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ωH-sets and cardinal invariants

Alessandro Fedeli

Abstract. A subset A of a Hausdorff space X is called an ωH-set in X if for every open
family U in X such that A ⊂

S
U there exists a countable subfamily V of U such that

A ⊂
S
{V : V ∈ V}. In this paper we introduce a new cardinal function tsθ and show

that |A| ≤ 2tsθ(X)ψc(X) for every ωH-set A of a Hausdorff space X.
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All spaces considered in this paper are Hausdorff. We refer the reader to
[8], [10] and [11] for notations and details on cardinal functions. Our approach to
elementary submodels follows that of [15] (see also [5], [6], [9]). As usual ψ(X) and
χ(X) denote the pseudocharacter and the character of the space X . A Urysohn
space is a space in which distinct points have disjoint closed neighbourhoods.
Moreover, for any set S, we denote by Pm(S) the collection of all subsets of S
whose cardinality is not greater than m.
A subset A of a space X is called an H-set (ωH-set) in X if for every open

family U in X such that A ⊂
⋃
U there exists a finite (countable) family V ⊂ U

satisfying A ⊂
⋃
V . A space X is said to be quasi Lindelöf if for every open cover

U of X there is a countable subfamily V of U satisfying X =
⋃
{U : U ∈ V}. It is

clear that every H-set in a space X and every quasi Lindelöf space X is an ωH-set
in X .
Let x ∈ X , a closed pseudobase for x in X is a family V of open neighbourhoods

of x in X such that
⋂
{V : V ∈ V} = {x}. The closed pseudocharacter of X ,

denoted by ψc(X), is the smallest infinite cardinal κ such that every point has a
closed pseudobase of cardinality not greater than κ.
The θ-closure of a subset A of a space X , denoted by clθ(A), is the set of all

points x ∈ X such that U ∩A 6= ∅ for every open neighbourhood U of x ([13]).
For any space X , tsθ(X) will denote the smallest infinite cardinal κ such that

for every C ⊂ X and any x ∈ clθ(C) there is S ⊂ C with |S| ≤ κ, x ∈ clθ(S) and
|clθ(S)| ≤ 2

κ (see [12] for related concepts).

Remark 1. If X is a Urysohn space, then tsθ(X)ψc(X) ≤ χ(X). Set χ(X) = κ
and for every x ∈ X let B(x) be a base for X at the point x such that |B(x)| ≤ κ.
Now let C ⊂ X and p ∈ clθ(C), for every B ∈ B(p) take a point xB ∈ B ∩ C
and set S = {xB : B ∈ B(p)}. Clearly |S| ≤ κ and p ∈ clθ(S). Now let us show
that |clθ(S)| ≤ 2

κ. Since X is a Urysohn space, it follows that
⋂
{clθ(B ∩ S) :
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B ∈ B(x)} = {x} for every x ∈ clθ(S). Set G(x) = {B ∩ S : B ∈ B(x)} and
let ψ : clθ(S) → Pκ(P(S)) be the map defined by ψ(x) = G(x). Since ψ is
injective, it follows that |clθ(S)| ≤ |Pκ(P(S))| ≤ 2κ. Therefore tsθ(X) ≤ κ and
tsθ(X)ψc(X) ≤ χ(X).

Theorem 2. If A is an ωH-set of the space X , then |A| ≤ 2tsθ(X)ψc(X).

Proof: Let tsθ(X)ψc(X) = κ, let τ be the topology on X , and for every x ∈ X
let B(x) be a closed pseudobase for x in X such that |B(x)| ≤ κ.
Let f : X → P(τ) be the map defined by f(x) = B(x) for every x ∈ X . Now let

T = 2κ ∪{A,X, τ, 2κ, f} and take an elementary submodelM such that T ⊂ M,
|M| = 2κ, and which reflects enough formulas so that the following conditions
are satisfied:

(i) C ∈ M for every C ∈ Pκ(M);
(ii) B(x) ∈ M for every x ∈ X ∩M;
(iii) if C ⊂ X and C ∈ M, then C, clθ(C) ∈ M;
(iv) if A ∈ M, then

⋃
A ∈ M;

(v) if C,D are subsets of X such that C ∩ M ⊂ D and C,D ∈ M, then
C ⊂ D;

(vi) if E ∈ M and |E| ≤ 2κ, then E ⊂ M.
Observe also that by (ii) and (vi) B(x) ⊂ M for every x ∈ X ∩M.
Now let us show that clθ(X ∩ M) = X ∩ M. Let x ∈ clθ(X ∩ M), since

tsθ(X) ≤ κ, there is a subset S of X ∩ M such that |S| ≤ κ, x ∈ clθ(S) and
|clθ(S)| ≤ 2

κ. Since S ∈ M (by (i)), it follows by (iii) that clθ(S) ∈ M. So by
(vi) clθ(S) ⊂ M and x ∈ X ∩M.

