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On a characterization

of the unit interval in terms of clones

Artur Barkhudaryan

Abstract. This paper gives a partial solution to a problem of W. Taylor on characte-
rization of the unit interval in the class of all topological spaces by means of the first
order properties of their clones. A characterization within the class of compact spaces
is obtained.

Keywords: clones of topological spaces, algebraic theories, unit interval

Classification: 54F65, 54C05, 03C65

Introduction

To any topological space X , one can relate an algebraic structure consisting
of all continuous maps between finite powers of X , with their composition as op-
eration — the clone of X . The clone of a topological space carries considerable
amount of information about that space (see [10]). For example, in the class of
completely regular spaces containing an arc even the monoid of self-maps deter-
mines the topology. On the other hand, the clone does not characterize the space
in general; for related results see [9], [11] and the proposition at the end of this
section.
More precisely, following Taylor [10], we define the clone of a topological space

X to be the ω-sorted universal algebra

Cl(X) = 〈Cn; e
i
n;S

n
m〉

with underlying sets Cn = {f : Xn → X ; f continuous} for n ∈ ω, constants
ein denoting the projection of X

n onto the i-th component for i < n ∈ ω, and
the “composition” operations Sn

m : Cn × (Cm)
n → Cm, sending any (n+1)-tuple

(F,G1, . . . , Gn) with F ∈ Cn, G1, . . . , Gn ∈ Cm to the map S
n
m(F,G1, . . . , Gn) =

H ∈ Cm, defined by

H(x1, . . . , xm) = F (G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm)).

Thus C0 is just the underlying set of X , and the set C1 with the operation S
1
1

(which is actually a binary operation on C1) is the monoidM(X) of all continuous

The author expresses his deepest gratitude to Professor V. Trnková for her useful comments
and suggestions.
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self-maps of X . Of course, clones can be defined more generally for objects of any
category with finite products. Clones can also be treated as abstract categories —
algebraic theories (see [6]). Treating them as universal algebras is more convenient
for us, as we are interested in their first order properties, i.e. those properties
which can be expressed by formulas of the first order language of clone theory.
We briefly recall the formal construction of this language now.

The symbols of the language of clones consist of ω types of variables f
(n)
i ,

i, n ∈ ω, each f
(n)
i referring to the underlying set Cn, constant symbols e

i
n for

i < n ∈ ω and operation symbols Sn
m for m,n ∈ ω. The n-th sort terms are

constructed by the following rules:

• each f
(n)
i is an n-th sort term;

• each ein is an n-th sort term;

• whenever t1, . . . , tm are n-th sort terms, then also S
m
n (f

(m)
i , t1, . . . , tm) is.

Atomic formulas have the form t1 = t2 for terms t1 and t2 of the same sort.
Formulas are then constructed in the usual way:

• each atomic formula is a formula;
• whenever ϕ and ψ are formulas, so are also ¬ϕ, ϕ & ψ, ϕ ∨ ψ, ϕ→ ψ,

ϕ↔ ψ, (∀ f
(n)
i )ϕ, (∃ f

(n)
i )ϕ.

It is clear what it means that a formula of clone theory holds (is true, etc.)
in a clone. Since the formulas of the above described language are somewhat
cumbersome, we shall use a better-looking convention throughout this paper: the
variables of type 0 are denoted by lower-case latin letters (e.g. x, y, a, b, . . . )
here, the type (arity) of higher-type variables is denoted by dashes in parentheses

rather than by a superscript, so f(−), g(−) stand for f
(1)
i , f

(1)
j , F (−,−) stands

for f
(2)
i , etc. Composition operators are omitted and the composition written in

an implicit manner. Thus the formula

(∀ f(−))(∃x)(f(x) = x)

is easily recognized to express the well-known fixed-point property. Formally it

should have been written as (∀ f
(1)
0 )(∃ f

(0)
0 )(S

1
0 (f
(1)
0 , f

(0)
0 ) = f

(0)
0 ).

