∈ rkα
′′ supp q and so x1 /∈ supp q. Repeating this argument we yield {x0, . . . , xn}

⊂ supp p \ supp q and so ~x is a p-loop. �

Lemma 3.3. Qα satisfies c.c.c.

Proof: We work in V C∗Pα . Assume that {qξ : ξ < ω1} ⊂ Qα, cξ = supp qξ and

rξ = rkα
′′cξ . Applying standard ∆-system and counting arguments we can find

I ∈
[

ω1
]ω1 such that

(1) {cξ : ξ ∈ I} forms a ∆-system with kernel c,
(2) {rξ : ξ ∈ I} forms a ∆-system with kernel r,

(3) rkα
′′c = r,

(4) rkα
′′(cξ \ c) = rξ \ r for each ξ ∈ I,

(5) qξ ↾ c = q′ for each ξ ∈ I.

Since G is strongly non-trivial in V C∗Pα by the induction hypothesis (I), there

is {ξ, ζ} ∈
[

I
]2
such that [cξ \ c, cζ \ c] ⊂ E(G). We show that q = qξ ∪ qζ ∈ Qα.

Clearly q ∈ Isop(G, G[Xα \Yα]) and q satisfies (v). Since q = q′∪(qξ \q′)∪(qζ \q′)

and the sets rkα
′′q′, rkα

′′(qξ \ q′) and rkα
′′(qζ \ q′) are pairwise disjoint we have

that q satisfies (vi) as well by Lemma 3.2. �

If GQα is the Qα-generic filter over V C∗Pα let fα =
⋃

{q : q ∈ GQα}.

Lemma 3.4. V C∗Pα∗Qα |= “fα is an isomorphism between G and G[Xα \ Yα].”

Proof: We need to prove that dom(fα) = ω1 and ran(fα) = Xα \ Yα which
follows if for each ν ∈ ω1 and µ ∈ X \ Y both

Dν = {q ∈ Qα : ν ∈ dom q}

and
Rµ = {q ∈ Qα : µ ∈ ran q}

are dense in Qα. Fix q ∈ Qα. Write rkα(ν) = ωη + n. Pick ωη ≤ ζ < ωη + ω
such that (supp q)∩Aα

ζ = ∅. Since Aα
ζ ∩ (Xα \ Yα) is dense in G[Xα \ Yα] we can

find ν′ ∈ Aα
ζ ∩ (Xα \ Yα) such that {ν′, q(ξ)} ∈ E(G) iff {ν, ξ} ∈ E(G) for each

ξ ∈ dom q. Let q′ = q∪{
〈

ν, ν′
〉

}. By the choice of ζ′, rkα(ν′) = ζ /∈ rkα
′′(supp q),

so this extension of q cannot introduce a q′-loop, i.e. q′ ∈ Qα. Thus q′ ∈ Dν and
q′ ≤ q which was to be proved. The density of Rµ can be verified by a similar
argument using the density of Aα

ζ in G. �

The induction step is complete so the theorem is proved provided we can verify
the induction hypotheses (I) and (II) in every V C∗Pγ . First we deal with (I)
because it is fairly easy. Checking (II) is the crux of our proof.
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Lemma 3.5. The induction hypothesis (I) holds, i.e. G is strongly non-trivial in

every V C∗Pα .

Proof: First remark that G is clearly strongly non-trivial in V C . By [1,
Lemma 4.10] we can assume that α = γ + 1 and G is strongly non-trivial in

V C∗Pγ . Working in V C∗Pα assume that q ‖— “{ẋξ : ξ < ω1} are pairwise disjoint,
finite subsets of ω1.” For each ξ < ω1 pick a condition qξ ≤ q and a finite subset
xξ of ω1 such that qξ ‖— “ẋξ = xξ”. Since Qγ satisfies c.c.c, we can assume that
the sets xξ are pairwise disjoint.
We can also assume that xξ ⊂ dom qξ because in Lemma 3.4 we showed that

the sets Dν are dense in Qγ .
From now on we can argue as in Lemma 3.3. Let cξ = supp qξ and rξ = rkγ

′′cξ.

