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On closure of the pre-images of families of mappings

Oleg Zaytsev

Abstract. The closures of the pre-images associated with families of mappings in different
topologies of normed spaces are considered. The question of finding a description of
these closures by means of families of the same kind as original ones is studied. It is
shown that for the case of the weak topology this question may be reduced to finding an
appropriate closure of a given family. There are discussed various situations when the
description may be obtained for the case of the strong topology. An example of a family
is constructed which shows that it is, in general, impossible to find such a description
for this case.
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1. Introduction

Let A =
{

Aχ

}

χ∈Λ be a family of continuous mappings Aχ : X → Y whereX,Y

are normed spaces. For f ∈ Y we set Z (A, f) =
{

u ∈ X | Aχu = f,Aχ ∈ A
}

.
We are interested in the question: Does there exist a family B = {Aθ}θ∈Γ of
continuous mappings Aθ : X → Y such that for every f ∈ Y the set Z (B, f)
coincides with the closure of Z (A, f) in the strong (weak) topology of X?
For u ∈ X let us denote by F (A, u) the set

{

Aχu | Aχ ∈ A
}

. For the case
of the strong topology, assuming that each Aχ maps X onto Y and there exist
constants ν1, ν2 > 0 such that

ν1 ‖u− v‖X ≤
∥

∥Aχu−Aχv
∥

∥

Y
≤ ν2 ‖u− v‖X for all u, v ∈ X, for all χ ∈ Λ,

the above stated question becomes to: Is it possible to find such a family B ⊂
C (X,Y ) that for every u ∈ X the set F (B, u) is equal to the closure of F (A, u)
in the strong topology of Y ?
The prototype of this question is the problem of extension of optimal control

problems with cost functionals which do not depend on controls. Indeed, an
extension of the problem

(1)
J (u)→ min

Au = f, u ∈ X,A ∈ A

is often searched in the form

J (u)→ min

Bu = f, u ∈ X,B ∈ B,
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where B is a larger set of operators (we refer to [7] for a general definition of
extension of an abstract variational problem). The necessity to be in agreement
with the continuity properties of the cost functional J causes special demands on
the properties of B. If J is weakly continuous, then one must seek the closure of
Z (A, f) in the weak topology of X and the extension of (1) is simply the passage
from the set A to the G-closure of the set A. If J is not weakly continuous, then
in the process of extension it is necessary to preserve the strong closure of the set
of feasible states Z (A, f) in the above mentioned sense.
There are many results on extensions of optimal control problems. See, for

instance, [7] and [16] for the case of ordinary differential equations and [10], [11],
[12], [14], [15] for the case of elliptic equations. We also refer to [1], [2], [5], [13]
and references therein for related questions.
It is clear that most of these successful extensions have, as a basis, some ab-

stract properties of the involved families of mappings (defined by state equations
and sets of admissible controls). The purpose of the present paper is to discuss
and systematize these properties for various situations.
Since the source of the problem studied in this paper lies in the field of opti-

mal control problems for ODEs and PDEs, we will deal mainly with families of
mappings between Banach spaces (Sections 4, 5) and we will illustrate our results
by examples of families which are encountered in this field. A part of our results
depends only on some general properties of families of mappings and we formulate
them in the setting of topological spaces (Section 3).

2. Basic notations

The letters X, Y will denote topological spaces. The symbol cl means the
closure operation in X. By C (X,Y) we denote the set of all continuous mappings
of X into Y. The regularity of a topological space X is meant in the sense of
[4]. Let A ⊂ C (X,Y). For x̃ ∈ X, ỹ ∈ Y we define F (A, x̃) = {Ax̃ | A ∈ A} and
Z (A, ỹ) = {x ∈ X | Ax = ỹ, A ∈ A}.
The letters X,Y will always denote real normed spaces. The symbol “→”