In [10], W. Taylor showed that in the class of metrizable spaces containing
an arc many topological properties are definable in terms of first order formulas.
The assumption that the space contains an arc is very strong, however, so the
following problem naturally arose:

Problem (No. 9.2 in [10]). Is there any first order condition on Cl(X) which
is equivalent to the existence of an arc in X? Is there any first order condition
on Cl(X) which characterizes those spaces X homeomorphic to a closed bounded
interval?

There are some topological characterizations of the interval. For example, a
topological space is homeomorphic to the unit interval iff it is compact, Haus-
dorff, separable and has exactly two non-cut points (see [5]). So if compactness,
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separability, Hausdorffness and having two non-cut points were first order prop-
erties, we would have a first order characterization of the unit interval. Unfor-
tunately, neither compactness nor separability is characterizable by the clone of
the space. Recall that a topological space is called rigid if each its continuous
self-map is either constant or the identity. It is known that if X is a rigid space
and f : Xn → X is continuous then f is either constant or a projection (see [3],
[4] or [10] for the proof). So if X and Y are rigid spaces of the same cardinality
then they have isomorphic clones. Now observe that there exist compact and non-
compact rigid spaces of the same cardinality and, similarly, there exist separable
and non-separable rigid spaces of the same cardinality (methods and results of [8]
can serve as a powerful tool for constructing those and many other spaces). So
we get the following

Proposition. There exist compact and non-compact spaces with isomorphic
clones; the same is true for separability. �

Note that even the property of being Hausdorff is not determined by clones;
the discrete and the indiscrete topologies on a set have the same clone.
We approach the problem in a manner that will allow us to show that, in

particular, such a characterization is possible within the class of compact spaces.
Throughout the paper, I always denotes the closed unit interval of the real

line.

Playing with clones

Let X be an arbitrary topological space. On the clone of X , we will impose
certain first order conditions that hold for the clone of the unit interval I, and
then derive topological properties of X from these conditions.

(1) I is non-degenerate; one can express this property by the first order clone-
theoretic formula

NDeg ≡ (∃x, y)(x 6= y).

So our first condition will be that NDeg holds in Cl(X), and we will abbreviate
this fact as

Cl(X) |= NDeg.

This precisely means that X is non-degenerate.

(2) I is a connected space, which can be expressed, for example, by

Con ≡ (∀ f(−))[(∃x, y)(f(x) 6= f(y))→ (∀ a, b)(∃x, y)(a 6= y 6= b & f(x) = y)].

So the second condition,
Cl(X) |= Con,

precisely says that every non-constant self-map of X attains at least three values.
Therefore X is connected. Selecting idX for f in Con and using the non-
degeneracy of X , one concludes that X has at least three points.
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(3) I has two boundary points, which can be characterized, among others, by the
formula

Bd(x, y) ≡ x 6= y & (∀ f(−))[(∃ a, b)(f(a) = x & f(b) = y)→

→ (∀ z)(∃u)(f(u) = z)]

(Bd(x, y) means: whenever x and y are in the range of f , then f is onto). In
Cl(I), Bd(x, y) if and only if {x, y} = {0, 1}, so that

Cl(I) |= (∃x, y)Bd(x, y) & (∀ a, b, c, d)(Bd(a, b) & Bd(c, d)→

→ (a = c & b = d ∨ a = d & b = c).

Now, letting Bound denote the latter formula, we insist that

Cl(X) |= Bound,

i.e. X contains exactly two distinct points such that whenever they belong to the
range of a function then the function is onto.
For the sake of convenience, we also introduce the abbreviation

Bp(x) ≡ (∃ y)Bd(x, y),

meaning x is a “boundary” point.

