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Relations between weighted Orlicz and

BMOφ spaces through fractional integrals

E. Harboure, O. Salinas, B. Viviani

Abstract. We characterize the class of weights, invariant under dilations, for which a
modified fractional integral operator Iα maps weak weighted Orlicz−φ spaces into ap-
propriate weighted versions of the spaces BMOψ , where ψ(t) = tα/nφ−1(1/t). This
generalizes known results about boundedness of Iα from weak Lp into Lipschitz spaces
for p > n/α and from weak Ln/α into BMO. It turns out that the class of weights
corresponding to Iα acting on weak−Lφ for φ of lower type equal or greater than n/α,
is the same as the one solving the problem for weak−Lp with p the lower index of

Orlicz-Maligranda of φ, namely ωp
′

belongs to the A1 class of Muckenhoupt.

Keywords: theory of weights, Orlicz spaces, BMO spaces, fractional integrals

Classification: Primary 42B25

1. Introduction and statement of results

In this work we are going to deal with non-negative functions φ defined and in-
creasing on [0,∞) such that lim t→0+φ(t) = 0 and lim t→∞φ(t) =∞. In addition,
we shall also assume that the following conditions are satisfied.

(1.1) φ is of lower type p, p > 1, that is there exists a constant C such that

φ(st) ≤ Cspφ(t)

holds for every s ∈ [0, 1] and every t ≥ 0.

(1.2) φ is of upper type q, that is there exists a constant C such that

φ(st) ≤ Csqφ(t)

holds for every s ≥ 1 and every t ≥ 0.

In connection with the above conditions, we introduce the notion of lower and
upper indices.

The authors were supported by the Consejo Nacional de Investigaciones Cient́ıficas y Técnicas
de la República Argentina.
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1.3 Definition. Let φ be a function as above. Set

h(s) = sup
t>0

φ(st)

φ(t)
,

for s > 0, and define the lower index of φ by

i(φ) = lim s→0+
log h(s)

log s
= sup
0<s<1

log h(s)

log s

and the upper index of φ by

I(φ) = lim s→∞
log h(s)

log s
= inf
1<s<∞

log h(s)

log s
.

The existence of the above limits follows from the theory of submultiplicative
functions and the details can be found for instance in [B] or in [GP]. Clearly, for
any function φ we have i(φ) ≤ I(φ). Also, under our assumptions on φ, both
indices are finite and bigger than one.

It is easy to see that φ is of lower type i(φ) − ǫ, and of upper type I(φ) + ǫ
for every ǫ > 0, where the constant appearing in (1.1) and (1.2) may depend
on ǫ. We also mention that i(φ) and I(φ) may be viewed as the supremum of the
lower types of φ and the infimum of upper types, respectively. For these reasons
the assumption that φ is of lower type greater than one is equivalent to say that
i(φ) > 1. A similar statement is true for the upper index.
Given φ, the complementary function (with respect to φ) is defined by

φ̃(s) = sup
t>0
(st− φ(t))

for s ≥ 0.
It is known (see for example [KK]) that φ̃ satisfies similar properties to φ. In

particular,

(1.4) i(φ̃) = (I(φ))′ and I(φ̃) = (i(φ))′,

where r′ means r/(r−1). Moreover, it can be proved that there exist two constants
C1 and C2 such that

(1.5) C1s ≤ φ−1(s) φ̃−1(s) ≤ C2s

for every s > 0.
Let φ be a function with 1 < i(φ) ≤ I(φ) < ∞. We remind that under even

more general conditions on φ (see for example [RR]) the Orlicz space Lφ is defined
as the class of measurable functions f : Rn → R such that

∫

Rn

φ(|f(x)|) dx <∞.
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In this class we introduce the following analogue to the Luxemburg norm

‖f‖φ = inf



λ > 0 :

∫

Rn

φ(|f(x)|/λ) ≤ 1



 .

Let us note that ‖ · ‖φ is not a norm but in view of the properties of φ, it can be
shown that it is equivalent to a norm. Moreover, the Hölder type inequality

∫
f(x) g(x) dx ≤ C ‖f‖φ ‖g‖

φ̃

holds for every f ∈ Lφ and every g ∈ Lφ̃.

