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The local solution of a parabolic-elliptic equation
with a nonlinear Neumann boundary condition

VOLKER PLUSCHKE, FRANK WEBER

Abstract. We investigate a parabolic-elliptic problem, where the time derivative is multi-
plied by a coefficient which may vanish on time-dependent spatial subdomains. The lin-
ear equation is supplemented by a nonlinear Neumann boundary condition —Ou/0v4 =
g(+,-,u) with a locally defined, Ly-bounded function g(t,-,£). We prove the existence
of a local weak solution to the problem by means of the Rothe method. A uniform
a priori estimate for the Rothe approximations in L, which is required by the local
assumptions on g, is derived by a technique due to J. Moser.

Keywords: parabolic-elliptic problem, nonlinear Neumann boundary condition, Rothe
method

Classification: 35K65, 656N40, 35M10

Introduction

In this paper we prove the weak solvability of a time-dependent partial dif-
ferential equation with a nonlinear Neumann boundary condition. The evolution
problem which shall be investigated shows the following special features.

(i) The time derivative is multiplied by a coefficient ¢ (¢, z), (t,z) € [0,T] x G
which may vanish in certain time-dependent subdomains £(t) of G (cf.
Assumption 1.3). Hence, the differential equation we consider is parabolic-
elliptic.

(ii) Though we show the weak solvability (up to a certain point of time) in a
Sobolev space, any growth restrictions of the nonlinearity, arising in the
boundary condition Bu = g¢(-,-,u), are omitted. Instead, the function
g(+,-,&) is assumed to be defined and bounded only on a set { £ € R :
€] < R} (cf. Assumption 1.6).

We derive our existence result by means of the Rothe method (cf. e.g. [6],
[13]) which is based on a semidiscretization with respect to the time variable,
whereby the given evolution problem is approximated by a sequence of linear
elliptic problems.

In view of (ii), the approximations obtained by solving these “discretized” prob-
lems have to be estimated in L. For that purpose, we fall back on a technique
introduced by J. Moser (cf. [8]), where appropriate Ly-estimates uniformly ap-
proach the desired boundedness statement as p — oo. In various papers which
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treat parabolic Dirichlet problems, a method has been developed to derive such
Ly-bounds, which are uniform with respect to both p and the stepsize h of the
discretization (cf. e.g. [10]-[12]). Its principle consists in showing that Lj,-norms
of the approximations, p > 2, may be traced back recursively to Lo, where ap-
propriate estimates easily can be derived by means of a well-known technique.

Using the Rothe method, nonlinear Neumann problems have also been investi-
gated, for instance, by such authors as J. Kacur, J. Filo, and M. Slodicka (cf. e.g.
[2], [7], [15]). However, the nonlinearities arising in these problems were assumed
to satisfy global growth conditions.

For the treatment of the degenerate differential equation, the outlined Lo-
technique is combined with the use of weighted Lebesgue norms. In contrast to
[12] or [17, Section 3.1], where the coefficient of the time derivative may vanish
only at a set of zero measure, these norms do not supply us with information on
the behaviour of the approximations on the “elliptic” subdomains £(t). This fact
complicates our proofs and entails the simple form of the differential operator.

Nonlinear degenerations in sets, depending upon the function searched for,
have been investigated in fixed L, or Orlicz spaces, for instance, by J. Kacur
(cf. e.g. [7]). However, we consider the case of degeneration domains £(t) which
are not influenced by the solution sought and estimate the Rothe approximations
in Loo.

The present paper generalizes results of [17, Section 3.2], where the Rothe
method was applied to parabolic-elliptic equations in which the coefficient of the
time derivative may vanish in an invariable subdomain £(t) = €.

1. The problem and the assumptions

Let G ¢ RN, 2 < N < 5, be a simply connected, bounded domain of the
C°-class, and I the time interval [0,T]. Moreover, we use the abbreviations
QT = IT X G, FT = IT x 0G.

In the course of this paper, | - [/, o denotes the norm of L,(Q2), 1 < p < oo, and
(-,-)q the duality between Ly(€2) and L,y (), where p’ is the conjugate exponent
of p, ie., 1/p+1/p/ = 1. In particular, if Q = G, we write || - ||, :== || - ||p.c:
(-,-) == (,")g. The norm of the Sobolev-Slobodeckif space W})'(G), 1 < p < oo,
> 0, shall be denoted by | - ||.,p. Moreover, we introduce the functional || - ||v 2,

defined as 1
N 2) 2
o= {3 1

=1

on W}(G). Let X be a normed linear space. Then L,(Ir,X), C(Ir,X), and

Co’l(IT, X) denote the sets of the L,-integrable, continuous, or Lipschitz contin-

uous mappings ¢ : I — X, respectively. Moreover, Br[X] is the closed ball
{r e X :|z|lx <R}

In the course of this paper, the letter ¢ is often used to denote a constant,

which may differ from occurrence to occurrence. If it depends upon additional

ou
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parameters, say t, we sometimes indicate this by c(¢). Finally, RT is the set of
nonnegative real numbers.

Note that all presented results remain valid for N = 1. Here we discuss N > 2
to avoid an extensive distinction of cases (e.g. for p, in Lemma 1.9) which is
necessary if N = 1.

Moreover, we shall not search for the weakest possible regularity assumption
on the boundary 0G. In general, the weak solvability theory for nondegenerate
parabolic problems in LQ(IT,qu(G)) requires only G € Cl. In our proofs,
however, we refer to known results on elliptic equations (cf. proof of Theorem 1.17)
as well as to trace and interpolation theorems (cf. Lemma 1.8 and Lemma 1.9)
which are formulated for G € C®°. For this reason this assumption is adopted.
An analogous situation regards the regularity assumption on the coefficients of
the differential operator (cf. Assumption 1.2).

Problem 1.1. We consider the initial boundary value problem

_ﬂ =g(t,z,u) onTp, u(0,z) = Up(x),
Ov 4

where A denotes the differential operator

ou
w( )8t+AU_O on QTu

N
0] Ju
Au = — — | a; —
wim= 30 o (ol g ).
i,k=1
and 9/0v 4 the corresponding conormal derivative
N
0 0
i = 'kzl aik(x)a—;; cos (x;,7), ... exterior normal on OG.
i,k=

Assumption 1.2. The operator A, which contains only second partial deriva-
tives, is assumed to be symmetric and uniformly elliptic. Its coefficients a;); belong
to C° (G)

As a consequence of Assumption 1.2, the positive definite and symmetric bi-
linear form (-,-) 4, given by

(s = a = 5 [ eiro) 5@ )

i,k=1
¥ (u,0) € Wg (G) x Wi (G), ¢ > 1,

satisfies the inequality

(1) (u, |u|p_2u)A > cx

2

y Cx :O(p_1)7

Vp>2, Yue Wi(G)N Leo(G)

p—2
ol 2
V,2
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(cf. e.g. [9, Lemma 3]).