(4) I is “homogeneous”, by which we mean the following:

Cl(I) |=(∀x, y, z, t){(x 6= y & z 6= t)→

→ [(¬Bp(x) & ¬Bp(y) & ¬Bp(z) & ¬Bp(t) ∨

∨ ¬Bp(x) & Bp(y) & ¬Bp(z) & Bp(t) ∨

∨ Bp(x) & Bp(y) & Bp(z) & Bp(t))→

→ (∃ f(−), g(−))(f(x) = z & f(y) = t &

& (∀u)(f(g(u)) = u & g(f(u)) = u)))]}

and

Cl(I) |=(∀x, y, z, t)(Bd(x, y) & z 6= t→

→ (∃ f(−), g(−))[f(x) = z & f(y) = t & (∀u)(g(f(u)) = u) &

& (¬Bp(z) & ¬Bp(t)→ (∀u)(¬Bp(f(u))))]).

In informal language, the first formula says that there is a homeomorphism of
the unit interval onto itself, taking x to z and y to t, whenever x, y, z, t are points
such that each of the pairs {x, z} and {y, t} consists of either two boundary or
two interior points. The second one expresses the fact that I is homeomorphic to
any of its subintervals. Having denoted by Homog the conjunction of these two
formulas, from now on we shall also require that

Cl(X) |= Homog.

Now we are able to prove some simple facts about X .
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Lemma. X has at least four points, or, equivalently,

Cl(X) |= (∃x, y)(x 6= y & ¬Bp(x) & ¬Bp(y)).

Proof: As we know, X has exactly two “boundary” points, say a and b. Further-
more, X has at least three points (see (2)), so there exists an x ∈ X different from
a and b. By homogeneity there exist f, g : X → X such that f(a) = x, f(b) = b

and g◦f = idX . Then obviously f(x) 6= b and f(x) 6= x. If X were three-pointed,
then X = {a, b, x}, f(x) = a and f = g, so that f would be a homeomorphism
and hence Bp(x) would hold in Cl(X), because Bp(a) and x = f(a). So X must
have at least four points. �

Proposition. X is a T1-space.

Proof: Let a 6= b ∈ X be the “boundary” points of X , that is, let Bd(a, b) hold.

Denote
◦

X = X \ {a, b} and suppose x ∈ {y}, where x, y ∈
◦

X and x 6= y. By

homogeneity we then get u ∈ {t} for any u, t ∈
◦

X, hence {t} ⊇
◦

X for each t ∈
◦

X,

so each closed subset of X that intersects
◦

X must include
◦

X. By the previous

lemma,
◦

X has at least two points. Let u and v be different points of
◦

X. Define

f(x) =

{

u, if x ∈ {a, b}

v, if x ∈
◦

X.

Then f : X → X is a continuous map (as the preimage of each closed set is either

∅ or X) with exactly two values, which contradicts Con. This proves that
◦

X is a
T1-space.

Take now two different points u, v ∈
◦

X and, using homogeneity, find f, g :

X → X such that f(a) = u, f(b) = v, g ◦ f = idX and f(X) ⊆
◦

X. Suppose

that x ∈ {y}. Then also f(x) ∈ {f(y)} and f(x), f(y) ∈
◦

X, so f(x) = f(y) and
x = g(f(x)) = g(f(y)) = y. �

We now continue to impose further conditions on X .

(5) One can define the order of the unit interval in terms of the language of clones.
We do it in the following way. Let min(−,−) and max(−,−) be two different binary
variables (this notation may seem to be suggestive, but the author hopes that this
suggestion is the right one). Define

lo(min,max) ≡ (∀x, y, z)[min(x, y) = min(y, x) &

& min(min(x, y), z) = min(x,min(y, z)) &

& (min(x, y) = x ∨ min(x, y) = y) &

& (max(x, y) = x ∨ max(x, y) = y) &

& (min(x, y) = max(x, y)→ x = y)].
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The above formula tells us that the maps min(−,−) and max(−,−) are lattice
operations defining a linear order. So we introduce the abbreviation x 4 y for
min(x, y) = x (or, equivalently, max(x, y) = y). x ≺ y will stand for x 4 y &
x 6= y. The symbol 4 will also stand for the pair (min,max), so we will use
notions like lo(4), (∃ 4) . . . etc. Write

Order(4) ≡ lo(4) & (∀ f(−))(∀ a, b, y)(f(a) 4 y 4 f(b)→ (∃x)(f(x) = y)),

saying that “4 is a linear order with Darboux property”. Obviously, up to the
duality, there is exactly one such order on the unit interval. Hence our fifth
condition will be

Cl(X) |= (∃ 4)Order(4).

