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Multiplication of distributions

Volker Boie

Abstract. Multiplication by harmonic representations of distributions, introduced by Li
Banghe, is an extension of a certain product by radial (rotationally symmetric) mollifiers
and therefore a strict extension of the Kamiński and Colombeau product.

Keywords: distribution products, multiplication, harmonic representations, Kamiński
product

Classification: 46F10

There exist several definitions of a multiplication of distributions. A popular
approach to define a product for a pair of distributions is to approximate them by
smooth functions, multiply these, and pass to a limit. Approximation is usually
done by convolution with δ-sequences, i.e. sequences or nets of smooth functions,
converging to the δ-distribution. The limit process should be related to the usual
limit in distribution spaces, if the resulting object is required to be a distribution.
Since most of these approaches extend the multiplication of continuous functions,
regarded as distributions, these products cannot be defined for all pairs of distri-
butions due to a well-known result of Schwartz [14]. The purpose of this paper
is to give a reasonable enlargement of the definition area of some of these partial
mappings, namely of products equivalent to the so-called Kamiński or Colombeau
product.
In Section 1, multiplication by harmonic representations of distributions is de-

fined, using only arguments of standard analysis. This localizable multiplication,
introduced by Li Banghe in [8], [9] with the aid of methods of non-standard anal-
ysis, is in the one-dimensional case equivalent to the Tillmann product (see [16])
which is defined by analytic representations, but does not have a localization
property in the multi-dimensional case.
Section 2 contains a proof, that multiplication by harmonic representations

is an extension of a certain product defined only with radial δ-sequences and,
therefore, is a strict extension of the Kamiński product by a given distinguishing
example. This is an extended positive answer to a problem posed by Oberguggen-
berger in [13].

Throughout this paper, Ω denotes a non-empty, open subset of Rn; n ∈ N\{0}
means the dimension. Elements of Rn+1 are denoted by (x, y) for x ∈ Rn and

y ∈ R, a lower index always refers to the last coordinate, for example Rn+1
>0 =

{(x, y) | x ∈ Rn, y > 0}. E(Ω) (resp. D(Ω)) is the space of C∞-functions in Ω
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(with compact support) with its usual topology, where the letter Ω is sometimes
omitted in case of Ω = Rn. The dual space D′(Ω), equipped with the strong
topology, denotes the space of distributions; E ′(Ω) is identified with the space of
distributions with compact support. The mapping Dis:L1loc −→ D′ denotes the
usual embedding of locally integrable functions into the distribution space.

1. Multiplication by harmonic representations

1.1 Definition. A harmonic representation of S ∈ D′(Rn) in Ω is a harmonic

function σ:Rn+1
>0 −→ C which satisfies

(1.1) lim
y→0+

∫

Ω
σ(x, y)ϕ(x) dx = S(ϕ̄)

for all ϕ ∈ D(Ω), where ϕ̄ denotes the trivial extension of ϕ to Rn.

Since D′(Ω) is a (semi-)Montel space, it is equivalent for the existence of the
limes (1.1) to require limy→0+ Dis σ(·, y) = S |Ω in D′(Ω). Hence harmonic re-

presentations of distributions (in Rn) are solutions of the Dirichlet problem for

the upper half-space Rn+1
>0 with distributional boundary conditions. As in the

classical case, the Poisson kernel P (x, y) := py(x) with

(1.2) py(x) :=
2

ωn+1

y

(y2 + ‖x‖2)
(n+1)/2

((x, y) ∈ Rn+1
6=0 )

(ωn+1 denotes the volume of the surface of the unit sphere in Rn+1) plays an
important rôle. P is harmonic with