In order to formulate our assumptions on the function (¢, ), we introduce
the families of open sets £(t) := G \ supp[¢(t,-)] and P(t) := G\ E(t), t € Ip.
Moreover, {(t,z) € Qr :x € £(t)} and {(t,z) € Q7 : x € P(t)} will be denoted
by Ep or Prp respectively.

Assumption 1.3. Let ¢ : Iy x G — RT be an element of C%!(Ir, L«(G)),
where € R fulfills x > max{2, N/2}.

The above defined subsets P(t) C G are supposed to be nonempty C'°°-domains
with OP(t) D 0G, Vt € Ip. Then, we assume that 1/v(¢,-), t € Iy, belongs to
Lg(P(t)), B> k/(k — 2), and satisfies

(2) (s

(t, ')Hﬁ,m) <e¢ Vielp.

Due to our assumptions on v, the functional

1
el fpie, ) = Nullp, e, pe) = {/G Pt o) u(z)? dx}p

defines a norm on Ly, (P(t)), t € I, but in general, only a semi-norm on L,,./(G).
Since 1) is assumed to be an element of C' (I, Lk (G)) and satisfies the estimate (2),
we obtain

1/p 1
||U||15 o) S Hlﬂ ng lullp e,y < P ey, e
(3) < MYt NP ullprr pe) < P [l 2o

Vu € Ly (P(1)),Vp > %ﬁ Vit e Ip.

Remark 1.4. As a consequence of our assumptions on 1, the following property
of the domains P(t) can be derived: Let ¢’ and t” be arbitrary points of the time
interval I7. Then, using Holder’s inequality, we obtain the estimate

measPUONPOI= [ S () o

Bk
—1 // ﬁ+n "N\ Btk
<ot Hg PEPE 1 ey

<cfw(t”, ) — (', )||B+K :
Thus, the measure of P(t"”) \ P(t') satisfies the Holder condition

Br
meas[P(t")\ P(t')] < e[t —t/|5++ .

According to the assumptions on ¢ (and A), Problem 1.1 is parabolic on Pp
and elliptic on Ep. Therefore, out of P(0) a definition of an initial function Uy
makes no sense. On the other hand, an extension of Uy to G is required to carry
out the Rothe method. So our assumption on the initial value Uy reads as follows.
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Assumption 1.5. Assume Uj is the restriction of a function U§ € W3 (G) N
Loo(G) to the subdomain P(0) C G.

Without loss of generality we may assume that [|Uplloo p(0) = [|Ulleo- If not,
the function Uj* € W3 (G) N Loo(G), defined by

U () = Us (), it [U5(@)] < 10olloo p(0)
; sign [Ug (@00l p0) 1 105@)] > 1V0llse.p(0)

might be chosen instead of Uj.

Assumption 1.6. Let the function g : I x G x [-R, R] — R,
R > [|Uo||o0,p(0), satisty the following conditions.
(C1) (Carathéodory Condition)
(a) For all (¢,£) € It x [—R, R] the mapping x — ¢(t, z, £) is measur-
able on 0G.
(b) For almost all z € G the mapping (t,&) — g(t,z, ) is continuous
on IT X [—R,R]
(C2) There is a function § € Lr(0G), r > N — 1, such that the inequality
lg(t,z,€)| < g(z) holds for all (¢,x,€) € It x G x [—R, R].

Thus, G(t,v)[z] := g(t,x,v(x)) defines a continuous mapping G : Iy X
BRr [Loo(0G)] — Ly(0G). Moreover, we obtain the local boundedness property

Hg(tv '7U)||T,8G < V(t,v) € Ir x BR[LOO(aG)]

According to our assumptions formulated above, the classical solvability of the
initial boundary value Problem 1.1 may not be expected. Hence we introduce the
following concept of a weak solution.

Definition 1.7. A function u € Lo(I7, W4 (G)) N Br[Leo(Qr)] is called a weak
solution to the parabolic-elliptic Problem 1.1 if the following conditions are satis-
fied.

(C1) For almost all ¢t € I, u(t,-) belongs to Br[Loeo(0G)].

(C2) Let V(Qr) be the set of all v € La(Ip, W3 (G)) which have a time de-
rivative vy € L1(Ip, L (G)) and fulfil v(T,z) = 0. Then the integral
relation

@ = (gy) = @O0, + [ (ule )00,
= _(g('7 '7u)7U)FT

is satisfied for all v € V(Qr).
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Note that our assumptions on  and r imply La(Ir, Wa(G)) C La(Ir, L (G)N
L,/(0G)). Moreover, Assumption 1.3 guarantees the existence of the weak de-
rivative ¢t € Loo(IT, Lk(G)), and therefore, (ypv); € L1(Qr) for v € V(Qr).
Consequently, the integral relation (4) is well-defined.

In the following discussion, we provide some statements which are required
within the scope of the Rothe method. Using the assumption G € C'°°, our first
lemma was proved in [16] (cf. 4.7.1 Theorem). It reads as follows:

Lemma 1.8. The real numbers p and § are assumed to satisfy the conditions
1 <p< oo, d > 0. Then there exists a linear continuous trace operator T :

Wy/PH(G) — Ly(9G).
The following interpolation inequality can be found in [17, Section 1.2.2], and
is based on [16, 1.3.3 Theorem, 4.3.1 Theorem, and 2.4.2 Remark 2].

Lemma 1.9 (Nirenberg-Gagliardo Interpolation). Let p. be an arbitrary, but
fixed real number with p, < %, where p € R satisfies 0 < p < 1. Then
there exists some 0 € (0,1), such that the inequality |jullup < c||ull§ 2HuH}{_9,
v > 1, holds for all p € [1,ps] and u € W3 (G) N Loo(G).

In the course of this paper both Lemma 1.8 and 1.9 shall be applied at the
domains P(t). Thus, the constants arising in the resulting inequalities

(5)

||U||p,8G < ||u||p,8'P(t) < C(t)Hu||Wp1/P+5(7)(t))7 1< p <00, d> 07 te IT}
(6)

0 1-6

lellwg ey < cOllulligllelllpe, v>1 0<p <1,

2N
N —=2(1-p)
depend on the time variable. On the other hand, the outlined technique used
to estimate the Rothe approximations (uniformly with respect to the stepsize of

the discretization) requires the boundedness of {c(t)}er,. For this reason, we
assume the following:

vpgp*< ,tEIT,

Assumption 1.10. The “parabolic” domains P(t) are assumed to behave in a
manner such that the families of constants {c(t)};cr,., occurring in (5) and (6),
are bounded.