(“⇀” and “
∗
⇀”) means to be “strongly convergent to” (“weakly convergent to”

and “weakly ∗ convergent to”, respectively). For M ⊂ X , clsM (clw M) stands
for the strong (weak) closure of M in X . Denote by B (X,Y ) (C(X,Y )) the set
of all continuous linear (continuous) mappings of X with values in Y .
For a multivalued mapping F : X  Y its inverse F−1 : Y  X is defined in

the following way: x ∈ F−1 (y) if and only if y ∈ F (x). The symbol cls F (clw F)
denotes the multivalued mapping defined by (cls F) (x) = cls F (x) ((clw F) (x) =
clw F (x)) for x ∈ X .
Let A be a subset of C (X,Y ). The symbol clu A means the closure of A in

the metric topology of C (X,Y ). The symbol cls A (clw A) denotes the sequential
closure of A in the topology of point-wise convergence in C (X,Y ) when Y is
endowed with strong (weak) topology.
Let R

n denote the n-dimensional Euclidean space and Ω a bounded open subset
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of R
n. C∞

0 (Ω) is the set of all functions with compact support in Ω having all
derivatives of arbitrary order continuous in Ω. Lp (Ω) , 1 ≤ p ≤ ∞ are the usual
Lebesgue spaces of measurable functions f on Ω. H1 (Ω) is the Sobolev space of
functions f ∈ L2 (Ω) such that ∂f/∂xi ∈ L2 (Ω), 1 ≤ i ≤ n, with the usual norm.
H10 (Ω) is the closure of C

∞

0 (Ω) in H
1 (Ω). H−1 (Ω) is the dual space of H10 (Ω).

For f ∈ L1 (Ω), supp f denotes the support of f .

3. The abstract case

Let K ⊂ C (X,Y) be a fixed set and let A ⊂ K. A family B ⊂ C (X,Y) is said
to be a K-extension of A if

(2)
clZ (A, y) = Z (B, y) for all y ∈ Y,

A ⊂ B ⊂ K.

The role of the set K is to select from all continuous mappings those which are
of interest. The mappings fromK usually describe a concrete physical process and
according to the physical laws processes of this type are described by equations
of specific kind. So, from the practical point of view the possible extensions must
be subsets of K.
In this section, we present an abstract result concerning existence of K-exten-

sions of families of mappings. This result becomes possible due to the relative
compactness of the families in the topology of point-wise convergence in C (X,Y).
Let us recall a useful definition. A family A is said to be uniformly continuous

if for every x ∈ X, and every y ∈ Y, for any neighborhood V of y, there exist
neighborhoods U and W of x and y, respectively, such that whenever A ∈ A and
Ax ∈W then AU ⊂ V (cf. [4]).

Proposition 3.1. Let Y be a regular topological space. Let A be a uniformly

continuous family. Let B be a closure of A in the topology of point-wise conver-

gence in C (X,Y).

(i) If A is such that for every x ∈ X the closure of the set F (A, x) is compact
in Y, then

clZ (A, y) ⊂ Z (B, y) for all y ∈ Y.

(ii) If A is such that for any generalized sequence
{

yγ
}

γ∈Θ ⊂ Y, for every

x ∈ X such that yγ = Aγx, Aγ ∈ A for all γ ∈ Θ and yγ → y in Y, there

is a generalized sequence
{

xβ

}

β∈Ξ
⊂ X for which y = Aβxβ , Aβ ∈ A for

all β ∈ Ξ and xβ → x in X, then

Z (B, y) ⊂ clZ (A, y) for all y ∈ Y.
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Proof: Let x ∈ clZ (A, y). Then there are generalized sequences
{

Aγ

}

γ∈Θ ⊂ A

and
{

xγ

}

γ∈Θ such that xγ → x in X and y = Aγxγ for all γ ∈ Θ. Put G (x) =

clF (A, x) for any x ∈ X. The set M =
∏

x∈X
G (x) is compact in the space

Z =
∏

x∈X
Yx endowed with the Tychonoff topology (Yx = Y, x ∈ X). Hence

the generalized sequence
{

zγ
}

, zγ =
{

Aγx
}

x∈X
contains a subsequence

{

zβ
}

which converges to some z ∈M . It is clear that z = {Ax}x∈X
for some mapping

A : X → Y. We have also that Ax = y. It may be seen that A ∈ C (X,Y). Indeed,
let x ∈ X and V ⊂ Y be a neighborhood of Ax. Since Y is regular, there is an
open set V1 ⊂ Y such that Ax ∈ V1 ⊂ V1 ⊂ V . Since A is uniformly continuous,
there exists a neighborhood U of x such that AU ⊂ V .
Let x ∈ Z (B, y). Then Ax = y for some A ∈ B. Since B is a closure of A

in the topology of point-wise convergence in C (X,Y), there exists a generalized
sequence

{

Aγ

}

γ∈Θ
⊂ A such that Aγx → y in Y. From the corresponding

assumption it follows that there exists a generalized sequence
{

xβ

}

β∈Ξ
such that

xβ → x in X and y = Aβxβ , Aβ ∈ A for all β ∈ Ξ. Hence x ∈ clZ (A, y). �

The next theorem is an immediate consequence of Proposition 3.1.