We also introduce a version of weak-Orlicz spaces L∗
φ as the class of measurable

functions f satisfying

sup
t>0

φ(t) |{x ∈ Rn : |f(x)| > t}| <∞.

For these functions, we set

[f ]φ = inf

{
λ > 0 : sup

t>0
φ(t)

∣∣∣∣
{
x ∈ Rn :

∣∣∣∣
f(x)

λ

∣∣∣∣ > t

}∣∣∣∣ ≤ 1
}
.

As in the strong case, [·]φ is equivalent to a norm.
We also consider families of spaces {Lφt}t>0 and {L∗

φt
}, where

(1.6) φt(s) =
φ(s)

t
for every s > 0.

It is not difficult to prove that

i(φt) = i(φ) and I(φt) = I(φ)

for every t > 0. Moreover, it is clear that lower and upper types of φt are those of
φ with constants independent of t. On the other hand, using again the types of φ,
it is easy to check that ‖ ·‖φt and [·]φt are equivalent to ‖ ·‖φ and [·]φ respectively,
but this time the constants would depend upon t. To deal with the dual families
{L eφt}t>0 and {L∗eφt}t>0, we note that there exist constants C1 and C2 such that
(1.7) C1

φ̃(ts)

t
≤ φ̃t(s) ≤ C2

φ̃(ts)

t

for every s > 0 and t > 0. This relationship follows easily from (1.5) and (1.6).
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In what follows a non-negative function ω defined in Rn will be called a weight
if it is locally integrable. We will denote by |E| the Lebesgue measure of E and by

ω(E) =
∫
E

ω(x) dx. Given a ball B = B(xB , R), and θ > 0, θB and B
θ will mean

the balls B(xB , θR) and B(xB , R
θ), respectively. Also, for a locally integrable

function f and a ball B in Rn, mBf stands for the usual average

1

|B|

∫

B

f(x) dx.

For a given weight ω we define the weighted Orlicz space Lφ,ω as the class of
functions f such that ‖f‖φ,ω ≡ ‖f/ω‖φ is finite. Similarly, we shall say that f
belongs to L∗

φ,ω if [f ]φ,ω ≡ [f/ω]φ is finite. Denoting by δtf(x) = f(tx), t > 0, it

is not too hard to see that

‖f‖φ,δǫω =
∥∥∥δ1/ǫf

∥∥∥
φ
ǫn
,ω

and that
[f ]φ,δǫω =

[
δ1/ǫf

]
φ
ǫn
,ω
.

We now introduce the classes of weights C(φ), which will be used throughout this
work.

1.8 Definition. Given a function φ, we say that ω ∈ C(φ) if there exists a
constant C such that

φ−1(1/ |B|) ‖χBδtω‖φ ≤ C inf Bδtω

for every ball B ⊂ Rn and every t > 0.

Notice that these classes have been defined to make them invariant under di-
lations. That means that if ω ∈ C(φ) then δtω ∈ C(φ) for all t > 0 with a
constant independent of t. Furthermore, in Section 2, we shall study the con-
nection between C(φ) and the A1 class of Muckenhoupt, that is those weights
satisfying

ω(B)

|B|
≤ C inf B ω

for every ball B ∈ Rn.
For 0 < α < n, the fractional integral operator of order α is defined by

(1.9) Iαf(x) =

∫

Rn

f(y) |x− y|α−n dy

whenever this integral is finite almost everywhere. Since the functions f we are
interested in may not have the necessary decay at infinity to make the above
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integral convergent, we will use a modified version of this operator which will be
also denoted by Iα. We set

Iαf(x) =

∫

Rn

(
1

|x− y|n−α
−
1− χB(0,1)(y)

|y|n−α

)
f(y) dy,

where χB(0,1)(y) is the characteristic function of the unit ball. We point out that

for functions good enough to make the integral in (1.9) convergent, the modified
version is also finite and both agree upon a constant, but this means equality as
functions in Lipschitz type spaces. This new operator is well defined for functions
belonging to weighted Orlicz spaces L∗

φ,ω as long as the upper index q satisfies

q < n/(α− 1)+. With this notation we mean q <∞ if α ≤ 1 and q < n/(α− 1)
otherwise. This result is contained in the following theorem.