Example 1.11. Obviously, Assumption 1.10 is satisfied for invariable P(t) = P.
This special case was investigated in [17, Section 3.2].

Example 1.12. The domains P(t), t € I, are assumed to satisfy the following
conditions:

(C1) There is a domain P, C RN of the C®-class with P, C (Mter, P(t) and
0G C 0Px.
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(Cq) For each t € Ip exists a C'°°-isomorphism ¢(t) : P(t) «— Pi«, where
Pix € RV is a C>-domain. The Jacobi determinants of o(t), t € Iy, are
uniformly bounded.

Owing to (C1), the application of Lemma 1.8 at the domain Py yields the in-
equality

HU‘H]LaG < ”u”p,a'P* < CHU’HWI}/Z"M(P y = c||u|| 1/P+5(P(t))
Vi Ip, Yue WP (pa)),

where ¢ does not depend on ¢. On the basis of (Cg) it can be proved that the set
of constants {c(t)}+cy, occurring in (6) is also bounded.

Corollary 1.13. Let p« be an arbitrary, but fixed real number with 1 < py <
2(N —1)/(N — 2). Then there exists some 6 € (0,1), such that the inequalities

(E1) Nlullpoe < clulldollull} Z, v > 1, ¥p € [Lipa],
o—of

(E2) |lull2%q < cellulli » + CE_C|IU|I11 i

,v>1, Vo € (0,1], Ve > 0,
) o € (0.1] Ve

Vp € [17p*]7
hold for all t € It and u € Wi (G) N Loo(G).

PRrOOF: With consideration to Assumption 1.10, our assertion (E;) easily follows
from Lemma 1.8 and Lemma 1.9 (cf. [17, Folgerung 1.22]). Applying Young’s
inequality as well as formula (3) to the right hand side of (E1), we obtain the
estimate (Eg).

Corollary 1.14. Let A be an arbitrary, but fixed real number with A > A\, :=
(1+5)/(28). Then,

p
Il ey = Tl e, |

- 2
p—2 —ei. P I
§C<€ [t |“|Ap,w(tcv)+w<w,vn> =2,

Vi t" elp, Vp>2,Ve>0,
holds for all u € W3 (G) N Loo(G).

PROOF: Recalling the assumption ¢ € C%! (I, L;(G)) we obtain

[, ) = (t", @)l Ju(@) P dz

‘H Hp [w(t/' || || t” ‘: ~/P(t’)U'P(t”)

2

|u|p%

<l ) =, - , < t—t"
=~ Hd}( ) ) 1/)( ) )H HquH ’[)(t )U'P(t C| | U 2%’,P(t’)U’P(t”),

v t" e Ip.

19
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Since 1/[¢(t,-) + (", -)] belongs to Lg(P(t') UP(t")), an application of Corol-
lary 1.13 (Eg2) (with o(¢,-) + (", ") instead of ¥(¢t,-)) to the right hand side
yields the asserted estimate. (|

Throughout the remainder of this paper, we shall continue denoting the real
number (14 3)/(28) by A«.
Lemma 1.15. The inequality ||u||i2 <c (Hquv 9+ Hqu)\* [t .)]) holds for all
t € It and all functions u € W3 (G) N Loo(G).

PROOF: Because the sets P(t) are assumed to be nonempty subdomains of G,

the functionals
/ u(x) dx
P(t)

define norms on Wi (G), which are equivalent to || - [|1.2 (cf. e.g. [3, 5.11.2 Theo-
rem|). Thus, we obtain H“H%g < c(t) Fr(u)?, Vt € Ir. Using the Hélder conti-
nuity of meas[P(t)] (cf. Remark 1.4), it can be proved that the set of constants
{c(t) }ter,, occurring in these estimates is bounded. Hence, the application of (3)
to the right hand side of F¢(u)? < ||u||2v72 + ”u”ip(t) yields the assertion. O

1
2) 2

Fi(w) =  JullZ 5 + , t €I,

Our next lemma provides a compactness criterion which shall be used to derive
convergence properties of the Rothe approximations in Lebesgue spaces.

Lemma 1.16. Let v be a real number with 1/2 < v < 1. Then, a sequence
{un}22, C Lo(I7,W(G)) is relatively compact in Lo (Pr), if it satisfies the
conditions

(C1) ||Un||L2(1T7W21(G)) <c, VneN, and

T
(Ca) / [lun(t + €, ) —un(t, )||%ﬁ/ P(t) dt <ce,Vee (0,T),Vn € N.
0 9

PrOOF: The basic idea of the proof may be outlined as follows: Using the as-
sumptions (Cq), (C2), as well as Holder’s inequality, we can show that

T
/ / |'Un(t—|—e, I+y)_vn(ta I)|2ﬁ{ dzdt : 0 as (Evy) I (07 0)5 Un = XPrUn,
0 JP(t)

where xp, denotes the characteristic function of the cylindrical set Pp. Due to
Kolmogoroff’s compactness criterion, this uniform convergence, and [[un||2y,p, <

¢, ¥n € N, imply the relative compactness of {u}>2 ; in Lo, (Pr).
The details may be adapted from [5, Lemma 2.24], or [17, Lemma 1.41], where
the special cases {y = 1, P(t) = G} and {P(t) = G} respectively, were considered.
(]
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Within the scope of the Rothe method, the evolution Problem 1.1 is approxi-
mated by a sequence of elliptic equations with linear Neumann boundary condi-
tions. An application of the outlined Lso-technique requires the solution of these
discretized problems in qu (G) — C(G), ¢ > N. Using our assumptions on G,
and the uniformly elliptic operator A, the following existence result can be proved:

Theorem 1.17. Let g« be an element of L.(0G), r > N — 1. The nonnegative
function 1« € Li(G), k > N/2, is supposed to satisfy ||1«||1 > 0. Moreover, we
assume ux € Loo(G).

Then there are real numbers hy, > 0 and g > N, such that the elliptic boundary

value problem
— 0
u Ux + Au — 07 _ _U
8VA aG

w* - g*

has a unique weak solution u € qu (G) — C(Q), provided that 0 < h < hs.