Theorem 3.1. Let Y be a regular topological space. Let K be a non-empty
subset of C (X,Y) which is closed in C (X,Y) equipped with the topology of
point-wise convergence. Let A ⊂ K be a uniformly continuous family. Suppose
that A satisfies assumptions from (i) and (ii) of the previous proposition. Then
the closure of A in C (X,Y) equipped with the topology of point-wise convergence
is the K-extension of A.

Here we would like to point out that the situation described in this theo-
rem corresponds to a great part of optimal control problems for ODEs and for
PDEs where controls appear in boundary conditions and on the right-hand side
([9], [16]). Such problems may be very often described in the following way.
Let X,Y, V be separable normed spaces and L1 : V → Y compact linear

operator. Assume that a family C of operators of X into V is bounded in the
normed space B (X,V ) and L2 ∈ B (X,Y ) is an isomorphism. Consider the
family

A = {L2 + L1C | C ∈ C} .

If there exists 0 < q < 1 such that
∥

∥

∥
L−1
2 L1C

∥

∥

∥
≤ q for any C ∈ C, then the

family B which is a closure of A in the strong operator topology of B (X,Y ) is a
K-extension of A with K = B (X,Y ).

4. Weak and strong closures

First of all, let us investigate the case of weak closure. This can be done by
using the theory of G-convergence of abstract operators ([17]).
Let X be a separable reflexive Banach space and X∗ be its conjugate. Let

ν1, ν2 > 0. Denote by M (ν1, ν2) the class of mappings A : X → X∗ satisfying
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the conditions

(3)
(Ax−Ay, x− y) ≥ ν1 ‖x− y‖2X ,

‖Ax−Ay‖X∗ ≤ ν2 ‖x− y‖X ,

where (·, ·) is duality between X∗ and X . We recall that by Browder-Minty
theorem ([6]) each A ∈M (ν1, ν2) has continuous inverse A

−1 : X∗ → X .
A mapping A : X → X∗ satisfying condition (3) is said to be a G-limit of the

sequence {Ak} ⊂M (ν1, ν̃2) and the sequence {Ak} G-converges to A if for every
x∗ ∈ X∗

A−1
k
x∗ ⇀ A−1x∗ in X.

By using the diagonal process, one can prove

Proposition 4.1. Let A ⊂ M (ν1, ν2) for some ν1, ν2 > 0. Suppose that for
x = 0 the set F (A, x) is bounded in X∗.

(i) If B is a set of all G-limits of G-convergent sequences from A, then B ⊂

M
(

ν1, ν
−1
1 ν22

)

and

clw Z (A, x
∗) = Z (B, x∗) for all x∗ ∈ X∗.

(ii) If C = clw A, then C ⊂M (ν1, ν2) and

clw F (A, x) = F (C, x) for all x ∈ X.

Further, for a family A ⊂M (ν1, ν2) we shall denote by clG A the set of all G-
limits of G-convergent sequences from A. It should be noted that for some classes
of differential operators there are many results which give an explicit description
(by means of coefficients of a differential operator) of aG-closure (see, for instance,
[3], [11], [17] and references therein).
Now let us consider the problem of the strong closure. For this, it is useful to

admit the following definition. Let K ⊂ C (X,Y ) be a fixed set and let A ⊂ K.
A family B ⊂ C (X,Y ) is called a strong K-extension of A if (2) is fulfilled with
cls instead of cl.
Denote by L (ν1, ν2) the class of mappings A : X → Y satisfying the conditions

ν1 ‖x1 − x2‖X ≤ ‖Ax1 −Ax2‖Y ≤ ν2 ‖x1 − x2‖X for all x1, x2 ∈ X,

A maps X onto Y.