∫
py = y−n

∫
p1(·/y) = 1 for all y 6= 0. One

proves by induction over κ ∈ Nn

∂κpy(x) = y
−n

∑

|κ |
2
≤i≤|κ|
i∈N

1
(‖x‖2

y2
+ 1

)n+1
2
+i

·
ai(x)

y2i

with some homogeneous polynomials ai of degree 2i − |κ|. Hence ∂κpy ∈

C∞(Rn) ∩ L1(Rn) for all y 6= 0 and κ ∈ Nn. Since |ai(x)/y
2i| ≤ Cκy

−|κ|(1 +

‖x‖2/y2)i−|κ|/2, it follows that

(1.3) |∂κ
x (y

−(n+1)p1(x/y))| ≤ Cκ(‖x‖
2 + y2)−(n+1+|κ|)/2

is bounded away from zero, independently of y > 0.
The following proposition ensures the existence of harmonic representations of

a large class of distributions, in particular of those with compact support, hence
for each distribution a ‘local harmonic representation’.
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1.2 Proposition. Let S ∈ D′(Rn) with S =
∑

|κ|≤k ∂
κDis fκ, fκ ∈ L1(Rn).

Then
σ(x, y) := (S ∗ py)(x) =

∑

|κ|≤k

(fκ ∗ (∂κpy))(x)

for (x, y) ∈ Rn+1
6=0 is a harmonic representation of S with σ(x, y) = −σ(x,−y).

σ can be continued as a harmonic function to (Rn \ suppS) × {0} satisfying
limy→0+ σ(x, y) = 0 for x /∈ suppS.

If S = Dis f , f ∈ L1, this is immediate by using the reflexion principle of
harmonic functions. From

∫

ϕ(x)∂κ
x σ(x, y) dx = (−1)

|κ|
∫

σ(x, y)∂κϕ(x) dx

y→0+
−−−−→ (−1)|κ|S(∂κϕ) = ∂κS(ϕ).

for ϕ ∈ D one concludes, that a derivated harmonic representation of a certain
distribution is again a harmonic representation of the derivated distribution.
In general, the convolution S ∗ py is not defined. One may use a partition of

unity and the real analyticity of harmonic functions for a constructive proof (Liu
Shangping [11]), or a general existence result for certain hypoelliptic operators
(Langenbruch [7]) to obtain the following theorem.

1.3 Theorem. For every S ∈ D′(Rn) there exists a harmonic representation σ,
harmonic in Rn+1 \(suppS×{0}), and satisfying σ(x, y) = −σ(x,−y) for (x, y) ∈

Rn+1
6=0 .

If σ1 and σ2 are harmonic representations of a distribution S ∈ D′(Rn), then
σ1 − σ2 is a harmonic representation of the zero distribution, and even an entire
harmonic function:

1.4 Theorem. For each harmonic representation σ of the zero distribution in Ω
there exists a harmonic continuation σ̄ of σ onto Ω̄ := (Ω×{0})∪Rn+1

6=0 satisfying

σ̄(x, y) = −σ̄(x,−y) for (x, y) ∈ Ω× R.

1.5 Corollary (Li Banghe, Li Yaqing [10]). Two harmonic representations of a
distribution differ only by a function σ, which is harmonic in Rn+1 and satisfies

σ(x, y) = −σ(x,−y) and in particular σ(x, 0) = 0. �

Proof of Theorem 1.4: Let Ω0 := Ω× (−∞,∞). The linear functional

S(ϕ) :=

∫ ∞

0

∫

Ω
σ(x, y)ϕ(x, y) dx dy −

∫ 0

−∞

∫

Ω
σ(x,−y)ϕ(x, y) dx dy

is well-defined for ϕ ∈ D(Ω0): The inner integrals are continuous functions with
limit 0 for y → 0 (by assumption), because {ϕ(·, y) | y ∈ R} is bounded in D(Ω).
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A similar argument establishes the continuity of S on D(Ω0), since all elements
of a converging sequence have their support in one compact subset of Ω0. From
Green’s formula follows for all ε > 0
∫ ∞

ε

∫

Ω
σ(x, y)∆x,yϕ(x, y) dx dy =

∫

Ω
ϕ(x, ε)σy(x, ε) dx −

∫

σ(x, ε)ϕy(x, ε) dx.