PROOF: Our proof may be outlined as follows: Using sequences of C'*°-functions
which converge to ¥4 or g« respectively, we approximate the given problem. With
the aid of a Fredholm alternative, proved by F.E. Browder (cf. [1, Corollary to
Theorem 5]), these “smoothed” elliptic problems can be solved in WE(G), p =
2N/(N — 2). Consequently, the required continuity of the desired solution, i.e.,
u € qu (G) with ¢ > N, is guaranteed by the restriction N < 5.

By means of a priori estimates it can be shown that the solutions of the
“smoothed” problems approach a weak solution to the given elliptic problem
in qu (G). The use of the underlying results, proved by M. Schechter (cf. [14,
Theorem 6.1]), requires the assumption a;, € C°(G).

We refer to [17, Section 1.4] for the details of the derivation. O

In the proof of Theorem 2.4 we shall use the following weak maximum-minimum
principle, which was proved in [4, Theorem 8.1].

Lemma 1.18. Let the coefficients a;;(x) of the uniformly elliptic operator A
be measurable bounded functions on a domain 2 C RV, Then, a weak solution
u € W3(Q) to Au = 0 in the sense of (u,v)40 =0, Vv € C}(Q), satisfies the
maximum-minimum principle

ess sup |u(x)| < ess sup |u(z)|.
€N €N

2. Construction and local boundedness of the approximations

The Rothe method is based on a semidiscretization of the given problem with
respect to the time variable. For that purpose, we subdivide It = [0,7] into n
subintervals

[tic1,ti], ti= tgn) :=thn, hp:=T/n, i=1,...,n.

21
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Then, for each n > 1, Problem 1.1 may be approximated by the sequence of linear,
elliptic boundary value problems

Ous
Yiou; + Au; =0 on G, — Y =g; on O0G, i=1,....,n,
vy
U; — Uj—1
where du; = ———"—, ¥; = ¥(t;,-), gi = g(ti,,ui—1),

hn

and ug is given by ug(z) := Ug(z). In weak formulation this discretized problem
reads as follows:

Problem 2.1. Let ug be defined as ug(z) := Ug (2). Find functions u; € qu(G)ﬂ
Bgr[C(0G)], i =1,...,n, such that the equations

(7.1) (Wi0us,v) + (uj,v) 4 = —(g5,v)9g, i =1,...,n,
are satisfied for all v € V(G) := qu,(G) N L, (0G) N Ly (G).

According to the locally formulated assumptions on the boundary function
g, a solution of the discretized Problem 2.1 must be sought in the closed ball
BRr[C(0G)]. On the other hand, known existence results from the elliptic equation
theory cannot be applied under such a restriction. For this reason, we first consider
a slightly modified discretized problem, where the use of

g(t,z,€), if §|<R
.6 = { | |

g(t,z, R sign(£)), if §|>R
enables us to apply the local assumptions on g globally.

Problem 2.2. Let vg be defined by vg(x) := Uj(x). Find functions v; €
qu(G) NC(0G), i =1,...,n, such that

(8.) (3003, 0) + (Vi,0) 4 = — (gﬁ,v)ac, Yo e V(G).

As long as the subdivision of the time interval is sufficiently fine, i.e., Vh, <
hn,, the “extended” discretized Problem 2.2 may be solved on the basis of The-
orem 1.17. According to that existence result, there is a unique solution u; €
qu(G), g > N, to the linear elliptic equation (8.1), provided that the previ-

ous function u;_1 € C(G) is already known. Starting with ¢ = 1, this iterative
procedure yields:

Lemma 2.3. Assuming that the subdivision of I is sufficiently fine, i.e., Yn >
ny, the “extended” discretized equations (8.i), i = 1,...,n, have unique solutions
v; € qu(G), qg>N.

Since the functions v; are continuous on JG, they fulfil the original discretized
equations (7.i), provided that they belong to the closed ball BR[C(9G)]. Using
this basic idea, a local existence result for the discretized Problem 2.1 can be
proved.
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Theorem 2.4. There exist a time Ty € (0,T] and a natural number ny, such
that the following statements are valid:

(S1) For all subdivisions of I with n > ns, the discretized equations (7.1)
are uniquely solvable in qu(G), g > N, providing the corresponding t;
satisfies t; < T.

(S2) The solutions u; € qu(G) — O(G) of (7.), t; < T, fulfil the estimate

[0
mas uilloe) < explet®) {00l poy + et} < R,
VteIn :=[0,Tk], Yn > n,

where o« € R belongs to (0,1/2], and takes on the value 1/2 if
100l s0,P(0) > 0-

PROOF: The basic idea of our proof consists in showing, that up to a certain point
T € (0,T] the solutions v; € W(}(G) of the “extended” discretized Problem 2.2

belong to Br[C(G)] C Bgr[C(0G)], and thus satisfy the corresponding original
discretized equations (7.i) as well. For that purpose, we consider the integral
relations (8.i). Since v; particularly belongs to Wi (G) N Loo (G), [vsP~2v;, p > 2,
is an element of W3 (G) — V(G) (cf. [9, Lemma 2]) and may be employed as a
test function:

(Widvi, [0iP =20+ (v, [0 P20 4 = = (g ol 2vi) i =1on, Vp 2 2
The application of
(ii = vim)s ol 20;) = il ) = @iviea, i)

P
2 HUZHp i) — |Jvi- 1||p 1/11]”“2”; [4)3)

s 1P — Zllays p
2 pHUZ”p,[wz'] p”vl_lHP,Wi}’ Vp =2,
and (1) to the left hand side of this equation yields

2
) Woill g = il g + challwilld 2 < —pha (g 0P ~20i)
1=1,...,n, Vp > 2,

—2
where w; € W3 (G) N Loo(G) is defined as w; := |v,~|p7vi. According to Corol-
lary 1.14, the two estimates

Hmwdq_ﬂﬁuw+ﬂ cehnllwil} o — e hn Vil (i

2 —
=Mvicall) gy = = lvi-ally 1 = cehnllwioalli o = ce hnllvically, 4
Vp>2, Ve> 0,

23
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24
hold for an arbitrary, but fixed real number A € (A, 1]. Applying them separately

to formula (9), we obtain both

~Mviztll} g + chnllwilF 2

lv ’Hp [Yi+1]
(10) —phn (9 JuilP2v;) |+ cellluilf 5
—c ||P ;—
+ ce h””“l”xp,[wﬁwm}’ i=1,....,n, Vp>2 Ve>0,
and
2
||Uz||p [1h:] HW—l”ZW 1] + ChnHwi“V,Q
—phn (gF [0ilP~2v;)  + cehnljwi-1 |3 2
oG ’
i=1,....n, Vp>2, Ve > 0.