We can find I ∈
[

ω1
]ω1 such that {cξ : ξ ∈} forms a ∆-system with kernel c and

{rξ : ξ ∈ I} forms a ∆-system with kernel r, moreover rkγ
′′c = r, rkγ

′′(cξ \ c) =

rξ \r, qξ ↾ c is independent from ξ and xξ ⊂ cξ \c for each ξ ∈ I. Write c′ξ = cξ \c,

q′ξ = qξ ↾ c′ξ , r
′
ξ = rξ \ r and q′ = qξ ↾ c.

Since G is strongly non-trivial in V C∗Pξ there are ξ0, ξ1, ζ0, ζ1 ∈ I such that
[c′ξ0 , c

′
ζ0
] ⊂ E(G) and [c′ξ1 , c

′
ζ1
]∩E(G) = ∅. Then qi = qξi

∪qζi
∈ Isop(G, G[X \Y ])

and qi clearly satisfies (v). Since qi = q′∪q′ξi
∪q′ζi

and the sets rkγ
′′q′, rkγ

′′q′ξi
and

rkγ
′′q′ζi

are pairwise disjoint we have that qi satisfies (vi) as well by Lemma 3.2.

Thus
q0 ‖—[ẋξ0 , ẋζ0 ] ⊂ E(G)

and
q1 ‖—[ẋξ1 , ẋζ1 ] ∩ E(G) = ∅.

�
Now we start to work on (II).

Definition 3.6. Assume thatH is a family of functions, dom(h)∪ran(h) ⊂ ω1 for
each h ∈ H. A sequence ~x = 〈x0, x1, . . . , xn〉 ∈ nω1 is called an H-loop if n ≥ 1,
x0 = xn, and there are sequences 〈h0, . . . , hn−1〉 ∈ nH and 〈k0, . . . , kn−1〉 ∈
n{−1,+1} such that

(vii) hki
i (xi) = xi+1 for each i < n,

(viii) there is no i < n − 1 such that hi = hi+1 and {ki, ki+1} = {−1,+1}.

Let Z ⊂ ω1. We say that H acts loop-free on Z if

(ix) Z is h-closed for each h ∈ H,
(x) Z does not contain any H-loop.

Definition 3.7. A condition p = 〈c, q〉 ∈ C ∗ Pα is called determined iff

(1) q is a function, dom(q) ∈
[

ω1
]<ω
,

(2) q(η) is a function for each η ∈ dom(q),
(3)

⋃

{supp q(η) : η ∈ dom(q)} ⊂ supp c,

(4) dom(c) =
[

supp c
]2
.
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The determined conditions are dense in C ∗ Pα.

Lemma 3.8. In V C∗Pα for each J ∈
[

α
]<ω
there is µ < ω1 such that {fξ : ξ ∈ J}

acts loop-free on ω1 \ µ.

Proof: We work in V [G], where G is the C ∗Pα-generic filter over V . The lemma
will be proved by induction on maxJ . Let ζ = maxJ and J ′ = J \ {ζ}. Using
the inductive hypothesis fix µ < ω1 such that

(a) µ =
⋃

{B ∈ Bζ : B ∩ µ 6= ∅},
(b) if A ∈ Aζ and A ⊂ ω1 \ µ, then A is fξ-closed for each ξ ∈ J ′,

(c) {fξ : ξ ∈ J ′} acts loop-free on ω1 \ µ.

Assume on the contrary that 〈x0, . . . , xn〉 ∈
n+1(ω1\µ) is an {fξ : ξ ∈ J}-loop wit-

nessed by the sequences 〈gi : i < n〉 ∈ n{fξ : ξ ∈ J} and 〈ki : i < n〉 ∈ n{−1,+1}.
Let M = {m < n : gm = fζ}. By the induction hypothesis M 6= ∅. Write
M = {mj : j < ℓ}, m0 < · · · < mℓ−1. Let y0 = xm0 , y1 = xm1 , . . . ,
yℓ−1 = xmℓ−1 and yℓ = xm0 . Pick a determined condition 〈c, q〉 ∈ G such that