As above, the second integral converges to 0 for ε→ 0+. One obtains

S(∆ϕ) = lim
ε→0+

∫

Ω
σy(x, ε)

(
ϕ(x, ε)− ϕ(x,−ε)

)
dx = 0

by Lebesgue’s Theorem, since the essential integration domain is bounded. Hence
∆S = 0 in D′(Ω0).
By Weyl’s Lemma for distributions (see Schwartz [15, p. 216]), there is a har-

monic function σ0 on Ω0 with S = Dis σ0. It follows σ0 = σ in Ω× (0,∞), resp.
σ0(x, y) = −σ(x,−y) for (x, y) ∈ Ω× (−∞, 0) by continuity. σ0 can be continued

by σ(x, y) on Rn+1
>0 and by −σ(x,−y) on Rn+1

<0 to a function σ̄, harmonic on Ω̄,
which completes the proof. �

Denoting the vector space of harmonic representations in D′(Rn) by Hn and
the subspace of harmonic representations of the zero distribution by H0, there is
an algebraic isomorphism

D′(Rn) ∼= Hn�H0

which may by extended topologically (see Langenbruch [7]). This motivates

1.6 Definition. Let S, T ∈ D′(Rn) with harmonic representations σ and τ . Their
product by harmonic representations is defined by

(1.4) S · T := lim
y→0+

Dis
(
σ(·, y)τ(·, y)

)
,

if this limit exists in D′(Rn).

Again, due to the Montel property, it is equivalent to require the existence of
the weak limit in (1.4), that is

(1.5) S · T (ϕ) := lim
y→0+

∫

σ(x, y)τ(x, y)ϕ(x) dx

for all ϕ ∈ D(Rn).
This product has been introduced by Li Banghe in [8] for n = 1 and for

higher dimensions in [9] applying methods of non-standard analysis. The resulting
product was defined for all pairs of distributions, but the range was extended
to functions, mapping from D′(Rn) into a non-standard model of the complex
numbers.
The product (1.4) is independent from the chosen harmonic representation:
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1.7 Theorem. Let σ1, σ2 and τ1, τ2 be harmonic representations in Ω of distri-
butions S, T ∈ D′(Rn) respectively. Then

∫

Ω
σ1(x, y)τ1(x, y)ϕ(x) dx −

∫

Ω
σ2(x, y)τ2(x, y)ϕ(x) dx

y→0+
−−−−→ 0

holds for every ϕ ∈ D(Rn) with suppϕ ⊆ Ω.

Proof: Let (yi)i ∈ R>0
N with (yi)i → 0. From Theorem 1.4 one infers the

existence of harmonic functions σ, τ on Ω̄ = (Ω×{0})∪Rn+1
6=0 with σ(x, 0) = 0 =

τ(x, 0) for all x ∈ Ω as well as σ = σ1 − σ2 and τ = τ1 − τ2. For every x ∈ Ω and
i ∈ N holds

∫

Ω
σ1(x, yi)τ1(x, yi)ϕ(x) dx −

∫

Ω
σ2(x, yi)τ2(x, yi)ϕ(x) dx =

∫

Ω
σ(x, yi)τ(x, yi)ϕ(x) dx +

∫

Ω
σ(x, yi)τ2(x, yi)ϕ(x) dx+

∫

Ω
σ2(x, yi)τ(x, yi)ϕ(x) dx.

The first summand converges to 0 for i→ ∞ due to the continuity of σ and τ . Fur-
thermore, the sequence (σ(·, yi)ϕ |Ω)i converges to 0 in D(Ω). Since Dis(τ2(·, yi))

converges to T|Ω in D′(Ω), the second summand (as well as the third one) con-

verges for i→ ∞ to T (0) = 0.
�

Obviously, multiplication by harmonic representations is commutative and bi-
linear. In particular,

lim
y→0+

∫

Ω
σ(x, y)τ(x, y)ϕ(x) = 0

holds for each harmonic representation σ of the zero distribution in Ω and any
harmonic representation of a distribution T in Ω, since this is true for the special
representation σ ≡ 0. This implies a localization property: If distributions S1, S2
coincide in Ω, the product S1 · T exists locally (i.e. the limit in (1.5) exists for
all ϕ ∈ D(Ω)), if and only if this is true for S2 · T , in which case both products
coincide. This property implies the validity of the ‘support formula’ supp(S ·T ) ⊆
suppS ∩ suppT (see Oberguggenberger [13, p. 38]). Presuming the existence of
harmonic representations of distributions, an equivalent definition for the product
(1.4) can be given:

1.8 Corollary. S · T exists if and only if for all ϕ ∈ D(Rn) there is a function
χ ∈ D(Rn), χ ≡ 1 on a neighbourhood of suppϕ, such that

(1.6)

∫
(
(χS) ∗ py

)(
(χT ) ∗ py

)
ϕ
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converges for y → 0+. In this case, the limit (1.6) is independent of χ and equals
S · T (ϕ). �

Historically, multiplication by harmonic representations arose from the inade-
quacy of multiplication by analytic representations in the multidimensional case.
An analytic representation of a distribution S ∈ D′(R) is a function σ, analytic
in C \ R, satisfying

lim
y→0+

Dis
(
σ(x + iy)− σ(x− iy)

)
= S

in D′(R). If σ is an analytic representation of a distribution S, the function
σ̄(x, y) := σ(x+ iy)− σ(x− iy) for (x, y) ∈ R×R 6=0 is a harmonic representation
of S. Conversely, for a harmonic representation σ of S with harmonic conjugate
τ defined by

τ(x, y) :=

∫ y

y0

∂σ

∂x
(x, t) dt−

∫ x

x0

∂σ

∂y
(t, y0) dt, (x, y) ∈ R × R 6=0,

(where (x0, y0) is a fixed element of R × R 6=0), the function σ̄

σ̄(x+ iy) :=

{
1
2 (σ(x, y) + iτ(x, y)) for y > 0

1
2 (−σ(x,−y) + iτ(x,−y)) for y < 0,

is analytic in C\R and σ̄(x+ iy)− σ̄(x− iy) = σ(x, y) holds for y > 0. Hence σ̄ is
an analytic representation of S. Therefore, the corresponding product by analytic
representations

S · T := lim
y→0+

Dis
(
(σ(x + iy)− σ(x− iy))(τ(x + iy)− τ(x − iy))

)
,

of distributions from D′(R) is equivalent to (1.4). Multiplication defined by ana-
lytic representations was introduced by Tillmann [16], and can be generalized to
higher dimensions, where analytic representations are analytic functions in (C \
R)n, but then with the disadvantage of not having the localization property: Itano
has shown in [2], that for n = 2 the product of two Dirac measures of different
points is not the zero distribution, hence the support formula as a consequence of
the localization property is not valid.

2. Some extension results

2.1 Definition. A sequence (σi)i ∈ D(Rn)N with σi ≥ 0 and
∫
σi = 1 for all

i ∈ N satisfying

(2.1) ∃σ ∈ D(Rn)∃ (si)i ∈ (0,∞)
N : (si)i → 0+ : σi = s

−n
i σ(·/si)
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is called a model sequence. A model sequence is called radial, if the defining
function σ in (2.1) is a radial function.

Herein, a function f is radial (or rotationally symmetric), if it is invariant
under all orthogonal transformations of Rn, or equivalently, if there is a function
g satisfying f(x) = g(‖x‖) for all x ∈ Rn.
Model sequences are special types of mollifiers, namely δ-sequences, as they

converge as distributions to the δ-distribution. They were introduced by Kamiń-
ski in [6] in context with the following definition:

2.2 Definition. The Kamiński product S ⊙ T of S, T ∈ D′ is defined by

(2.2) lim
i→∞

Dis
(
(S ∗ σi)(T ∗ σi)

)
,

if this limes exists in D′ for all model sequences (σi)i and does not depend on the
chosen sequence.