—c . p
+oce hn””’_l")\p,[%q-l-%]’
The sum of these two inequalities reads as follows

2
1l gy + Bl

R 2
< ol g+ 2 (0 ol 201)

2 2
+cehn (l[wia I3 5 + w3 2)

- . p 1P
+ ce “hn (||U2—1||)\p7[¢i71+¢i] + HUZ”APJ%-#-%H]) ’
i1=1,...,n, Vp>2, Ve > 0.

As a consequence of Corollary 1.13 (E2) and our assumption r > N — 1, the

estimate

2 9 1-0
p’ < —C p =0
IIwIIQ% I cel|wl|f 5 + ce lwlloX e,y € € (0:1),
Vw e WHG) N Loo(G), Ve>0, Vt e Ip,

holds for all p > 2r/(r 4+ 1). Thus, we have the inequality

2

o) ] <t
[ (o o =201) oo | < ol [t e = el o
1-6
2 —
< CEH“’Z’”LQ + ce C”Ui”)\n[wi}a o(p) == V-0

(12)
n, Vp>2, Ve > 0.

i=1,...,
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Using Lemma 1.15, its application to the right hand side of (11) yields

2
HUsz [i+1bisa] + Chn”wiHV,2
2 —
A HUZ’_lHP7[¢F1+¢i] + CEph"Hwi”L? +ce cph"H“i”igfiJ

2 2
+ cehn (l[wiallf o + w3 2)

—C . p 1P
e (1001 sy 100 ]
2 2
< o2 g + PR (i1l + sl o)

+ ce_cph"HUi”f\pzj[iﬁiﬁiﬂ}

_ P P
+ e hn (Hvz_1|‘>\p,[¢if1+¢i] + ”v’H)\p,[%-i-dJHﬂ) ’
i=1,....,n, Vp>2, Ve > 0.

We sum up these estimates for i =2,...,7, 7 € {2,...,n}, and obtain

J
1P 112
DUAPREE DM LR
1=

J
2
< ||U1||£7['¢}1+'¢}2] + Cephn; ||wi||V,2
1=
J
+ ce_cphnz (”UZHAP o] T ||Ui||§$%ii+¢i+1]> VP22
i=1

Now the both formulas (9) and (10) are considered for the case when ¢ = 1. In
virtue of (12) and Lemma 1.15, their sum may be estimated as follows:

p 2
[0LI ) + ol
R -2 2
< 100l ) + 20l | (9F lo1P201) |+ cetnlwn I

e vy ”I)}\p [¥1+¢2]

< 1001 g+ eephalinz + bl (10315 1y + NAIEE )

Consequently, from the previous inequality, we find
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P 3 2
||Uj||p,[¢j+¢j+1} + chn — il .2
1=

J
2
< llvoll} oy, + cephn > llwill
=1
o(p)p
ce ph”Z (””"'Ap [Wittipa] T ”“i”xp,[wiwm]) ’
j=1...,n, Vp>2 Ve>D0.

By choosing € := ¢ /p with a sufficiently small § > 0, we obtain
(13)

P o(p)p
v ]” [j+dia] = <l OHP 201 T CPChnZ (HUZ”AP Wittis] T v ZH)\P %-Hﬁwﬂ)
: »)
= 2||¢HC(IT’L1(G))HUS”& +cp“hn Z (”UZH)‘P [Yitvit1] T ||Ui||§\plj[ii+¢i+l])
=1

< M||UgI5 + cp“t; (max HUZ”AP Witir] T max ”U’HAP ¢z+¢1+1]>
M = 2||¢||C(IT,L1(G))7 j = 1, ey Vp Z 2,
which leads to

||1P
Itrzlgg( HUZHP [i+iy1]

< M||Ugll& + ept (max 10il 3, it i) T 1028 il & wlwm}) ,
Vtelp, Vp>2.

On the basis of this inequality, the norm [|v;[[, [y, 44, ,]> P = 2, may be estimated

by ||villa [witipiiq]- For that purpose, we consider the sequence pj := 227k,
k=0,1,2,... . Then, using the notations

1
my(n,t) == M~Y/Pr max [Villpy, fitpiga]> Ok = (D),

the previous inequality can be written in the form

my(n,t) < {||U0||p’“ + M- )‘)/Acp tmp* | (n, t) + MPr— )‘)/Acp tmi*PE (n, t)}l/pk

1/p
< {105 1125 + eogt [mPr  (n,0) + mPe 0} k=12, Ve e Ip,
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As it was shown in [12, Proof of Theorem 3.1] or [17, Hilfssatz 2.13], carrying out
this recursion yields

(14)  my(n,t) < exp(ct®) max {[|U ||oo, mo(n, ) }2*, k=1,2,..., YVt € Ip,

where o € R belongs to (0,1/2] and takes on the value 1/2 if ||Uj||co > 0. Now
the expression mg(n,t) will be estimated on the basis of formula (13), which is
considered for the case where p = 2. Owing to this inequality, the following holds

J

2 %2 20(2
|‘Uj|‘2,[¢j+¢j+ﬂ < MU 5 + chn Z (HUZH? [itis] T Ilvilly [wz+¢z+1])
=1

J
2 2 .
< M||UG||5 + ctj + chp E |‘Ui|‘2,[¢i+¢i+1}’ j=1,...,n.
i=1

By means of Gronwall’s Lemma in the discrete form (cf. [6, Lemma 1.3.19]) we
consequently obtain

103113 g 5y0] S (1 ch) (MITG 112 + ety expletj 1), 5 =1,....m,

so that mg(n,t) may be estimated by

D=

_1
mo(n, ) = M2 max vyl ] < | (L4 chn) (10513 + et exp(et) |
Vte lp.

Therefore, from (14) it results

_1 «
M 7k x|l s sun0] < 5P (t) [(1+ chn) (10512 + et ) exp(et)|
(0%
< exp (ct9) (||U§||?>o + ct)  VkeN, Vte Iy,
Since the right hand side of this inequality does not depend on p;, and

Jim flullp e, ), = lulloo peyup ).