As was mentioned in Introduction, the problem of finding a description of
strong closures of sets F (A, x), x ∈ X for family A from L (ν1, ν2) is equivalent
to the analogous problem for sets Z (A, y), y ∈ Y . It is a consequence of the
following proposition.
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Proposition 4.2. Let A ⊂ L (ν1, ν2) for some ν1, ν2 > 0. Let F : X  Y
be a multivalued mapping defined as F (x) = F (A, x) for all x ∈ X . Then

cls F
−1 = (cls F)

−1.

Proof: The proof is straightforward. �

We have

Proposition 4.3. Let A ⊂ L (ν1, ν2) for some ν1, ν2 > 0. If A is sequentially
compact in the topology of point-wise convergence in C (X,Y ), then

cls Z (A, y) = Z (cls A, y) for all y ∈ Y.

If A is sequentially compact in the topology of uniform convergence in C (X,Y ),
then

cls Z (A, y) = Z (clu A, y) for all y ∈ Y.

Proof: Let x ∈ cls Z (A, y). Then there exist sequences {xk} and {Ak} ⊂ A
such that Akxk = y and xk → x in X . Since A is sequentially compact in the
topology of point-wise convergence in C (X,Y ), there is a subsequence of {Ak}
(still denoted {Ak}) which point-wisely converges to some A ∈ C (X,Y ). By
means of the inequality

‖y −Ax‖Y ≤ ‖Akxk −Akx‖Y + ‖Akx−Ax‖Y ,

we get that Ax = y. Hence x ∈ Z (cls A, y).
Let x ∈ Z (cls A, y). Then for some A ∈ cls A we have Ax = y. Since A ∈ cls A,

there is a sequence {Ak} ⊂ A which point-wisely converges to A. Define the
sequence {xk} by the equations Akxk = y. Now from the inequality

(4) ν1 ‖xk − x‖X ≤ ‖Akxk −Akx‖Y = ‖y −Akx‖Y

it follows that xk → x in X , i.e. x ∈ cls Z (A, y).
The proof of the second statement is similar. �

It is easy to see that if X is separable and a family A ⊂ L (ν1, ν2) is such that
the closure of the set F (A, x) is compact in Y for all x ∈ X , then A is sequentially
compact in the topology of point-wise convergence in C (X,Y ). To illustrate this
situation, let us consider an example.
Let X = H10 (Ω) and Y = H−1 (Ω). Let a be an n × n-matrix with entries

from L∞ (Ω) such that

〈a (x) ξ, ξ〉 ≥ νξ2 a.e. x ∈ Ω, for all ξ ∈ R
n (ν > 0) .

Let
{

bαi
}

α∈Λ ⊂ L∞ (Ω), 1 ≤ i ≤ n and let {cα}α∈Λ ⊂ L∞ (Ω) be bounded sets
of functions. Consider a family A consisting of operators Aα : X → Y , α ∈ Λ
defined by

Aαu = − div a∇u+ bαi uxi + c
αu for all u ∈ X,
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where summation over repeated indices is assumed. Let us denote by K the set
of operators of the same kind as Aα (linear second order elliptic operators in
divergence form). Let µ2 be a constant such that µ2 ≤ cα (x) a.e. x ∈ Ω, for
all α ∈ Λ. Then one can see that under some obvious assumptions on Ω and on
the constant µ2 the family A belongs to L (ν1, ν2) for some ν1, ν2 > 0. It is also
clear that the closure of the set F (A, u) is compact in Y for all u ∈ X . Hence the
strong K-extension of the family A may be chosen as its sequential closure in the
strong operator topology of B (X,Y ).
The same reasoning is valid for cases of general second order linear elliptic

systems with the fixed second order terms.
In the case when X and Y are separable reflexive Banach spaces we have

Proposition 4.4. Let A ⊂ L (ν1, ν2) for some ν1, ν2 > 0. Suppose that for x = 0
the set F (A, x) is bounded in Y . Assume also that

(5) clw F (A, x) = cls F (A, x) for all x ∈ X.

Then
cls Z (A, y) = Z (clw A, y) for all y ∈ Y.

Proof: Let x ∈ cls Z (A, y). Then there exist sequences {xk} and {Ak} ⊂ A
such that Akxk = y and xk → x in X . By assumption of the proposition, the
set F (A, x) is bounded in Y for all x ∈ X . By the diagonal process, we can
extract a subsequence of {Ak} (still denoted {Ak}) which point-wisely converges
in C (X,Y ) where Y is considered with the weak topology to some mapping A.
It is also clear that A satisfies

‖Ax1 −Ax2‖Y ≤ ν2 ‖x1 − x2‖X for all x1, x2 ∈ X.