1.11 Theorem. Let 0 < α < n and let φ be a non-decreasing function with
lower index p > 1 and upper index q < n/(α−1)+. Then the following conditions
are equivalent.

(1.12) The operator Iα is well defined on L
∗
φ,ω and there exists a constant C

independent of t such that

sup
B

∥∥χBω−1
∥∥
∞

|B|1+α/nφ−1t (1/|B|)

∫

B

|Iαf(x)−mB(Iαf)| dx ≤ C [f/ω]φt

for every t > 0, where the sup is taken over all the balls B ⊂ Rn.

(1.13) The operator Iα is well defined on L
∗
φ,ω and there exists a constant C

independent of t such that

sup
B

∥∥χBδtω−1
∥∥
∞

ψ(|B|) |B|

∫

B

|Iαf(x)−mB(Iαf)| dx ≤ C [f/(δtω)]φ

for every t > 0, where ψ(s) = sα/nφ−1(1/s) and the sup is taken over all the balls
B in Rn.

(1.14) The weight ω belongs to C(φ̃).

(1.15) The weight ωp
′

belongs to A1.

1.16 Remark. Let us note that if in (1.12) and (1.13) the weak norms [·]φt and
[·]φ are replaced by the strong norms ‖ · ‖φt and ‖ · ‖φ respectively, then the
corresponding statements are equivalent for each t > 0.
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1.17 Remark. We would like to point out that for ω ≡ 1 and φ(t) = tp, Theo-
rem 1.11 gives the classical results:

Iα : weak Ln/α → BMO

and
Iα : weak Lp → Λ(β),

β = α − n/p, n/α < p < n/(α − 1)+, where Λ(β) means the space of Lipschitz
functions of order β.

For ω ≡ 1 and general φ, the theorem recovers the results about the bound-
edness of Iα on weak Orlicz spaces proved by the authors in [HSV1], and for

φ(t) = tn/α and general ω, the ones obtained by B. Muckenhoupt an R. Wheeden
in [MW] (see Theorems 7 and 8). Finally for general ω and φ(t) = tp it gives
Theorem 2.5 of [HSV2] but for a slightly different class of weights.

1.18 Remark. We observe that when α ≤ 1 the operator Iα acts on any weighted
Orlicz space with 1 < p ≤ q < ∞. On the other hand, if α > 1 we restrict the
function φ to have q < n

α−1 . This range could be extended modifying the defini-

tion of Iα and the left hand side of (1.13) as to involve higher order differences.

In the next section we give some properties of the class C(φ) and the proof of
Theorem 1.1.

2. Classes C(φ) and proof of Theorem 1.11

2.1 Proposition. The following statements are equivalent.

(2.2) ω belongs to C(φ).

(2.3) There exists a constant C such that

φ−1t (1/ |B|) ‖χB ω‖φt ≤ C inf
x∈B

ω(x)

for every ball B ⊂ Rn and every t > 0.

(2.4) φ(tω) belongs to A1 for every t > 0, with constant independent of t, that
is there exists a constant C such that

1

|B|

∫

B

φ(tω(x)) dx ≤ C inf
x∈B

φ(tω(x))

for every ball B ⊂ Rn and every t > 0.

Proof: Let us assume (2.2) holds. Writing down this inequality for t1/n instead

of t and t−1/nB instead of B we get
∫

B

φ

(
ω(x) φ−1(t/ |B|)

C infB ω

)
dx

t
≤ 1,
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which proves (2.3). Arguing in a similar way, we obtain that (2.3) implies (2.2).
Now we prove that (2.2) follows from (2.4). In fact, taking
t = φ−1(ǫn/|B|)/ infx∈B ω(x) with ǫ > 0 in (2.4), we get

1

|B|

∫

B

φ

(
ω(x)

inf B ω
φ−1

(
ǫn

|B|

))
dx ≤

C ǫn

|B|
.

Then, an obvious change of variable yields to (2.2). Proceeding similarly, (2.4)
can be obtained from (2.2). �

2.5 Corollary. Let ω be a weight in C(φ). Then there exists ǫ > 0 such that

ω ∈ C(φβ) for every β in (0, 1 + ǫ).