Yu € Loo(P)YUPE")), V', t" € Ip,
taking the limit as p;, — oo yields
rtrllg}t(||UZ||C(’P(t1)U'P(t7,+1)) Itn% ”vZ”oo P( )U'P(tl+1)

(07
< exp (ct) (||Ug||go + ct) ,Vte Ip.
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Moreover, as 0E(t;) is contained in P(t;) UP(t;y+1), according to the weak
maximum-minimum principle formulated in Lemma 1.18, we obtain
a. < ma: .
?<XHUZHC @) Itn X”UZ” (P(ti)UP(tiﬂ))
Thus, our assumption [|Uplls,p(0) = |Ugllc < R enables us to fix up a point
€ (0,7T] such that

(0%
max |vlle) < exp (et) (U513 +ct) " < R, vt e[0T,

So the functions v; defined on ¢; x G, t; < Ty, belong to Br[C(9G)] and, conse-
quently, satisfy the corresponding (original) discretized equations (7.1).

Since any solution of (7.i) fulfills the “extended” discretized equation (8.i) as
well, its uniqueness follows from Lemma 2.3. So our proof is complete. (I

Theorem 2.4 guarantees the weak solvability of the discretized equations (7.1)
up to the point Ty € (0,7, which does not depend upon the subdivision of the
time interval I7. Throughout the remainder of this paper, the greatest i € N
with ¢; = ihy, < Ty will be denoted by i = ix(n). By piecewise linear or constant
extension of the solutions wu;, i < i«(n), respectively, for each n > n. we obtain
the Rothe approximations

u™(t, z) .:{“i—l(w)ﬂt—tz 1) 0ui(x) VEE [ti1,ti], 1 <0< iy
o wg, () + (t —t;,) 0uy, () Vte[t;,, Ty ’
Uo(x) Vi€ [=hn,0]
a(”)(t,x) = ui(x)  ViEe (ti—1,t], 1<i<iy,

ul*(ac) Vte [ i*,T*]

which are defined on Qp, := I7, x G. Owing to Theorem 2.4 they satisfy the
estimates

(15)

Hu(n)(t, )H _ <exp (th)(HUOHgOJD(o) + Ct)a§ R, ¥Vt €[0,Tx — hy),

felte)
(16)

Hﬁ(")(t )HC(G) < exp (ctc)(HUOH )+ ct) <R, Vi€ |[—hn,Ti.

Moreover, we introduce the functions
go(x) = g(0,2,Up(z)), t=0

g (t,2) = gila), Vie (o b, 1<i<is,
9i. (), Ve [t;,, Tk
Yo(z), t=0

P () =4 i(x), Ve (timi,ti], 1<i<ix,
"/’i* (CL‘), Vit e [ i*vT*]
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so that the solved discretized equations (7.1), ¢ < ix(n), may be extended to

- (™)
(w“”(t, )2, 0, ->> s GRICORIOD)

—_ (g(")(t, ), 0(t, -))8G, Vte Iy, YveV(Qr).

By integrating this formula over I, the following statement results:

Approximation Scheme 2.5. For all n > ny, the functions u™ and @™ fulfil
the integral relation

00 = (0, ) = 60 Wo000.) + ((W —p) 2 ) B

[ (#00000)  ar==(0) - voevien)

" *

3. The convergence of the approximations to a solution

By a limit process in Approximation Scheme 2.5 we will show that subsequences
of {u(") }SLO:l and {ﬂ(")}zozl actually approach a weak solution to Problem 1.1.
The derivation of appropriate convergence statements requires various a priori
estimates which are based on the following lemma:

Lemma 3.1. For all subdivisions of Iy with n > n., the solutions u; € qu (@)
of the discretized equations (7.i), i < i.(n), satisfy the estimates

E) b Y uilfa<e B3 [oully < and

t; <T. t1<t;<Tx
(Eg) hoo Y lujar— uj||§7wj} < ckhp = cty, Yk €{0,1,...,ix(n)}.
t; <Tx—1y

PROOF: In order to show the estimates stated in (E;) are satisfied, we first
consider the discretized equations (7.i), i < ix(n), with v = u; as test functions.
The application of

1
Wil = wim1) ) = 5 (sl g = i1l g + s = w113 )
and (1) to the left hand side of this formula yields

2 2 2 2
lwill3 ) = llwi-1ll3 g + s = wieall3 ) + chnlludlls o < =2hnlgi, ui)ag,

i=1,....ix(n).
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Going through the same steps which led from (9) to (10) (with p =2 and A = 1)
and using Lemma 1.15, we obtain

2 2 2 2
il2 g+ P2 0502 g+ il
2 2 = 2
< Mwimtll3 ) + 200 1905 wi)oc] + cehn||uill$ o + ce™ “hnlluilly 1y, 4, 1)
1=1,...,ix(n), Ve > 0.

Since the functions u;, i < ix(n), belong to the closed ball Bg[C'(G)], the integrals
(9i, ui)pc are uniformly bounded. Consequently we obtain the inequality

2 2 2 2
il g + R 05012 g + el
2 2 — 2
= Hui_l”l[dii] + chn + cehn|uil[G 5 + ce ChnHui”27[¢i+¢i+l]7
1=1,...,ix(n), Ve >0,

which will be summed up for i =1,...,7, 7 € {1,...,ix(n)}:

j j
HujH%,[quH} +hy > N6uill3 pg + chn Y il
i=1 =1
2 J 2
< [Juoll3,pyy; + cehn > Nuill$ 5 + c(e)tj, Ve > 0.
i=1

Our assertion (E1) follows from this estimate by choosing € > 0 sufficiently small.

The proof of (Eg) is also based on the discretized equations (7.i), i < ix(n).
Using v = ujyp —uj, 0 < j < j+ k < iy, as test function, we sum them up for
t=74+1,...,7+ k. In view of the identity

Jj+k
Y (Wilwi —wicn) ujpp —uj)
i=j+1
j+k J+k
= Z (Vi — Yim1ui—1, ujsg — uj) — Z (i — i) ui—1, ujsk — uj)
i=j+1 i=j+1
j+k
= (Cjntgpn = Yjug ujen —wg) — Y (W = dima)wim, ujpp — uy)
i=j+1

= ||lujsk — u]‘H;’[wﬂ + (k= V) U — )
j+k
- Z (s = Pim i1, wjpp — uj)

i=j+1
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we have
j+k jtk
llwjin — Uj”i[q/;j} + hn Z (ujy ujyp —uj)a = —hn Z (9i> uj+r — uj)oc
i=j+1 i=j+1
j+k
+ Z (Wi = Yic) i1, g — uj) — ((Yjk — ) Uj 1 Ui — ) -
i—j11

Since the functions wu;, i < i.(n), belong to Br[C(G)], an application of Holder’s
inequality to the right hand side leads to