Notice that the “boundary” points guaranteed by Bound are the least
and the greatest point in any specific order given by this condition and
thus, in particular, the least and the greatest points exist. This is obvious
when one realizes that, for a 4 b, the map x 7→ min(b,max(a, x)) is continuous
and onto the subinterval [a, b]. Actually, we could also impose the last fact onto
X directly by the requirement that

Cl(X) |= Order(4) & Bd(a, b)→ (∀x)(a 4 x 4 b ∨ b 4 x 4 a).

(6) The following formula expresses continuity:

Cont ≡Order(4)→ (∀ f(−))(∀x, a, b)

[(¬Bp(x) & a ≺ f(x) ≺ b→ (∃ c, d)(c ≺ x ≺ d &

& (∀ z)(c ≺ z ≺ d→ a ≺ f(z) ≺ b))) &

(¬Bp(x) & Bp(f(x)) & a ≺ f(x)→ (∃ c, d)(c ≺ x ≺ d &

& (∀ z)(c ≺ z ≺ d→ a ≺ f(z)))) &

(¬Bp(x) & Bp(f(x)) & f(x) ≺ b→ (∃ c, d)(c ≺ x ≺ d &

& (∀ z)(c ≺ z ≺ d→ f(z) ≺ b))) &

(Bp(x) & (∃u)(x ≺ u) & a ≺ f(x) ≺ b→ (∃ d)(x ≺ d &

& (∀ z)(z ≺ d→ a ≺ f(z) ≺ b))) &

(Bp(x) & (∃u)(x ≺ u) & Bp(f(x)) & a ≺ f(x)→ (∃ d)(x ≺ d &

& (∀ z)(z ≺ d→ a ≺ f(z)))) &

(Bp(x) & (∃u)(x ≺ u) & Bp(f(x)) & f(x) ≺ b→ (∃ d)(x ≺ d &

& (∀ z)(z ≺ d→ f(z) ≺ b))) &

(Bp(x) & (∃ v)(v ≺ x) & a ≺ f(x) ≺ b→ (∃ c)(c ≺ x &

& (∀ z)(c ≺ z → a ≺ f(z) ≺ b))) &
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(Bp(x) & (∃ v)(v ≺ x) & Bp(f(x)) & a ≺ f(x)→ (∃ c)(c ≺ x &

& (∀ z)(c ≺ z → a ≺ f(z)))) &

(Bp(x) & (∃ v)(v ≺ x) & Bp(f(x)) & f(x) ≺ b→ (∃ c)(c ≺ x &

& (∀ z)(c ≺ z → f(z) ≺ b)))].

Obviously Cl(I) |= Cont. So we require that

Cl(X) |= Cont,

meaning that each function continuous in the topology of X is continuous also in
the topology induced by the specific order 4.

(7) In Cl(I) the formula

OIO ≡ Order(4)→(∀ a, b)[(a ≺ b)→

→ (∃ f(−))(∃x)(∀ z)(a ≺ z ≺ b↔ f(z) 6= x) &

& (∃ g(−))(∃x)(∀ z)(a ≺ z ↔ g(z) 6= x) &

& (∃h(−))(∃x)(∀ z)(z ≺ b↔ h(z) 6= x)]

holds, i.e. for every open interval there exists a continuous map and a point such
that the interval is the preimage of the complement to the point. So our seventh
condition

Cl(X) |= OIO

implies, using the fact that X is a T1-space, that every open interval in the
order 4 is open in the topology of X . Using Con one now gets that the
order 4 is dense, complete and has a greatest and a least point.

(8) In I, one can continuously choose a midpoint for each interval; in the language
of clones

Cl(I) |= Order(4)→(∃F (−,−))[{F is continuous in the topology

induced by 4} & (∀x, y)(x ≺ y → x ≺ F (x, y) ≺ y)].