By using the inequality

‖Akx−Akxk‖Y ≤ ν2 ‖x− xk‖X ,

we obtain that Ax = y. This gives that x ∈ Z (clw A, y).
Let x ∈ Z (clw A, y). Then there is A ∈ clw A such that Ax = y. By the

condition (5), there exists a sequence {Ak} ⊂ A such that Akx→ y in Y . Define
the sequence {xk} by the equations Akxk = y. It follows from the inequality (4)
that xk → x in X . In other words, x ∈ cls Z (A, y). �

Condition (5) of this proposition is satisfied if cls F (A, x) is convex in Y for
all x ∈ X . This situation often occurs in optimal control problems for distributed
parameter systems described by the second order elliptic (or parabolic) equa-
tions when controls appear only in the first order terms and the set of admissible
controls is decomposable. There are analogous results when controls appear in
the second order terms and the set of admissible controls is decomposable (see
[11], [12], [15]).
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We remind that a setM ⊂ L1 (Ω) is called decomposable if for all f, g ∈M and
for any characteristic function χ of a measurable subset of Ω, the set M contains
the element χf + (1− χ) g.
The other possible situation is when all sets F (A, x) , x ∈ X are closed in Y . If

this is the case, A is the strong A-extension of itself, provided that A ⊂ L (ν1, ν2)
for some ν1, ν2 > 0. For instance, if

{

aχ

}

χ∈Λ ⊂ L∞ (Ω) is decomposable and

closed in L2 (Ω) and there exist ν1, ν2 > 0 such that ν1 ≤ aχ(x) ≤ ν2 a.e. x ∈ Ω,
for all χ ∈ Λ, then the set

⋃

χ∈Λ

{

d

dx

(

aχ
du

dx

)}

is closed in H−1 (Ω) for any u ∈ H10 (Ω).
The following example shows that a strong K-extension of a given family A ⊂

K for some natural K may not exist.
Let Ω = (0, 1) and aε (x) = (1 + ε)χ + λ

(

ε−1x
)

(1− χ), 1 ≥ ε > 0 where

χ is the characteristic function of the interval (0, 1/2) and λ (x) = 1
10 sinx + 2.

It is clear that aε ∗
⇀ a0 = 2 − χ in L∞ (Ω) as ε → 0. Define the operators

Aε : H10 (Ω)→ H−1 (Ω) as

Aε =
d

dx

(

aε d

dx

)

.

Set A = {Aε}ε∈(0,1]. For u ∈ H10 (Ω) let us denote by G (u) the strong closure of

F (A, u) in H−1 (Ω). If u ∈ H10 (Ω) is such that the set suppu
′ ∩ (1/2, 1) is non-

empty, then G (u) =
{

(

aεu′
)

′
| 0 < ε ≤ 1

}

. It is also clear that
(

a0u′
)′

∈ G (u) if

suppu′ ⊂ [0, 1/2]. Let us assume that there exists the operator

(6) A =
d

dx

(

b
d

dx

)

, b ∈ L∞ (Ω) ,

which is a selection of the multivalued mapping G and Av =
(

a0v′
)′
where v

belongs to C∞

0 (0, 1/2) and the set supp v is non-empty. Put ϕ = v + ψ for

ψ ∈ C∞

0 (1/2, 1) with non-empty set support. From the equalities Aϕ =
(

aεϕ′
)

′
,

ε = ε (ϕ) and Av =
(

a0v′
)′
in H−1 (Ω) it follows that

(

b− a0
)

v′ = c1 = const,

(b − aε)ϕ′ = c2 = const in L
2 (Ω) and

(

aε (x) − a0 (x)
)

v′ (x) = c3 = const a.e.

x ∈ (0, 1/2). Hence εv′ (x) = const a.e. x ∈ (0, 1/2). But this is impossible since
the support of the function v is non-empty. Consequently, we conclude that there
does not exist any family B of the differential operators of the divergence type
such that

G (u) = F (B, u) for all u ∈ H10 (Ω) .