Jj+k
i=j+1
Jj+k
+ > (Wi = di)uie, ujg — )|
i=j+1
j+k
+ [ (Wgk = G ik — wj) |+l Y (i wjp — uj) A
i=j+1
j+k Jtk
<chn Y Ngilroc+e Y 10— vic1lle + clltjin — 5l
i=j+1 i=j+1
j+k
b Y |(wiyujg —ug)al -
i=j+1

In virtue of the local boundedness of g(-, -, £), and the assumption
Y € COY(Ip, Li(@)), it follows that

Jj+k
2
llwjpr — ujH?,Wj} < ckhn + hpn, Z ‘(ui,uj_,_k — uj)A’
i=j+1
Jj+k
< ckhp +chn Y uillv 2wk — ujllv2
i=j+1
j+k
< chhy + chhullug 4% 5 + kb3 o+ chn 3 il s
i=j+1
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Summing up this formula for j =0,1,...,ix(n) — k, we obtain
ix—k
Z llujr — UjH%,[wj]
5=0
ix—k J+k
< ck(ix — k + 1)hy, + ckhy, Z luillG o +chn Y Y Il
Jj=0i=j+1

So, with consideration to

ik jtk ik k k ie—k
S  MuillRa= >0 luirilFe=> > luitsl o
=0 i=j11 =0 i=1 =1 520
< ZZ ujl% o < kz 1% 5
i=13j=0

we have the inequality

ix—k
3 lk = w513 ) < ck+ckhn2 lujl% o
Jj=0 Jj=0

which proves our assertion (Eg) since (E;) guarantees the boundedness of
hnz;’*:oHujHQv,? 0

Corollary 3.2. Let v = 23/(1 + ). Then for all n > n, the functions u(") ¢
C (IT*,C ((_?)) and @™ € Lo (IT*,C ((_?)) satisfy the estimates

(E1) /IT Hu(n)(t,.) —a(")(t,.) 2

v, P(t)
(E) /IT* Hﬁ(")(t, )= @™t = hy, -)Him) at < chy,

(E3) /OT*_E

dt < chp,

a4 ey —a™

v, P(t

dt <ce, Ve € (0,Ty),

(Ey) / Hut (t,-) ip(t) dt < ch;t,
(Fs) H ‘Lg (Ir, WEG)) — Ha(n)‘h(zﬂ,wg(c))g

PrOOF: Let ¢ € (0,7%) be an arbitrary point of time, which belongs to the
subinterval (¢;_1,¢;]. Then, owing to formula (3) with p = 2, Corollary 1.14 with
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A =1, and Theorem 2.4 the following holds:

2 2
gk = w5l peey < ellwgjrn = ulls e,
2 2
< cllwjpr = wjlly ) + hnllujr — gt

(18) h . 112
+ chnllujre = w513 ey,

2 2 2
< ellugin = wil13 g + e (14 132+ g il 2) -

Since an arbitrary, but fixed real number ¢ € (0,7%) may be expressed as ¢ =
tp_1 + €, where k = k(n) depends on the subdivision n, and € € R satisfies the
condition 0 < € < hy, in virtue of Lemma 3.1 we obtain

/T*—e
0

ix—k+1 tj—él ix—k tj
2 2
< > / ljsr—1 = sl ppy At + > / Mwjre =il pery At
j=1 tj,1 j=1 tj—E

_(n) N O
a\"M(t+e ) —a\™(t,-) VP de

N ik
2 2
<) / a1 = gl dt+ D / Mk =l ) dt
=t j=1 Jti—¢

j—1

B o€ bty
T c~19(k—1)~hn2/ (14 lug13.) dt+chn2/ (14 lugl3) s
St oltie
<c(k—1)(hy —€) +cke + [k — 1) (hn — €) + €] < ce,
with 9(0):=0 and 9(i):=1VieN, i > 1.

Thus the assertion (E3) is proved. Now, setting k¥ = 1, we sum up (18) for
j=1,...,ix(n). With Lemma 3.1, this gives the estimate

Tx Tx Tx
B2 110112 ey < ehd D w3y + b Y (14wl 2) < e
j=1 j=1 j=1

which, in view of the definition of the functions u(”), ﬂ(”), leads to the assertions
(E1), (E2) and (E4). Since (E5) immediately follows from Lemma 3.1, our proof
is complete. ([
Now the main result of this paper can be formulated:
0o 00 —(n.)) o0
Theorem 3.3. There are subsequences {u("k)}kzl - {u(")}n:m, {u("k)}kzl

C {ﬂ(")}zo:n , for which the following convergence properties hold:

(Co) {a("k)}zozl is weakly convergent in La(Ir,, W4 (G)) to a function u.

33
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(C1) Let px be an arbitrary, but fixed real number with 1 < p, < oo. Then
both subsequences approach the restriction of u € Lay(I1,, W3 (G)) to Pr,
in Lp* (PT* )

(C2) Let px be an arbitrary, but fixed real number with 1 < p, < oco. Then the
subsequences converge in Ly, (I'r,) to u.

The limit function u € La(Ir,, W3 (G)) is a weak solution to the parabolic-elliptic
initial boundary value Problem 1.1 in the sense of Definition 1.7.

PROOF: Our proof is subdivided in two sections. First the asserted convergence
statements will be shown. On the basis of these properties the weak solvability of
our Problem 1.1 can be proved by means of a limit process in the Approximation
Scheme 2.5.

(a) According to Corollary 3.2 (E5) the sequence {ﬂ(”)}zozm is bounded in

Lo(I7,,W3(G)). Thus, there is a subsequence {ﬁ("k)}zil, having the conver-
gence property (Cp).

For simplicity’s sake, the indices {nj};2; will be retained in all the subse-
quences throughout the remainder of this proof.

The derivation of our assertion (Cp) is based on the compactness criterion
formulated in Lemma 1.16. Because of Corollary 3.2 (E3), (Es5) its application
leads to the following statement:

There exists a subsequence {a("k)}zozl which is convergent in L, (Pr,) to a
function v. In view of (Cp) we may show by standard arguments that v is the
restriction of u € La(Ir,, W3 (G)) to Pr,. Due to Corollary 3.2 (Eq) {u("k)}zozl
tends to the same limit u € L, (Pr,).