Proof: From Proposition 2.1 and the fact that A1-weight satisfies a reverse-
Hölder inequality there exists ǫ > 0 such that, for any β, 1 ≤ β < 1 + ǫ, we
have

1

|B|

∫

B

φβ(tω(x)) dx ≤ C inf
x∈B

φβ(tω(x))

for every t > 0. Then, by using Proposition 2.1 again, we get that ω ∈ C(φβ)
for every β in [1, 1 + ǫ). On the other hand, if β belongs to (0, 1), by Hölder
inequality, we obtain that

∫

B

φβ
(

δt ω(x)

C infB(δtω)
(φβ)−1(1/|B|)

)
dx

≤ |B|1−β



∫

B

φ

(
δtω(x)

infB(δtω)
φ−1

(
1

|B|1/β

))
dx



β

.

Replacing t by ǫ|B|(1−β)/nβ and changing variables, we get that the last expression
is bounded by



∫

B1/β

φ

(
δǫ ω(x)

C infB1/β (δǫω)
φ−1

(
1

|B|1/β

))
dx




β

.

Then, since ω ∈ C(φ), we have that ω ∈ C(φβ) for every β in (0, 1). �

Now we prove two technical lemmas that will be used in the proof of our main
result.



60 E.Harboure, O. Salinas, B. Viviani

2.6 Lemma. Let ω be a weight in C(φ̃), where φ is a function with lower type
p > 1 and upper type q. Let f be a function in L∗

φ,ω. Then, there exists a

constant C, independent of f , such that
∫

B

|f(x)| dx ≤ C |B| φ−1ǫ (1/|B|) inf
B
ω [f ]φǫ,ω

holds for every ball B in Rn and for every ǫ > 0.

Proof: Let B be a ball in Rn. From Corollary 2.5 there exists r > 1 such that

ω ∈ C(φ̃
r
). Then, by Hölder inequality, we have

(2.7)

∫

B

|f(x)| dx ≤ ‖χB ω‖ eφtr ‖f/ω‖geφtr
≤ C

infB ω

(φ̃t
r
)−1(1/|B|)

‖f/ω‖geφtr
for every t > 0. Now, we estimate the norm on the right hand side of (2.7).

Denoting ψ =
˜̃
φt
r
and g = f/ω, for some λ > 0 to be determined, we get

(2.8)

∫

B

ψ

(
g(x)

λ

)
dx =

∞∫

0

∣∣∣{x ∈ B : |g(x)| > ψ−1(s)λ}
∣∣∣ ds

=



(2|B|)−1∫

0

+

∞∫

(2|B|)−1



∣∣∣{x ∈ B : |g(x)| > ψ−1(s)λ}

∣∣∣ ds

≤
1

2
+ I,

where I is the integral over [(2|B|)−1,∞). Since g ∈ L∗
φǫ,ω

for any ǫ > 0, we have

I ≤

∞∫

(2|B|)−1

ds

φǫ(ψ−1(s)λ/[g]φǫ,ω)

=
1

2|B|

∞∫

1

ds

φǫ(ψ−1(s(2 |B|)−1)λ/[g]φǫ,ω)
.

Notice that ψ−1(s) ≈ s1/r
′

φ−1t (s
1/r) with r′ = r/(r − 1). Therefore, choosing

t = ǫ/ |B|1/r
′

and using the upper type of φ, we obtain

I ≤
1

2 |B|

∞∫

1

ds

φǫ(Cφ
−1
ǫ (s1/r/|B|) s1/r

′

λ/(|B|1/r
′

[g]φǫ,ω))
.
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Then, taking λ = H |B|1/r
′

[g]φǫ,ω for some constant H to be determined and
using that φ is of lower type p > 1, we get that

I ≤
1

2 |B|

∞∫

1

ds

φǫ(c Hφ
−1
ǫ (s1/r/|B|) s1/r

′

)

≤
1

2 |B| CpHp

∞∫

1

ds

sp/r
′

φǫ(φ
−1
ǫ (s1/r/|B|))

=
C

Hp

∞∫

1

ds

sp/r
′+1/r

=
C

Hp .