The Kamiński product is sometimes also called Colombeau product due to a
result of Jeĺınek [5], since it exists for S, T ∈ D′ if and only if the product of S
and T in certain Colombeau algebras admits a so-called associated distribution,
namely S⊙T . It is well-known, that this partial multiplication is a generalization
of the multiplication of continuous functions, regarded as distributions, of the
multiplications E ·D′ and OM ·S′, and furthermore Lp ·Lq, 1/p+1/q = 1, or even

more general, of the Sobolev spaces W k,p ·W−k,q which are based on duality.
The Kamiński product for S, T ∈ D′ exists if and only if

(2.3) lim
i→∞

1

2
Dis

(
(S ∗ σi)(T ∗ τi) + (S ∗ τi)(T ∗ σi)

)

exists in D′ for all model sequences (σi)i, (τi)i and does not depend on the chosen
sequences, in which case it equals S⊙T . This can be obtained by using arguments
of Wawak [17] and Jeĺınek [4]; for a complete proof see [1]. Furthermore, one may
enlarge the class of mollifiers in (2.2) or (2.3) by requiring only
(2.4)

suppσi → {0} and ∀κ ∈ Nn ∃Cκ > 0 ∀ i ∈ N :

∫

‖x‖|κ||∂κσi(x)| dx ≤ Cκ

instead of (2.1).

2.3 Definition. The radial product S
rad
⊙ T of S, T ∈ D′ is defined by

(2.5) lim
i→∞

1

2
Dis

(
(S ∗ σi)(T ∗ τi) + (S ∗ τi)(T ∗ σi)

)

if this limit exists in D′ for all radial model sequences (σi)i, (τi)i and does not
depend on the chosen sequences.



316 V.Boie

Equivalently, one may require the existence of the weak limit in (2.5), which
in view of the support properties of the delta sequences implies the localization
property noted in Section 1. The same applies obviously for the Kamiński product.
From the preceding discussion, it follows that the radial product is an extension

of the Kamiński product. At least in the multidimensional case, the contrary is
not true:

2.4 Example. For S := DisH ⊗ δ ⊗ · · · ⊗ δ
︸ ︷︷ ︸

(n−1)-times

and T := δ ⊗ DisH ⊗ · · · ⊗DisH
︸ ︷︷ ︸

(n−1)-times

,

where n ≥ 2 and H denotes the Heaviside function on R,

lim
i→∞

Dis
(
(S ∗ σi)(T ∗ τi)

)
= 2−n δ ⊗ · · · ⊗ δ

︸ ︷︷ ︸

n-times

holds for all radial model sequences (σi)i, (τi)i, but the Kamiński product S ⊙ T
is not defined.

Proof: Let σi := s−n
i σ(·/si) and τi := t−n

i τ(·/ti) for radial functions σ, τ ∈ D

with
∫
σ = 1 =

∫
τ . Suppose (si/ti)i

i→∞
−−−→ r ∈ R. For ϕ ∈ D one has

Dis
(
(S ∗ σi) · (T ∗ τi)

)
(ϕ) =

=

∫

Rn

∫ ∞

0
· · ·

∫ ∞

0
σi(x1, . . . , xn) · τi(x1 + y1, x2 − y2, . . . , xn − yn)·

· ϕ(x1 + y1, x2, . . . , xn) dy1 . . . dyn d(x1, . . . , xn).

By substitution
(x1

si
, . . . , xn

si
, y1

ti
, . . . , yn

ti

)
7→ (x1, . . . , xn, y1, . . . , yn) this equals

∫

Rn

∫ ∞

0
· · ·

∫ ∞

0
σ(x1, . . . , xn) · τ(x1

si
ti
+ y1, x2

si
ti

− y2, . . . , xn
si
ti

− yn)·

·ϕ(six1 + tiy1, six2, . . . , sixn) dy1 . . . dyn d(x1, . . . , xn),

an integral, which converges to ϕ(0, . . . , 0) · I for i→ ∞, where

I :=

∫

Rn

∫ ∞

0
· · ·

∫ ∞

0
︸ ︷︷ ︸

n-times

ψ(x1, . . . , xn, y1, . . . , yn) dy1 . . . dyn dx1 . . . dxn

and

ψ(x1, . . . , xn, y1, . . . , yn) := σ(x1, . . . , xn)τ(rx1 + y1, rx2 − y2, . . . , rxn − yn).