yj , f
kmj

ζ
(yj) ∈ dom(q(ζ))∩ ran(q(ζ)) for each j < ℓ. We claim that

〈

yj : j ≤ ℓ
〉

is

a q(ζ)-loop witnessed by the sequence
〈

kmj : j < ℓ
〉

, which contradicts the choice

ofQζ . Condition (iii) holds because rkζ(yj+1) = rkζ(f
kmj

ζ
(yj)) by (b). Assume on

the contrary that (iv) fails, i.e. there is j < ℓ such that {kmj , kmj+1} = {−1,+1},

yj+1 = f
kmj

ζ
(yj), yj+2 = f

kmj+1

ζ
(yj+1) and yj = yj+2. Since f

kmj

ζ
(yj) =

f
kmj

ζ
(xmj ) = xmj+1 and yj+1 = xmj+1 , and so xmj+1 = xmj+1 , by (c) it

follows that mj + 1 = mj+1. Similarly, mj+1 + 1 = mj+2. Thus xmj = yj ,
xmj+1 = yj+1 and xmj+2 = yj+2. So xmj = xmj+2, gmj = gmj+1 = fζ and

{kmj , kmj+1} = {−1,+1} which contradicts our assumption that 〈gi : i < n〉 and
〈ki : i < n〉 satisfied (viii). �

Lemma 3.9. The induction hypothesis (II) holds in V C∗Pα , i.e.

V C∗Pα |= “ ∀X ∈
[

ω1
]ω1 ∃Y ∈

[

X
]<ω

∀ δ < ω1 ∃A ∈
[

X \ δ
]ω

A is dense in
G[X \ Y ]”.

Proof: Assume that

1C∗Pα
‖—X = {ẋξ : ξ < ω1} ∈

[

ω1
]ω1 .

Pick determined conditions pξ =
〈

cξ , qξ

〉

∈ C ∗ Pα and xξ ∈ ω1 such that pξ‖—
“ẋξ = xξ”. We can assume that xξ ∈ supp cξ . Write Jξ = dom qξ and Zξ =
supp(cξ).

Now there is K ∈
[

ω1
]ω1 such that the conditions {pξ : ξ ∈ K} are “pairwise

twins”, i.e.

(1) {Zξ : ξ ∈ K} forms a ∆-system with kernel Z,
(2) {Jξ : ξ ∈ K} forms a ∆-system with kernel J ,
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(3) maxZ < min(Zξ \ Z) < max(Zξ \ Z) < min(Zξ′ \ Z) for ξ < ξ′ ∈ K,

(4) |Zξ | = |Zξ′ | for {ξ, ξ′} ∈
[

K
]2
; denote by ϕξ,ξ′ the natural bijection

between Zξ and Zξ′ ,

(5) cξ′(({ϕξ,ξ′(ν), ϕξ,ξ′(ν
′)})) = cξ({ν, ν′}) for {ν, ν′, } ∈

[

Zξ

]2
and {ξ, ξ′} ∈

[

K
]2
,

(6) qξ′(η) = {
〈

ϕξ,ξ′(ν), ϕξ,ξ′(ν
′)

〉

:
〈

ν, ν′
〉

∈ qξ(η)} for η ∈ J and {ξ, ξ′} ∈
[

K
]2
.

Since Bη is a partition of ω1 into countable pieces for η ∈ J , there is a club set

C = {γν : ν < ω1} ⊂ ω1 in V C∗Pα such that for each η ∈ J and ν < ω1 we have

[γν , γν+1) =
⋃

{B ∈ Bη : B ∩ [γν , γν+1) 6= ∅}.

Since C ∗ Pα is c.c.c we can assume that C ∈ V .
By thinning out K we can assume that if ξ < ξ′ ∈ K, then there is γ ∈ C such

that max(Zξ \ Z) < γ < min(Zξ′ \ Z), moreover maxZ < minC.
By Lemma 3.8 fix µ ∈ C such that δ ≤ µ and 1C∗Pα

‖— “{fη : η ∈ J} acts
loop-free on ω1 \ µ”.

If ~E = 〈η0, . . . , ηn−1〉 ∈ nJ and ~k = 〈k0, . . . , kn−1〉 ∈ n{−1,+1} for some
n ∈ ω, then let

fD
~E,~k

E = f
kn−1
ηn−1 ◦ · · · ◦ fk0

η0 .