Choosing H sufficiently large, we have that I ≤ 1/2. Therefore, from (2.8), we
have

(2.9) ‖g‖
ψ
≤ H |B|1/r

′

[g]φǫ,ω.

Finally, since (φ̃t
r
)−1(s) ≈ s1/r/φ−1(ts1/r), from (2.7), (2.9) and our choice of t,

we obtain the desired conclusion. �

2.10 Lemma. Let α belong to (0, n). Let ω be a weight in C(φ̃), where φ is
a function with lower type p > 1 and upper type q < n/(α − 1)+. Then, there
exists a constant C such that

∫

Rn\B

|f(y)|

|xB − y|n−α+1
dy ≤ C |B|α/n−1/n φ−1ǫ (1/|B|) inf

B
ω [f ]φǫ,ω

holds for any ball B = B(xB , R) in R
n, every ǫ > 0 and f ∈ L∗

φ,ω.

Proof: Denoting g = f/ω, we can write

g = ga + ga,

where ga = g χ{x:|g(x)|>a} with a a constant to be determined. Therefore,

∫

Rn\B

|f(y)|

|xB − y|n−α+1
dy =

∫

Rn\B

|ga(y)|ω(y)

|xB − y|n−α+1
dy

+

∫

Rn\B

|ga(y)|ω(y)

|xB − y|n−α+1
dy

= I1 + I2.
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Let us estimate I1. From Corollary 2.5, there exists r > 1 such that ω ∈ C(φ̃
r
).

Then, by Hölder inequality, it follows that

(2.11) I1 ≤

∥∥∥∥
χRn\B ω

|xB − .|n−α+1

∥∥∥∥ eφtr ‖ga‖geφtr
for any t > 0. Now, for a positive constant λ to be determined later, denoting by
Bj = B(xB , 2

jR), we have

(2.12)

∫

Rn\B

φ̃t
r

(
ω(y)

|xB − y|n−α+1 λ

)
dy

=
∞∑
j=1

∫

2jR≤|xB−y|<2j+1R

φ̃t
r

(
ω(y)

|xB − y|n−α+1 λ

)
dy

≤
∞∑
j=0

∫
Bj

φ̃t
r

(
ω(y)(φ̃t

r
)−1 (|Bj |

−1)

λ(|B|1/n2j)n−α+1(φ̃t
r
)−1(|Bj |−1)

)
dy.

Therefore, using the relation (φ̃t
r
)−1(s) ≈ s1/r/φ−1t (s

1/r) and having in mind

that φ−1t is of lower type 1/q and φ̃t
r
is of upper type rq′, the above series is

bounded by

∞∑
j=0

∫

Bj

φ̃t
r

(
Cω(y)(φ̃t

r
)−1 (|Bj |

−1)

λ

φ−1t (|B|−1/r2−jn/r)

|B|1−α/n+1/n−1/r 2j(n−α+1−n/r)

)
dy

≤ C
∞∑
j=0

1

2j(n−α+1−n/rq
′)rq′

×

∫

Bj

φ̃t
r

(
Cω(y)(φ̃t

r
)−1(|Bj |

−1)

λ infBj ω

φ−1t (|B|−1/r) infB ω

|B|1−α/n+1/n−1/r

)
dy.

Now, we choose t = ǫ|B|−1/r
′

, ǫ > 0, and

λ = H C φ−1(ǫ |B|−1) |B|α/n−1/n−1/r
′

inf
B
ω

with H > 1 to be fixed later. Since φ is of upper type q and ω ∈ C(φ̃
r
), we have

that the above expression is bounded by

C

Hq′r

∞∑
j=0

1

2j(n−α+1−n/rq
′)rq′

.
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Then, since q < n/(α − 1)+, the last series converges and we can take H large
enough to have (2.12) bounded by one. So, we obtain

(2.13)

∥∥∥∥∥
χRn\B ω

|xB − .|n−α+1

∥∥∥∥∥ eφtr ≤ C
φ̃ǫ

−1
(1/ |B|) infB ω

|B|1/n+1/r
′−α/n

for t = ǫ|B|−1/r
′

, ǫ > 0. On the other hand, in order to estimate the second

factor in (2.11), we denote by ψ =
˜̃
φt
r
, with t = ǫ |B|−1/r

′

as before. Then, since
g ∈ L∗

φ, we get

(2.14)