Since σ and τ are radial,

I + I =

∫

Rn+1

∫ ∞

0
· · ·

∫ ∞

0
︸ ︷︷ ︸

(n−1)-times

ψ(x1, . . . , xn, y1, . . . , yn) dy1 . . . dyn dx1 . . . dxn
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results from the substitution (x1, y1) 7→ −(x1, y1). Therefore,

2nI =

∫

R2n
ψ =

(∫

σ
)

·
(∫

τ
)

= 1

is straightforward. If (ti/si)i converges in R, a similar argumentation applies.
Now, the assumption that

lim
i→∞

Dis
(
(S ∗ σi)(T ∗ τi)

)
(ϕ) 6= 2−nϕ(0, . . . , 0)

for at least one function ϕ ∈ D(Rn) yields the existence of a strictly increasing

sequence (ij)j ∈ NN such that no subsequence of
(
Dis

(
(S ∗ σij )(T ∗ τij )

)
(ϕ)

)

j

converges to 2−nδ(ϕ). But at least one of the non-negative sequences (sij/tij )j
and (tij/sij )j has a converging subsequence, which generates a contradiction.
Finally, the Kamiński product S ⊙ T is not defined, because of the fact that

the integral I depends on the choice of the non-radial functions σ = τ in (2.3)
taking (si/ti)i → 0. �

Referring to the multiplication by harmonic representations, the Poisson kernel
py as a locally regularizing element does not have compact support. Therefore,
from the existence of the Kamiński product one cannot infer directly the existence
of the product by harmonic representations. However, Oberguggenberger [12]
has shown that in the one-dimensional case the equivalent Tillmann product by
analytic representations extends the Kamiński product. In the part of his proof
concerning the local existence of this product, it suffices to take distributions
having compact support, in particular finite order, and to construct a δ-net (σε)ε
satisfying (2.4) for ε > 0, which approximates the Poisson kernel pε uniformly on
R up to a certain derivation order.
In [13, § 27] Oberguggenberger conjectured, that in any dimension n ∈ N≥1

the multiplication by harmonic representations extends the Kamiński product.
In the following it is proved that multiplication by harmonic representations even
extends the radial product.
In the sequel, for S, T ∈ E ′(Rn), ϕ ∈ D, ε, δ > 0 and σ, τ ∈ C∞ let F(ε,δ)(σ, τ)

denote

(2.6)
1

2

∫ (

(S ∗ σε) · (T ∗ τδ) + (S ∗ τδ) · (T ∗ σε)
)

(x)ϕ(x) dx

=
1

2

(
Sy ⊗ Tz

)(
∫

(
σε(x− y)τδ(x − z) + σε(x− z)τδ(x− y)

)
ϕ(x) dx

)

(equality follows from Fubini’s theorem), where ψα := α−nψ(·/α) for ψ ∈ C∞

and α > 0.

2.5 Remark. The bilinear form F(ε,δ) is separately continuous on E×E . For λ > 0,

τ ∈ C∞ ∩ L1 and a bounded subset B of E ,

{F(ε,δ)(σ, τ) | ε > λ, δ > 0, σ ∈ B}
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is bounded in C. The latter follows from
∫
τδ =

∫
τ1 and the second equation in

(2.6) with integration by parts.

2.6 Remark. Let E be one of the spaces D, E or DK , which is the space of C
∞-

functions, having their support in the compact subset K of Rn. Denote by Erad

the subspace of radial functions in E. This is a closed subspace, since a converging
net in E converges pointwise.