The phrase enclosed in braces is the analogy of Cont for binary maps. Let us
denote the latter formula by Cen, and impose

Cl(X) |= Cen.

Now we prove that X is quite close to the bounded interval. Fix an order 4

on X satisfying Order(4). Let x
(0)
1 be the least and x

(0)
2 the greatest point of

X . Put I
(0)
1 = [x

(0)
1 , x

(0)
2 ]. We will halve inductively the intervals by means of

the function F , whose existence is guaranteed by Cen. So, having at the k-th

step the intervals I
(k)
1 = [x

(k)
1 , x

(k)
2 ], I

(k)
2 = [x

(k)
2 , x

(k)
3 ], . . . , I

(k)
2k
= [x

(k)
2k
, x
(k)
2k+1

],
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at the (k + 1)-st step we set I
(k+1)
1 = [x

(k+1)
1 = x

(k)
1 , x

(k+1)
2 = F (x

(k)
1 , x

(k)
2 )],

I
(k+1)
2 = [F (x

(k)
1 , x

(k)
2 ), x

(k)
2 ], . . . , I

(k+1)
2k+1−1

= [x
(k)
2k
, F (x

(k)
2k
, x
(k)
2k+1

)], I
(k+1)
2k+1

=

[F (x
(k)
2k
, x
(k)
2k+1

), x
(k)
2k+1

]. Thus we get a binary tree of closed intervals. Let M

denote the set of their endpoints (M = {x
(k)
i ; k = 0, 1, 2, . . . , i = 1, 2, . . . , 2

k+1});
obviously |M | = ℵ0. We prove that M is dense in the topology given by 4. Let

x ∈ X \M . Then the set of those intervals I
(k)
i including x forms an infinite

branch of the binary tree; let I1 ⊇ I2 ⊇ . . . be the sequence of those ordered
decreasingly. Let Ii = [ai, bi]. We thus have

a1 4 a2 4 . . . 4 x 4 . . . 4 b2 4 b1.

Because 4 is complete we can define a = supai, b = inf bi. Suppose that a 6= b,
that is, a ≺ b. One has a ≺ F (a, b) ≺ b and, as F is continuous in the topology
of 4, there exist 4-neighbourhoods Oa ∋ a, Ob ∋ b such that x ∈ Oa, y ∈ Ob ⇒
F (x, y) ∈ (a, b). But for some large enough i we have ai ∈ Oa and bi ∈ Ob

and thus either ai+1 ∈ (a, b) or bi+1 ∈ (a, b), which is a contradiction. Hence
a = b = x and x lies in the 4-closure of M .
We proved that 4 is a complete dense order with a greatest and a least point

and a countable dense subset, and hence it is isomorphic to the order of the unit
interval. Thus we have the following

Theorem 1. Let X be an arbitrary topological space. Suppose the clone Cl(X)
satisfies the first order formula

NDeg & Con & Bound & Homog &

& (∃ 4)Order(4) & Cont & OIO & Cen.

Then there exists an order 4 on X such that

(i) (X,4) is order isomorphic to (I,6);
(ii) the topology of X is finer than that induced by the order 4;
(iii) each continuous self-map of X is continuous also in the topology induced

by 4;
(iv) the maps (x, y) 7→ max(x, y) and (x, y) 7→ min(x, y) are continuous in the

topology of X .

In particular, X is Hausdorff. �

Remark. Adding an n-ary version of Cont to the assumptions, one obtains point
(iii) of Theorem 1 for n-ary maps. So if we assume elementary equivalence of
Cl(X) and Cl(I), then (iii) holds for maps of arbitrary arity.
As compact topologies are the coarsest Hausdorff ones we have a

Corollary. Under the assumptions of Theorem 1, if X is compact, then it is
homeomorphic to I. �
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The monoid