∫

Rn

ψ (ga(x)/λ) dx =

∞∫

0

∣∣∣{x : |ga(x)| > ψ−1(s)λ}
∣∣∣ ds

=



ψ(a/λ)∫

0

+

∞∫

ψ(a/λ)



∣∣∣{x : |ga(x)| > ψ−1(s)λ}

∣∣∣ ds

≤ ψ(a/λ) |{x : |ga(x)| > a}|

+

∞∫

ψ(a/λ)

∣∣∣{x : |ga(x)| > ψ−1(s)λ}
∣∣∣ ds

≤
ψ(a/λ)

φǫ(a/[g]φǫ)
+

∞∫

ψ(a/λ)

ds

φǫ(ψ−1(s)λ/[g]φǫ)
.

From (1.5) it follows easily that

ψ−1(s) ≈ s1/r
′

φ−1ǫ

(
s1/r/ |B|1/r′

)
.

Therefore, taking a = H [g]φǫφ
−1
ǫ (|B|−1) with H to be determined and λ such

that ψ(a/λ) ≈ |B|−1, that is λ = H [g]φǫ |B|1/r
′

and using that φ is of lower
type p, inequality (2.14) allows us to obtain

∫

R

ψ (ga(x)/λ) dx ≤
1

|B|φǫ

(
H φ−1ǫ (|B|−1)

)

+
1

|B|

∞∫

1

ds

φǫ

(
ψ−1(s/ |B|)H |B|1/r

′
)

≤
C

Hp +
1

|B|

∞∫

1

ds

φǫ

(
cH s1/r

′

φ−1ǫ (s1/r/ |B|)
)
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≤
C

Hp


1 +

∞∫

1

ds

sp/r
′+1/r




≤
C

Hp .

Consequently, for H large enough, we have

‖ga‖
ψ
≤ C |B|1/r

′

[g]φǫ .

Therefore, from (2.11) and (2.13), it follows

(2.15) I1 ≤
C φ−1ǫ (1/ |B|) infB ω

|B|1/n−α/n
[g]φǫ .

Now we estimate I2. Since q < n/(α− 1)+, there exists δ < 1 such that (q
′

δ)′ <
n/(α− 1)+. Applying Hölder inequality, we get

(2.16) I2 ≤

∥∥∥∥∥
χRn\B ω

|xB − .|n−α+1

∥∥∥∥∥ eφtδ ‖ga‖geφtδ
for every t > 0. Proceeding as in (2.12), denoting Bj = B(xB , 2

jR) and using

that the lower type of φ̃ is q′, we obtain

∫

Rn\B

φ̃t
δ

(
ω(y)

|xB − y|n−α+1 λ

)
dy ≤ C

∞∑
j=0

1

2j(n−α+1−n/(δq
′))δq′

×

∫

Bj

φ̃t
δ


Cω(y)(φ̃t

δ
)−1(|Bj |

−1)

λ infBj ω

(φt
δ)−1(|B|−1) infB ω

|B|1−α/n+1/n−1/δ


 dy.

Let us take t = ǫ |B|1/δ−1, ǫ > 0 and

λ = CH φ−1(ǫ|B|−1)|B|α/n−1/n+1/δ−1 infB ω. From Corollary 2.5 and the fact

that (q
′

δ)
′

< n/(α− 1)+, we have that the above series is bounded by

C

Hq
′
δ

∞∑
j=0
2−j(n−α+1−n/(δq

′

))δq
′

≤ 1

for H large enough. Hence, we get

(2.17)

∥∥∥∥∥
χRn\B ω

|xB − .|n−α+1

∥∥∥∥∥ eφtδ ≤ Cφ̃−1ǫ (1/|B|) infB ω

|B|1−1/δ+1/n−α/n
,
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where t = ǫ|B|1/ǫ−1, ǫ > 0. With this choice of t we are going to estimate the

second norm in (2.16). Setting ψ =
˜̃
φt
δ
, we have

(2.18)

∫
ψ

(
ga(x)

λ

)
dx =

ψ(a/λ)∫

0

∣∣∣{x : |g(x)| > λψ−1(s)}
∣∣∣ ds

≤

ψ(a/λ)∫

0

ds

φǫ(ψ−1(s)λ/[g]φǫ)
,

where a = H [g]φǫφ
−1
ǫ (|B|−1) as before. From (1.5) we get that

ψ−1(s) ≈ s1−1/δφ−1ǫ (s
1/δ/|B|1−1/δ).