2.7 Theorem. Let τ ∈ Erad ∩ L1 and χ ∈ Drad with χ(x) = 1 for ‖x‖ ≤ 1 and

χ(x) = 0 for ‖x‖ ≥ 2. Suppose that for all nets (tε)ε ∈ (R>0)
(0,∞) with (tε)ε → 0

for ε→ 0+ and all functions σ ∈ Drad

(2.7) lim
ε→0+

F(ε,tε)(σ, τ) = (S
rad
⊙ T )(ϕ) ·

∫

σ ·

∫

τ

holds. Then for all nets (tε)ε ∈ (R>0)
(0,∞) with (tε)ε → 0 for ε→ 0+

lim
ε→0+

F(ε,tε)((1− χ)p, τ) = (S
rad
⊙ T )(ϕ) ·

(∫

(1− χ)p
)

·

∫

τ

holds, where p := p1 = P (·, 1) denotes the Poisson kernel (1.2).

Proof: Let (tε)ε ∈ (R>0)
(0,∞) with (tε)ε → 0 for ε → 0+ and p(k, ·) for k ∈ N

the function p(k, x) := p(x)
(
χ(x/2k+1)− χ(x/2k)

)
. Thus,

(2.8) (1− χ)p =

∞∑

k=0

p(k, ·),

where the right side means the limit in E . Because of the separate continuity of
F(ε,tε),

(2.9) F(ε,tε)((1− χ)p, τ) =

∞∑

k=0

F(ε,tε)(p(k, ·), τ).

Now, if summation and the limit for ε→ 0 are interchangeable, then the theorem
is established by assumption (2.7), since equality (2.8) holds also in L1.
For K := {x ∈ Rn | 1 ≤ ‖x‖ ≤ 4} the set of functions1

(2.10) {x 7−→ 2k(n+1)p(k, 2kx) | k ∈ N}

is bounded (and contained) in DradK , because, confirming (1.3), each derivative of

the functions ε−(n+1)p(·/ε), ε > 0 is bounded away from zero. The set

(2.11) {F(ε,t
(ε/2k)

)(2
k(n+1)p(k, 2k·), τ) | k ∈ N, ε > 0}

1This splitting of the Poisson kernel has been adapted from Jeĺınek [3].
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is bounded in C: Otherwise, there are sequences (εl)l, (kl)l ∈ RN satisfying

(2.12)
∣
∣F(εl,t(εl/2

kl )
)(2

kl(n+1)p(kl, 2
kl ·), τ)

∣
∣ l→∞
−−−→ ∞.

Let ε̄ := lim inf l→∞ εl in [0,∞] and without loss of generality (εl)l → ε̄. In case
of ε̄ > 0 a contradiction to (2.12) would follow according to Remark 2.5, because
the set (2.10) is also bounded in E . Since (εl)l → 0 and (t(εl/2

kl))l → 0 for l → ∞,

by assumption the set of distributions Fl, l ∈ N, defined by

Fl(σ) := F(εl,t(εl/2kl )
)(σ, τ) (σ ∈ DradK ),

is weakly bounded on DradK , a Fréchet space confirming Remark 2.6. Applying
the uniform boundedness principle, {Fl | l ∈ N} would be equicontinuous, hence

bounded on bounded sets of DradK in contradiction to (2.12).
A simple calculation for ε > 0 and k ∈ N gives

[(2k(n+1)p(k, 2k·))ε = 2
k(p(k, ·))ε̄

with ε̄ := ε/2k. From F(ε,δ)(σ, τ) = F(1,1)(σε, τδ), the bilinearity of F(1,1), and

the boundedness of the set (2.11), by replacing ε/2k by ε̄ one obtains
∣
∣F(ε̄,tε̄)(p(k, ·), τ)

∣
∣ ≤ C2−k

for some C > 0 which is independent of ε̄ ∈ (0,∞) and k ∈ N. Hence the series
(2.9) is majorized independently of ε, summation and passing to the limit can be
interchanged, and the proof is complete. �

2.8 Corollary. Let S, T ∈ D′(Rn). If their radial product S
rad
⊙ T exists, then

the product by harmonic representations S · T exists and equals S
rad
⊙ T .