Now we translate the conditions for Cl(X) into the language of monoids of
continuous self-maps M(X). The conditions NDeg, Con, Bound, Homog are
translated with no difficulty since they include only unary and nullary variables
and the nullary ones can be replaced by unary constant ones, which are charac-
terized in the language of monoids by (∀ g, h)(f ◦ g = f ◦ h). Thus the respective
formulas NDegM , ConM , BoundM , HomogM in the language of monoids are
equivalent to the original ones.
Next we define the order in the language of monoids. Note that there exists

a continuous function o : I → I × I such that its image is the upper triangle
{(x, y) ∈ I × I;x 6 y}. Actually o is a pair of unary functions, o = (o1, o2),
that define the order of the interval. So now for us the “order” will be a pair of
self-maps o1, o2. The symbol 4 will be an abbreviation for the pair (o1, o2) and
for the relation defined by the following way:

x 4 y ⇐⇒ (∃ t)(x = o1(t) & y = o2(t)).

The property of being a linear order is expressed by

loM (4) ≡ (∀x, y, z)(x 4 x & (x 4 y & y 4 x→ x = y) &

(x 4 y & y 4 z → x 4 z) & (x 4 y ∨ y 4 x)).

(Where x, y, z mean constant self-maps; more precisely it would look like (∀x, y, z)
[(∀u, v)(x ◦ u = x ◦ v & y ◦ u = y ◦ v & z ◦ u = z ◦ v) → . . . ]. Let us agree
that lower-case letters from the end of the latin alphabet will always be taken
relativised to constant maps.) Now we can define the formula OrderM (4) just
as Order(4), using loM instead of lo. Again it holds M(I) |= (∃ 4)OrderM (4).
Of course there are many pairs (o1, o2) satisfying OrderM but the order defined
by them is unique up to duality thanks to the Darboux property which is wanted
by OrderM .
Of course, (∃ 4)OrderM (4) is not quite equivalent to (∃ 4)Order(4) (or at

least it is not quite obvious) as it does not need continuity of maps min and max.
Using the latter fact, in (5) we proved that the boundary points guaranteed

by the formula Bound are those of the order. But as pointed out already, we can
require this directly by the formula

EpM ≡ OrderM (4) & BdM (x, y)→ (∀ z)(x 4 z 4 y ∨ y 4 z 4 x).

(Actually we use it only for the fact that the boundary points of the order exist,
which could be required directly as well.)
The formulas Cont and OIO are now easily translated replacing Order by

OrderM . Denote the resulting formulas by ContM and OIOM , respectively.
Now it suffices to translate the formula Cen, saying that one can choose a

midpoint for each subinterval, continuously in the topology of X and 4. There
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exists a continuous map f = (f1, f2) of the unit interval I onto the square I × I.

The triple (f1, f2,
f1 + f2
2
) now shows that in M(I) it holds

CenM ≡OrderM (4)→ (∃ f1, f2, g)[(∀x, y)(∃ t)(x = f1(t) & y = f2(t)) &

& (∀ t)(∀u)(f1(t) = f1(u) & f2(t) = f2(u)→ g(t) = g(u)) &

& (∀ t)(f1(t) ≺ f2(t)→ f1(t) ≺ g(t) ≺ f2(t)) &

& (∀x, y, t, a, b){¬Bp(x) & ¬Bp(y) & f1(t) = x & f2(t) = y &

& a ≺ g(t) ≺ b→ (∃ c1, d1, c2, d2)(c1 ≺ x ≺ d1 & c2 ≺ y ≺ d2 &

(∀ z)(c1 ≺ f1(z) ≺ d1 & c2 ≺ f2(z) ≺ d2 → a ≺ g(z) ≺ b)) & . . . }]

(the first row announces the existence of a self-map g : I → I and a surjection
(f1, f2) : I ։ I × I, the second one says that the map F (−,−) = g ◦ (f1, f2)

−1

is correctly defined, the third one says that F (x, y) lies between x and y, and the
rest expresses the continuity of F in the topology induced by 4).
Of course this formula does not say that the map F (−,−) = g ◦ (f1, f2)

−1 is
continuous also in the topology of X , but in the above considerations we used
only continuity in the topology of 4. So we have the following

Theorem 2. Let X be a topological space such that

M(X) |=NDegM & ConM & BoundM & HomogM &

& (∃ 4)OrderM (4) & EpM & ContM & OIOM & CenM .