Thus, if K is a class of operators of the form (6) for which 1 ≤ b (x) ≤ 3 a.e.
x ∈ Ω, there does not exist a strong K-extension of A.
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5. Other closures

For a given family A of continuous mappings ofX into Y let us consider various
closures of the graph grF of the multivalued mapping F : X  Y defined as
F (x) = F (A, x) for all x ∈ X .
First of all, we shall construct a family A for which the closure of grF in the

weak topology of X × Y coincides with the whole space X × Y .
Let Ω = (0, 1) and X = H10 (Ω), Y = H−1 (Ω). Let A =

{

Aχ

}

χ∈Λ
where Λ is

the set of all characteristic functions of measurable subsets of Ω and

Aχ =
d

dx

(

(1 + χ)
d

dx

)

, χ ∈ Λ.

Let λ : R → {−1, 1} be the 1-periodic function

λ (t) =

{

1 for t ∈ [0, 1/2),

−1 for t ∈ [1/2, 1).

Set λn (x) = λ (nx), χn = (1 + λn) /2 and un (x) =
∫ x
0 λ

n (t) dt, n = 1, 2, . . . . It

is clear that un ⇀ 0 in H10 (Ω). On the other hand, (1 + χ
n) dun

dx
⇀ 1
2 in L

2 (Ω).

Denote by ωm,k the intervals
(

k
m ,

k+1
m

)

, k = 0, 1, . . . ,m − 1; m = 1, 2, . . . . Put

vn
m,k = χm,ku

l(m,n), k = 0, 1, . . . ,m − 1; m,n = 1, 2, . . . where l (m,n) = mn

and χm,k is the characteristic function of ωm,k. Hence v
n
m,k ⇀ 0 in H

1
0 (Ω) and

(1 + χn)
dvn

m,k

dx
⇀ 1
2χm,k in L

2 (Ω) as n → +∞. Thus, we see that the element

(0, f) belongs to the weak closure of grF for f = dg
dx when g is equal to a simple

function constructed by means of the intervals ωm,k. Since the strong closure

of the set consisting of such f coincides with H−1 (Ω), the weak closure of grF
coincides with X × Y .
For a multivalued mapping F , it is interesting to consider repeated closures of

grF , i.e. when, for instance, one first considers weak or strong closure of F−1(y)
for every y ∈ Y and obtains a multivalued mapping G, then one considers weak
or strong closure of G(x) for every x ∈ X . The results concerning such closures
are summarized in Proposition 5.1.
Define multivalued mappings Gi, G̃i, 1 ≤ i ≤ 4 setting for every x ∈ X

G1 (x) =
(

clw (clw F)−1
)

−1
(x) , G̃1 (x) = clw

(

clw F−1
)

−1
(x) ,

G2 (x) =
(

cls (clw F)−1
)

−1
(x) , G̃2 (x) = cls

(

clw F−1
)

−1
(x) ,

G3 (x) =
(

clw (cls F)
−1

)

−1
(x) , G̃3 (x) = clw

(

cls F
−1

)

−1
(x) ,

G4 (x) =
(

cls (cls F)
−1

)

−1
(x) , G̃4 (x) = cls

(

cls F
−1

)

−1
(x) .

If Y = X∗ and X is a separable reflexive Banach space we have
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Proposition 5.1. Let A ⊂ M (ν1, ν2). Suppose that for x = 0 the set F (A, x)
is bounded in X∗. Then for every x ∈ X

G1 (x) = F (clG clw A, x) , G̃1 (x) = F (clw clG A, x) ,

G2 (x) = F (clw A, x) , G̃2 (x) = F (clG A, x) ,

G3 (x) = F (clG A, x) , G̃3 (x) = F (clw A, x) ,

G4 (x) = cls F (A, x) , G̃4 (x) = cls F (A, x) .

Proof: We will prove only that G1 (x) = F (clG clw A, x) for any x ∈ X . The
other equalities can be proved in a similar manner.
Denote by H the multivalued mapping defined as H (x) = F (clw A, x) for

all x ∈ X . By Proposition 4.1, clw F (A, x) = H (x) for every x ∈ X and
clw H−1 (y) = clw Z (clw A, y) = Z (clG clw A, y) for every y ∈ Y . Hence G1 (x) =
F (clG clw A, x) for any x ∈ X . �
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[6] Gajewski H., Gröger K., Zacharias K., Nichtlineare Operatorgleichungen und Operatordif-

ferentialgleichungen, vol. 38 of Mathematische Lehrbücher und Monographien, Akademie-
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