So, choosing λ = H [g]φǫ |B|1−1/δ , it is easy to see that ψ(a/λ) ≈ |B|−1. Moreover,
since φ is of lower type p > 1, from (2.18), we obtain that

∫
ψ

(
ga(x)

λ

)
dx ≤ ψ(a/λ)

1∫

0

du

φǫ(ψ−1(uψ(a/λ))H |B|1−1/δ)

≤
C

|B|

1∫

0

du

φǫ(cHu1−1/δφ
−1
ǫ (u1/δ |B|−1))

≤
C

HP

1∫

0

u(1/δ−1)p−1/δ du

≤ 1

for H large enough. Therefore

(2.19) ‖ga‖ψ ≤ c[g]φǫ |B|1−1/δ .

From (2.16), (2.17) and (2.19), we conclude that

I2 ≤
Cφ−1ǫ (1/ |B|) infB ω

|B|1/n−α/n
,

which together with the estimate for I1 yield the conclusion of the lemma. �

We are in position to prove our main result.
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Proof of Theorem 1.11: Assuming (1.12) let us prove (1.13). It is easy to
check that

(2.20) [f/ω]φ
tn
= [δtf/δtω]φ

holds for every t > 0. On the other hand, since

Iαf(x) = t
α δ1/t(Iα(δtf))(x),

we have∥∥χBω−1
∥∥
∞

|B|1+α/n φ−1tn (1/ |B|)

∫

B

|Iαf(x)−mB(Iαf)| dx

=

∥∥χt−1B(δtω)−1
∥∥
∞

|t−1B|α/n φ−1(1/ |t−1B|)

1

|t−1B|

∫

t−1B

|Iα(δtf)(x) −mt−1B(Iαδtf)| dx.

So, from (2.20), (1.13) is clear. A similar reasoning allows us to prove that (1.13)
implies (1.12).
Next, we are going to show that (1.14) can be obtained from (1.12). First note

that, since [f/ω]φt ≤ C ‖f/ω‖φt , we also get (1.12) with [f/ω]φt replaced by the

strong norm. Then taking B = B(xB , R) and B̃ = 12B, we have

(2.21)

∥∥χB̃ω
−1
∥∥
∞

|B̃|1+α/n φ−1t (1/|B̃|)

∫

B

∣∣Iαf(x)−mB̃(Iαf)
∣∣ dx ≤ C ‖f/ω‖φt

for every f ∈ Lφ,ω. We denote by B1 and B2 the translates of B defined by
B + e1, B + e2 with |e1| = 4R and |e2| = 10R. A straightforward calculation
shows that

|B1| = |B2| = |B| ,

B ∪B1 ∪B2 ⊂ B̃ with

|B̃| = 12n |B| .

Moreover, for every y ∈ B1, z ∈ B2 and x ∈ B, we get that

|y − x| ≤ 6R and |z − x| ≥ 8R.

For a non-negative f supported in B, the integral on the left side of (2.21) can be
bounded from below by

1

2|B̃|

∫

B̃

∫

B̃

∣∣∣∣∣∣

∫

B

(
1

|y − x|n−α
−

1

|z − x|n−α

)
f(x) dx

∣∣∣∣∣∣
dy dz

≥
1

2|B̃|

∫

B2

∫

B1

∫

B

(
1

|y − x|n−α
−

1

|z − x|n−α

)
f(x) dx dy dz

≥ C |B|α/n
∫

B

f(x) dx.
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Hence, recalling that φ has upper index q and combining the above inequality
with (2.21) for ωf instead of f , we have that

∣∣∣∣∣∣

∫

B

f(x)ω(x) dx

∣∣∣∣∣∣
≤ C

|B|φ−1t (1/ |B|)

‖χBω−1‖∞
‖fχB‖φt

for every f ∈ Lφt(B) with t > 0. Therefore, ω must belong to the dual of Lφt(B),

that is L
φ̃t
(B), concluding that ω ∈ C(φ̃) by using (1.5).