Proof: Let ϕ ∈ D and χ ∈ Drad with χ(x) = 1 for ‖x‖ ≤ 1 and χ(x) = 0 for
‖x‖ ≥ 2. By the localization property of both products, S, T are assumed to have
compact support. The bilinear form F(ε,δ) for S, T , and ϕ is defined according to

(2.6). Equality

(2.13) lim
ε→0+

F(ε,tε)(σ, τ) = (S
rad
⊙ T )(ϕ) ·

(∫

σ
)

·
(∫

τ
)

for all σ, τ ∈ Drad is easily inferred from the existence of (S
rad
⊙ T )(ϕ) for all

nets (tε)ε ∈ (R>0)
(0,∞) with (tε)ε → 0 for ε → 0+, because this is true for all

subsequences (εi, tεi)i. An application of Theorem 2.7 yields

(2.14) lim
ε→0+

F(ε,tε)((1− χ)p, τ) = (S
rad
⊙ T )(ϕ) ·

(∫

(1− χ)p
)

·
(∫

τ
)
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and, by another subsequence argumentation for F(ε,δ)(σ, τ) = F(δ,ε)(τ, σ),

(2.15) lim
ε→0+

F(ε,tε)(τ, (1 − χ)p) = (S
rad
⊙ T )(ϕ) ·

(∫

τ
)

·
(∫

(1− χ)p
)

for all such nets (tε)ε and all τ ∈ Drad. Again, by Theorem 2.7

lim
ε→0+

F(ε,tε)((1 − χ)p, (1− χ)p) = (S
rad
⊙ T )(ϕ)

(∫

(1− χ)p
)(∫

(1− χ)p
)

and now with σ = τ = χp in (2.13)–(2.15)

F(ε,tε)(p, p) = F(ε,tε)(χp, χp) + F(ε,tε)(χp, (1− χ)p)+

+ F(ε,tε)((1− χ)p, χp) + F(ε,tε)((1 − χ)p, (1− χ)p)

ε→0+
−−−−→ (S

rad
⊙ T )(ϕ) ·

∫

p ·

∫

p = (S
rad
⊙ T )(ϕ)

for all nets (tε)ε and in particular for tε = ε. In view of Corollary 1.8, this
completes the proof. �

A verification of an example of Jeĺınek [3] shows, that in the one-dimensional
case the product by harmonic representations of certain distributions exists,
whereas their radial product is not defined. Therefore, in any dimension the
multiplication by harmonic representations is a strict extension of the Kamiński
product.
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[6] Kamiński A., Convolution, product and Fourier transform of distributions, Studia Math.
74 (1982), 83–96.

[7] Langebruch M., Randverteilungen von Nullösungen hypoelliptischer Differentialgleichun-
gen, Manuscripta Math. 26 (1978), 17–35.

[8] Li Banghe, Nonstandard analysis and multiplication of distributions, Scientia Scinica,
Ser. A 21 (1978), 561–585.

[9] Li Banghe, Li Yaqing, Nonstandard analysis and multiplication of distributions in any
dimension, Scientia Scinica, Ser. A 28 (1985), 716–726.

[10] Li Banghe, Li Yaqing, On the harmonic and analytic representations of distributions, Sci-
entia Scinica, Ser. A 28 (1985), 923–937.



Multiplication of distributions 321

[11] Liu Shangping, Distributions in D′(Rn) as boundary values of harmonic functions, Scientia
Scinica, Ser. A 27 (1984), 897–904.

[12] Oberguggenberger M., Products of distributions: Nonstandard methods, Zeitschr. Anal.
Anw. 7 (1988), 347–365; Correction: Zeitschr. Anal. Anw. 10 (1991), 263–264.

[13] Oberguggenberger M.,Multiplication of distributions and applications to partial differential
equations, Pitman Research Notes in Mathematics, vol. 259, 1992.
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[15] Schwartz L., Théorie des distributions, Hermann, Paris, nouv. edition, 1966.
[16] Tillmann H.G., Darstellung der Schwartzschen Distributionen durch analytische Funktio-

nen, Math. Zeitschr. 77 (1961), 106–124.
[17] Wawak R., On the Colombeau product of distributions, in Generalized functions and con-
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