Then there exists a linear order 4 on X satisfying the points (i), (ii), (iii) of
Theorem 1. �

Corollary. If X is also compact then it is homeomorphic to I. �

Some additions

Now we will strengthen our conditions radically, wanting an isomorphism of
M(X) and M(I) and, moreover, we will assume the existence of a convergent
sequence in X .

Theorem. Suppose that X contains a countable sequence {xi}i∈N of pairwise
distinct points converging to a point x ∈ X , and let there exist an isomorphism
Φ :M(X)→M(I). Then X and I are homeomorphic.

Proof: Any topological space Y can be identified with the set of constant maps of
M(Y ), which are well-defined within the monoidal structure of M(Y ), as we saw
above. Hence the isomorphism Φ :M(X)→M(I) defines a bijection F : X → I.
On the other hand, the bijection F determines Φ uniquely. Thus we can suppose
that X and I are identical as sets and M(X) =M(I). We want to prove that X
and I are identical also topologically.
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Since isomorphism is stronger than elementary equivalence, M(X) satisfies, in
particular, NdegM , ConM , BoundM and HomogM , and hence X is a T1-space,
as we proved in (4). This implies that each subset closed in the topology of I is
closed in the topology of X , as the preimage of a point under a continuous map.
Let K be an X-closed set and let y be in the I-closure of K. This means that

there exists a sequence {yi}i∈N of points of K converging to y in I. We know that

xi
X
−→ x and, as I has a coarser topology than X , also xi

I
−→ x. Without loss

of generality x 6= xi for any i ∈ N. So the map defined by xi 7→ yi, x 7→ y is I-
continuous on an I-closed subset {xi}i∈N∪{x} and can be continuously extended
to a function f : I → I. But then f is continuous also in the topology of X and

hence yi = f(xi)
X
−→ f(x) = y. So y lies in the X-closure of K, which is K itself.

Hence every X-closed set is I-closed, and the proof is complete. �

Now we discuss some consequences of our theorems. Notice that the first order
theory of the clone (the monoid) of the unit interval determines the cardinal-
ity of it. Let ThCl(I) (ThM (I)) be that theory, i.e. the set of all first order
clone- (monoid-) theoretic formulas that hold in Cl(I) (M(I)). Using, say, the
Lövenheim-Skolem theorem, one has models of those theories of any infinite car-
dinality. Let Cl0 (M0) be a countable model of ThCl(I) (ThM (I)). If Cl0 (M0)
were isomorphic to the clone (monoid) of a topological space X , then X would
satisfy the assumption of Theorem 1 (Theorem 2) and, consequently, X would

have cardinality 2ℵ0 . The last fact means Cl0 (M0) has 2
ℵ0 constants, which is

not the case. So Cl0 (M0) cannot be the clone (monoid) of a topological space.
This answers a simplified version of the problem 9.3 of [10], which asks whether
each clone with constants is equivalent to a clone of a topological space in the lat-
tice of interpretability (two clones are equivalent in the lattice of interpretability
if there exist homomorphisms from each of them into the other one; see [1], [7]).
Note that on the other hand, according to [8], the category of topological spaces

is almost universal, which means, particularly, that for each monoidM there exists
a topological space X such that the non-constant continuous self-maps of X form
a monoid isomorphic to M . Of course it is very easy to find a monoid that is not
a monoid of a topological space; it suffices to take a monoid with no constants,
e.g. a non-trivial group. Note also that a monoid (clone) elementarily equivalent
to M(I) (Cl(I)) is a monoid of self-maps (clone of finitary operations) of a set,
containing all constant ones.
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Czech Republic

21 Yervand Kochar str., apt. 74, Yerevan 375070, Republic of Armenia

E-mail : ABar5696@menza.mff.cuni.cz

(Received February 18, 1998)


		webmaster@dml.cz
	2012-04-30T18:30:59+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