In order to prove the reciprocal, let us assume (1.12). For B = B(xB , R) we
can write
∫

B

|Iαf(x)−mB(Iαf)| dx ≤

∫

B

|Iα(χ2Bf)(x)−mBIα(χ2Bf)| dx

+

∫

B

∣∣∣Iα(χRn\2Bf)(x)−mBIα(χRn\2Bf)
∣∣∣ dx(2.22)

= I1 + I2.

We first estimate I1. Applying Lemma 2.6 and Fubini’s theorem we get that

|I1| ≤ 2

∫

B



∫

2B

|f(y)|

|x− y|n−α
dy


 dx

≤ C |B|α/n
∫

2B

|f(y)| dy

≤ C |B|1+α/n φ−1ǫ (1/ |B|) inf
B
ω [f ]φǫ,ω.

for any ǫ > 0.
On the other hand, by Lemma 2.10, we have that

|I2| ≤ C |B|1+1/n
∫

Rn\2B

|f(y)|

|xB − y|n−α+1
dy

≤ C |B|1+α/n φ−1t (1/ |B|) inf
B
ω [f ]φǫ,ω.

Therefore, from (2.2) and the estimates for I1 and I2, (1.12) follows immediately.

Let us prove the equivalence between (1.14) and (1.15). Suppose that ωp
′

∈ A1.

Then, there exists ǫ > 0 such that ωp
′+ǫ ∈ A1. Since φ has lower index p and

upper index q, it follows that φ̃ is, in particular, of lower type p′ + ǫ and it is of
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upper type q′ − δ for some δ > 0. Hence, for λ large enough, we get that

∫

B

φ̃

(
ω(x) φ̃−1(t/ |B|)

λ infB ω

)
dx

t
≤

C

λq
′−δ

1

|B|

∫

B

(
ω(x)

infB ω

)p′+ǫ
dx

≤
C

λq
′−δ

≤ 1

for every ball B ⊂ Rn, which proves that ω ∈ C(φ̃). For the converse note that

in view of Corollary 2.5, we only need to prove that ω ∈ C(φ̃) implies ωp
′−ǫ ∈ A1

for every ǫ > 0. From Definition 1.3 it is clear that for each r > 1 there exists
s = s(r) > 0 satisfying

(2.23) rp
′

φ̃(s) ≤ 2φ̃(rs).

On the other hand, since ω ∈ C(φ̃), taking a ball B in Rn and defining

Ek = {x ∈ B : 2k ≤ ω(x)/ infB ω < 2
k+1}, k ≥ 0,

we have

(2.24)

1 ≥

∫

B

φ̃

(
ω(x)

C infB ω
φ̃−1(t/ |B|)

)
dx

t

≥ φ̃

(
2k

C
φ̃−1(t/ |B|)

)
|Ek|

t

for any t > 0 and k ≥ 0. Applying (2.23) for r = 2k, k ≥ 0, we get a sequence sk
such that

2kp
′

φ̃(sk) ≤ 2φ̃(2
ksk).

Now, for each k > 0, we use (2.24) with t = φ̃(c sk)|B|. Therefore, having in mind

that φ̃ is of upper type p′, we get

1 ≥ φ̃(2ksk)
|Ek|

φ̃(C sk) |B|

≥
2kp

′

φ̃(sk)

2φ̃(C sk)

|Ek|

|B|

≥ C2kp
′ |Ek|

|B|

≥ C 2kǫ
1

|B|

∫

Ek

(
ω(x)

infB ω

)p′−ǫ
dx
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for 0 < ǫ < p′. So, we have that

1

|B|

∫

Ek

(
ω(x)

infB ω

)p′−ǫ
dx ≤ c 2−kǫ

holds for every k ≥ 0. Summing up over k these estimates we obtain the desired
conclusion. �
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