If p = 〈c, q〉 is determined and J ⊂ dom(q) we define the q-approximation of
fD

~E,~k
E, fqD

~E,~k
E, in the natural way:

f
qD

~E,~k
E = q(ηn−1)

kn−1 ◦ · · · ◦ q(η0)
k0 .

We say that fD
~E,~k

E is irreducible if there is no i < n − 1 such that ηi = ηi+1

and {ki, ki+1} = {−1,+1}.

Let ξ ∈ K be arbitrary. An irreducible fD
~E,~k

E is active iff dom f
qξD
~E,~k

E ∩

(Zξ \ Z) 6= ∅, i.e. there is a sequence ~x = 〈x0, . . . , xn−1〉 ∈ n(Zξ \ Z) such that

xi+1 = qξ(ηi)
ki(xi) for i < n. Observe that the definition of activeness above

does not depend on the choice ξ because the conditions {
〈

cξ , qξ

〉

: ξ ∈ K} are
pairwise twins.
We say that ~x witnesses that fD

~E,~k
E is active.

Let K ′ ∈
[

K
]ω
, Ȧ = {

〈

pξ, xξ

〉

: ξ ∈ K ′} and ζ ∈ K \K ′. Let r∗ = 〈c∗, q∗〉 ≤ pζ

be a determined condition such that for each active fD
~E,~k

E and w ∈ Z the value

fq∗D
~E,~k

E(w) is defined. Let
Y = {fr∗D

~E,~k
E(w) : fD

~E,~k
E is active and w ∈ Z}.
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Claim. Y is finite.

Proof of the claim: Since {fη : η ∈ J} acts loop-free on Zζ \Z, the elements
of a witnessing sequence are pairwise different, so there are only finitely many of
them and a witnessing sequence works only for one active fD

~E,~k
E. So there is only

finitely many active fD
~E,~k

E. �

We show that

(•) r∗ ‖— Ȧ is dense in G[ω1 \ Y ].

which completes the proof of Lemma 3.9.

To verify (•) assume that r′ ≤ r∗, r′ =
〈

c′, q′
〉

is determined, B ∈
[

ω1 \ Y
]<ω

and b ∈ B2.
Pick ξ ∈ K such that supp(c′)∩ supp(cξ) = Z and dom(q′)∩dom(qξ) = J . To

prove (•), it is enough to construct a common extension p = 〈c, q〉 of r′ =
〈

c′, q′
〉

and pξ =
〈

cξ , qξ

〉

such that c(xξ , β) = b(β) for each β ∈ B.

Let supp c = supp c′ ∪ supp cξ . Put dom q = dom q′ ∪ dom qξ and let

q(η) =











q′(η) ∪ qξ(η) if η ∈ J,

q′(η) if η ∈ dom q′ \ J,

qξ(η) if η ∈ dom qξ \ J.

Put c− = c′ ∪ cξ .

We should define c ⊃ c− on the set

E = {{a, b} : a ∈ Zξ \ Z, b ∈ supp c′ \ Z}

such that every q(η) is a partial isomorphism of G, more precisely, q(η) ∈
Isop(G

c, Gc). To do so, observe that if we take

E+ = {{a, b} : a ∈ Zξ \ Z, b ∈ supp c′}

and for e ∈ E+ define ae = e ∩ (Zξ \ Z) and be = e ∩ supp c′, then q(η) ∈
Isop(G

c, Gc) if and only if (†) below holds:

(†) if e = {ae, be} ∈ E+, then c{ae, be} = c{qξ(η)(ae), q
′(η)(be)}.

Define an equivalence relation ≡ on E+: e≡e′ iff e = e′ or there is an active

fD
~E,~k

E such that ae′ = f
qξD

~E,~k
E(ae) and be′ = f

q′D
~E,~k

E(be).



198 L. Soukup

Claim 3.9.1. If e ≡ e′ and ae = ae′ , then e = e′.

Proof of Claim 3.9.1: Assume e≡e′ and be 6= be′ . Then there is an active

fD
~E,~k

E such that ae′ = f
qξD
~E,~k

E(ae) and be′ = f
q′D

~E,~k
E(be). Since 1‖— “{fη : η ∈ J}

acts freely on ω1 \ µ” it follows that ae 6= f
q′D
~E,~k

E(ae) and so ae 6= ae′ . �

Claim 3.9.2. If e, e′ ∈ E+ ∩ dom(c−) and e ≡ e′, then c−(e) = c−(e′).