The last step is to show that A ⊂ X ∩M (and hence |A| ≤ 2tsθ(X)ψc(X)).
Suppose there is a point p ∈ A \ M. For every x ∈ A ∩ M let Ux ∈ Bx

(observe that Ux ∈ M) such that p /∈ Ux, and for every x ∈ A \ M let Ux be
an open neighbourhood of x such that Ux ∩ M = ∅. Since A is an ωH-set in
X , it follows that there is a C ∈ Pω(A) such that A ⊂

⋃
{Ux : x ∈ C}. Now

let G =
⋃
{Ux : x ∈ C ∩ M}. If y ∈ A ∩ M, then there is some x ∈ C such

that y ∈ Ux; hence Ux ∩ M 6= ∅ and x ∈ C ∩ M. Therefore y ∈ Ux ⊂ G and
A ∩M ⊂ G.
Now Ux ∈ M for every x ∈ C∩M (by (iii)), therefore {Ux : x ∈ C∩M} ⊂ M.

By (i) it follows that {Ux : x ∈ C ∩M} ∈ M. Hence G ∈ M (by (iv)).
Therefore, by (v), it follows that A ⊂ G. Since p /∈ G, we have a contradiction.

�

Corollary 3 (see [1]). If A is an H-set in the Urysohn spaceX , then |A| ≤ 2χ(X).

Corollary 4 (see [2]). If X is a quasi Lindelöf Urysohn space, then |X | ≤ 2χ(X).

Example 5. Let τ be the euclidean topology on R and let X be R with the
topology σ = {V \ C : V ∈ τ, C ∈ Pω(R)}. X is a Urysohn hereditarily Lindelöf
space (so, a fortiori, every subset ofX is an ωH-set inX). Observe that ψc(X) = ω
and χ(X) = c. Now let us show that tsθ(X) = ω. First note that clσ(V \ C) =
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clσ(V ) for every V \ C ∈ σ. In fact, let x ∈ clσ(V ) and take W \ K ∈ σ such
that x ∈ W \ K. Since (W \ K) ∩ V 6= ∅, it follows that |(W ∩ V ) \ K| = c
(observe that W ∩ V is a non-empty open set of the euclidean line). Therefore
∅ 6= (W ∩ V ) \ (K ∪ C) = (W \ K) ∩ (V \ C), and x ∈ clσ(V \ C). Now let
B ⊂ R and x ∈ clθ(B). Set Vn = (x−

1
n , x+

1
n) for every n ∈ N and take a point

xn ∈ clσ(Vn)∩B. The set S = {xn : n ∈ N} is a countable subset of B such that
|clθ(S)| ≤ c. It remains to show that x ∈ clθ(S). Let G = V \ C ∈ σ such that
x ∈ G and let n be such that Vn ⊂ V . Then xn ∈ clσ(Vn) ⊂ clσ(V ) = clσ(V \C) =

clσ(G) and clσ(G)∩S 6= ∅. So x ∈ clθ(S). Therefore |X | = 2tsθ(X)ψc(X) < 2χ(X).

Recently A. Bella and I.V. Yaschenko have shown that “Urysohn” cannot be
omitted in the above corollaries ([3]).

Remark 6. A space X is H-closed if every open cover of X has a finite subfamily

whose union is dense in X . It is worth noting that |X | ≤ 2ψc(X) for every H-closed

space X ([7]). Moreover there is an H-closed space X such that |X | > 22
ψ(X)

([4]).

Question 7. Let A be an H-set in the Urysohn space X . Is it true that |A| ≤

2ψc(X)?

Remark 8. Observe that it is not possible to obtain a bound for the cardinality
of an ωH-set in terms of its character, in fact there are discrete H-sets of any
cardinality (see, e.g., [1] and [4]).
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