On the basis of Lebesgue’s theorem (on majorized convergence) these results
can be extended to Ly, (Pr,), 1 < px < o0, as follows: As a consequence of
their convergence in L, (Pr, ), {u("k)}zil and {ﬂ(”k) }zozl contain subsequences
{u(”k)(t, :c)}zozl, {ﬂ(”k)(t, I)}Zozl? which tend to u(t,x) pointwise almost every-
where on Pp, (cf. e.g. [3, 2.8.1 Theorem (ii)]). Moreover, according to (16), the
limit element u belongs to the closed ball Br[Loo(Pr,)]. Now we can see that

the following conditions are satisfied:
DPx

(a) Almost everywhere on Pz, the functions ‘u("k)(t, x) —u(t,z)| ,
D
‘ﬂ("k)(t, x) — u(t, x)‘ are integrable and tend to zero as k — oo.
(¢) According to the formulas (15), (16) they can be bounded by a constant
almost everywhere on Pr, .
Therefore, the application of Lebesgue’s theorem leads to

lim Hu(”k) — u‘
k—oo

P = / lim ‘u("’“)(t,x) - u(t,:c)‘p* dzdt =0,
Pr.

P+ 7PT* k—o0

Px
lim Ha(”k) — u‘ =0.

k—o0

p*va*
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The convergence property (C2) can be derived with the aid of Corollary 1.13
(E1). According to the interpolation inequality which was formulated there, the
functions u (™) ;= ¢(m) — 4,(") satisfy

< ¢ [fulmm) (¢

70,0G

~—

3 )

e »

0
[T ee ), v >,

7P (1)

Vte IT*,

where 7q is an arbitrary, but fixed real number with 1 < 9 < 2(N —1)/(N — 2).
Integrating this formula over I, , we obtain

o [

La(Ir, Ly (0G))

< (|

1-6
Lz(ITMW;(G))> .

2]
2
AL el

Therefore, (Cp) implies that {u("k)}zozl - {u(")}zo:n* approaches u in

La(Ir,, Ly, (0G)), for Corollary 3.2 (E5) guarantees the boundedness of this se-
o
n=ns"
Now these convergence properties may be extended to Ly, (I'7,), 1 < px < o0,
in the same way as in the proof of (C1). On I', (instead of Pr,) we duplicate
the appropriate argumentation which is based on an application of Lebesgue’s

theorem, and obtain (Cz). From (16), it follows that u € Br[Loo(I'1,)].

o

Lo(Ir, W3 (G

quence in Lo (I, , W2 (G)). Analogously, we derive the same result for {a(") }

(b) Now it remains to show that for the subsequence {n;}72, C {n}p2,, , Ap-
proximation Scheme 2.5 approaches the integral relation (4), and therefore, the
function u weakly solves Problem 1.1. For that purpose, we have to derive two
additional convergence properties.

Because of the boundedness of {g(")}zo:n* in Loo(IT,, Lr(0G)), it contains a

subsequence {g(”k)}zozl which tends to a function ¢ € Loo(I,, L(0G)) in the
w*-topology. In order to show that ¢(¢, x) equals g (¢, z, u(t, z)) almost everywhere
on I't,, we consider

/ Hﬁ(")(t — By ) — ult, .)H2
In, 2,0G
g2¢ﬂ”ﬂm@—hmo—amNmﬂf7 w+2”dm—uﬁrn.

Analogously to the formula (19), the first summand of the right hand side may
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be estimated by

/I Hﬁw(t ) — a1, .)H2
T

dt
2,0G

6
< 2 (¢t — by, ) — @M (t, - dty , 6€(0,1).
—"{/IT*H“ (t = hn) =1, 0.1)

Therefore, with consideration to Corollary 3.2 (Eg), and the convergence property
(C1), we have

2

1
P

2
/ Ha(”k)(t — hp, ) — u(t, )H o dt — 0 as ng — oo.

)

Based on our assumptions on the function g, it may be easily shown that the Ne-
myckii operator Gs (v, u)(t, z) := g (v(t), z,u(t, z)) defines a continuous mapping
G« Lo(I1,) x La(T'1,) — L, (T'p,) (cf. [17, Folgerung 1.28] or [18, Proposi-
tion 26.6]). Consequently, the subsequence {g("k)}zozl converges to ¢(-,-,u) in
L,(T'p,). By means of standard arguments this implies that ¢(¢,z) is equal to
g(t,z,u(t,x)) almost everywhere on I'r, , and thus

(20) /1 (3" (t.) = glt - u(t, )it ) | dt— 0, Yo € Li(Ig,, L (9G)).

Moreover, in virtue of the 1 € CO%1(Ip, L(G)) and Corollary 3.2 (E4) where
v > k', we obtain

(0=,

p ¢,y — a(t, - (n) (4. _

S/l |70 =006y [l 0]y 100 Moy
1/2 1/2

< chY {/ flo( dt} — 0, Vo€ La(Ir,, Loo(P(1))).

Now the convergence properties (C1), (Cp), (20), and (21) enable us to carry
out the limit process nj — oo in Approximation Scheme 2.5 for the subsequence
{nr}2 € {n}p,, and test functions v € V(Qr,) N La(IT,, Loo(P(t))). Since
V(Qr,) N La(IT,, Loo(P(t))) is dense in V(Qr,) this shows that the function u
satisfies the integral equation (4), and, therefore, weakly solves the parabolic-
elliptic Problem 1.1.
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Parabolic-elliptic equation with nonlinear boundary condition

Remark 3.4. Uniqueness of a weak solution to Problem 1.1 can be proved by
standard arguments, if, in addition to Assumption 1.6, g(¢,x,&) is Lipschitz-
continuous with respect to (¢,£).

Even without this additional assumption uniqueness can be shown, provided
the solution is more regular than guaranteed by Theorem 3.3. Namely, if u(¢,-)
exists for all t € I, in the sense of traces, then the space V(Qr) of test func-
tions (cf. Definition 1.7) may be extended to V(Q7) by removing the restriction
v(T,z) = 0. Now the basic idea of the proof of uniqueness can be outlined as
follows:

Let u1, ug be weak solutions and v = u; — ug. For almost all ¢y € I7, with
u(to, ) € W4 (G) we solve the Dirichlet problem

(22) —(Yv)t+Av=0 on Q, v=0 on T}y, v(tg, z) = Reu(to, x),

where R.u is an appropriate approximation of u with Rcu|gg = 0. Employing
the resulting weak solution v € V(Qy,) as test function in (4), we arrive at

(1(to, Y ulty, ), Reu(to,-)) = 0.

It follows that u(to, )|p(;,) = 0 as € — 0. In view of the weak maximum principle
Lemma 1.18 we finally obtain u(tg,-) = 0 in G for almost all tg € I, , i.e. we
have uniqueness.

Note that a weak solution to problem (22) exists if 1; is sufficiently small. This
topic shall be addressed in a forthcoming paper of the first author.
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