Proof of Claim 3.9.2: Fix an active fD
~E,~k

E such that ae′ = f
qξD
~E,~k

E(ae) and

be′ = f
q′D
~E,~k

E(be). Since e, e′ ∈ E+ ∩ dom(c−) it follows that e, e′ ∈ dom(cξ) and

so be, be′ ∈ Z. If be ∈ dom f
qξD
~E,~k

E, then be′ = f
qξD
~E,~k

E(be) and so c−(e) = cξ(e) =

cξ(e
′) = c−(e′) because of pξ =

〈

cξ, qξ

〉

∈ C ∗Pα. Unfortunately, be ∈ dom f
qξD
~E,~k

E
cannot be guaranteed, so we need an additional argument here.
Let ϕ = ϕξ,ζ be the function witnessing that pξ and pζ are twins.

Since fD
~E,~k

E is active and be ∈ Z it follows that f
q∗D
~E,~k

E(be) is defined and so

fq∗D
~E,~k

E(be) = be′. Put e = ϕ′′e and e′ = ϕ′′e′. Since c−(e) = cξ(e) = cζ(e) = c∗(e)

and c−(e′) = cξ(e
′) = cζ(e

′) = c∗(e′) it is enough to show that c∗(e) = c∗(e′).

First observe that be = ϕ(be) = be, be′ = ϕ(be′) = be′ and so be′ = f
q∗D
~E,~k

E(be).

Moreover ae′ = ϕ(ae′) = ϕ(f
qξD

~E,~k
E(ae)) = f

qζD
~E,~k

E(ϕ(ae)) = f
qζD

~E,~k
E(ae) =

f
q∗D

~E,~k
E(ae). Thus using r∗ = 〈c∗, q∗〉 ≤

〈

cζ , qζ

〉

we have

c∗(ae′ , be′) = c∗(fq∗D
~E,~k

E(ae), f
q∗D
~E,~k

E(be)) = c∗(ae, be),

which completes the proof of the claim. �

Claim 3.9.3. If e ∈ E+ ∩ dom(c−) and e ≡ e′, then be′ ∈ Y .

Proof of Claim 3.9.3: Since e ∈ E+ ∩ dom(c−) we have be ∈ Z. Fix an

active fD
~E,~k

E such that ae′ = f
qξD

~E,~k
E(ae) and be′ = fq′D

~E,~k
E(be). Since fD

~E,~k
E is

active it follows that fq∗D
~E,~k

E(be) is defined and fq∗D
~E,~k

E(be) ∈ Y . But fq′D
~E,~k

E(be) =

f
q∗D

~E,~k
E(be) so be′ ∈ Y which was to be proved. �
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By Claims 3.9.1–3.9.3 we can find a condition c ∈ C with supp c = supp c′ ∪

supp cξ and dom c =
[

supp c
]2
such that

(a) c ⊃ c− = c′ ∪ cξ ,

(b) c(e) = c(e′) whenever e≡e′,
(c) c({xξ , β}) = b(β) for β ∈ B.

Then (†) holds and as we have seen above, 〈c, q〉 ∈ C ∗ Pα and

〈c, q〉 ‖—(∀β ∈ B) {xξ , β} ∈ E(G) iff b(β) = 1.

Thus (•) holds. Hence Lemma 3.9. is proved. �

So we have shown that (II) is preserved during the inductive construction,
which was the last step to prove Theorem 3.1. �
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A. Baker, B. Bollobás, A. Hajnal, Cambridge University Press, 1990, pp. 223–248.

[2] Jech T., Set Theory, Academic Press, New York, 1978.
[3] Kierstead H.A., Nyikos P.J., Hypergraphs with finitely many isomorphism subtypes, Trans.
Amer. Math. Soc. 312 (1989), 699–718.

[4] Shelah S., Soukup L., On the number of non-isomorphic subgraphs, Israel J. Math 86
(1994), no. 1–3, 349–371.

Mathematical Institute of the Hungarian Academy of Sciences, V. Reáltanoda u.
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