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Estimators in the location model with gradual changes

M. HuSKOVA

Abstract. A number of papers has been published on the estimation problem in location
models with abrupt changes (e.g., Csoérgd and Horvdth (1996)). In the present paper
we focus on estimators in location models with gradual changes. Estimators of the
parameters are proposed and studied. It appears that the limit behavior (both the rate
of consistency and limit distribution) of the estimators of the change point in location
models with abrupt changes and gradual changes differ substantially.
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1. Introduction and main results

We consider here the following location model with gradual changes after an
unknown time point m:

1 —m\+
(1.1) YZ-:;H(S”( ) e, i=1,...,n
n
where at = max{a,0}, i, 9, # 0 and m are parameters, e1,...,e, are ii.d.
random variables with Fe; = 0, vare; = 02 and E|ei|2"'A <oo,i=1,...,n, and

some A > 0. The model corresponds to the situation when up to unknown m the
observations are i.i.d. and then the model changes to a simple regression model
with the slope . The parameter m is the change point.

Our main interest is to estimate the parameter m and to study its limit prop-
erties. Analogous results for parameters u, 6, and o2 are also derived.

Similar problems were treated by several authors. Assuming that the error
terms e; have a normal distribution, Hinkley (1971), Feder (1975) and Smith and
Cook (1980) considered maximum likelihood type estimators in the model

}/Z:H_'—B(Il_n)—i__'—elvl:lvanv

where p, 7 are unknown parameters. This model reduces to the model (1.1) with
a particular choice of x; and a particular choice of the distribution of the e;.
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148 M. Huskova

Siegmund and Zhang (1994) developed a small sample conservative confidence
region for parameter 6 that works reasonably well even for moderate sample sizes
in the model:

Y; = B0+ Brxi+ Pa(zi —0) T +ei, i=1,...n,

where (g, (1, B2 and 0 are unknown parameters, x1, ..., x, are known regression
constants and ey, ..., en are i.i.d. with distribution N (0, 02), 02 > 0 unknown.

Some authors considered the problem in the framework of nonlinear regression
(e.g., Ratkowski (1983) p. 122 and Seber, Wild (1989) p. 447).

Jaruskova (1996) developed test procedures for testing Hy : m = n against
H; : m < n in the model (1.1) and studied their limit behavior under the null
hypothesis.

The case of the gradual changes described by model (1.1) can occur, e.g., in
meteorogical data or quality control.

In the present paper we derive the limit distribution of least squares type
estimators of m, u, d,, both for local alternatives (6, — 0 as n — o) and fixed
ones (0, = & # 0). We also get a consistency result for an estimator of o2. It
should be pointed out that the limit behavior (both the rate of convergence and
the limit distribution) of the estimator of m differs from the case of the abrupt
change (see Remark b below).

In the following we shall denote

 — kT
xik:(ln ) , iLWwk=1,...,n,

1
1=

In the present paper we study least squares type estimators m, [i, on of the
parameters m, u, éy, defined as solutions of the minimization problem

n
. 2
min Y (Yi = p = dnaij),
=1
peRY 6, eR, j=1,....n

In other words the estimators minimize the sum of squared deviations. Direct
calculations give the explicit expression for the estimators dy,, fin. Namely,

(1.2) 5, = = (T ~ T i

(1.3) fn =Yn — 0nTp,.



Gradual changes ...

The estimator m can equivalently be defined as a solution of the maximization
problem

(Z?ﬂ(wij - Tj)Yi)g
Yim1 (@i —T5)?

These estimators coincide with the maximum likelihood estimators if the obser-
vations Y7, .., Y, have normal distribution. We estimate o2 by

(1.4) max

,j=1,...,n.

n
1.5 521 Y; — fin — onTim)2.
(15) e )

Now, we state the main limit properties of these estimators. Theorem A con-
cerns the limit distribution of the estimator /m in the model (1.1) with m < n
(alternative hypothesis), while limit properties of estimators fip, Sn and 52 for
the same situation are formulated in Theorem B. Theorem C then gives the limit
behavior of the estimators for m = n (the null hypothesis).

Theorem A. Let random variables Y7, ..,Y, be independent and have the prop-
erty (1.1). Let, as n — oo,

62n
o 2= 00 Tiogiogny®
and
(1.7) m = [nb]

for some 0 € (0,1).
Then, as n — oo,

dum—m [00=0) p

(18) o vn 1+ 36

(0,1).

Theorem B. Let assumptions of Theorem A be satisfied. Then, as n — oo,

~ 1202
(1.9) Vi(bn — 8n) =P N(0, m),
52
(1.10) Vn(jin — 1) =7 N(O, 11 39
and

(1.11) 62 — 02 = op((loglogn)™1).
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150 M. Huskov4,

Theorem C. Let Yi,...,Y, be iid. random variables with E|XZ-|2"'A < oo for
a positive A. Then, as n — o0,

(1.12) Pn—n,>m>(1—ey)n) —1

for arbitrary sequences {e,} and {n,} of positive numbers such that, as n — oo,

3 loglogn — 0, I:gnn =0(1).

Moreover, the assertions (1.10)—(1.11) remain true and as n — oo,

(1.13) bn = op((logn)~3/2).

Remark a. Theorem A covers both local (6, — 0 as n — oo) and fixed type
(6n, = & # 0) of the size of change.

Remark b. Both the rate of consistency and the limit distribution of the estimator
m differ from the case of abrupt changes. In case of an abrupt change in a location
model we get the rate of consistency 4, 2 while in case of a gradual change (1.1)
we received the rate nl/ 25; 1 The limit distribution of a properly standardized
estimator 7 in case of abrupt changes is the same the argmaz of a certain Gaussian
process with a time dependent drift. For the results for abrupt changes in location
models see, e.g., Csorgd and Horvath (1997) or Antoch, Huskovd and Veraverbeke
(1995).

Remark c. The assertion of Theorem A remains true if é,, and o are replaced by
suitable estimators, e.g., given by (1.4) and (1.5), respectively.
2. Proofs

Recall that the estimator m can be equivalently defined as a solution of the
maximization problem

2
(Z?zl(:rij - Tj)Yi) .
- y ) =4
i (xij —F5)?
First we prove several auxiliary lemmas.

Lemma 1. If (1.6)—(1.7) are satisfied, then for each ¢ € (0,min(f,1 — 0)), as
n — oo,

max

S 1.

i _ e (1-02 (@1-0? _
(2.2) > (@im —Tm)? = s 1t O(n™1),
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and

( > iy (@i — Tk)ﬂfz'm) ’

B {12(1—9)4(1+29—3(9—e)2)2
\kmien Z?:l(xik — Tk)z - max 1-6+ 6)3(1 + 30 — 3¢) ’
(1—0—e)(1+2(0 + ) — 302)2 _
(23) 12(1 + 36 1 3¢) j+om™
< @ +0(n™t).

PrOOF: Elementary calculations give, as n — oo,

lixikxim:/1(8_6‘)+(S—k/n)+d8+0(min(n_k’n_m))
ni:l 0

= (1 —max(0, k/n))?(2 + max(, k/n) — 3min(0, k/n)) /6

n2

min(n — k,n —m)

(2.4) + 0 L \
(2.5)

%ixk = /Ol(S—k/n)ers—kO(n?;k) e _k/n)2/2+o(nn_—2k)7
(2.6)
1 Zn: (40 — )2 = (1 —/;/n)?’ o —Z/n)4 +O(nn_2k)

uniformly in 1 < k < n.
Hence, as n — o0,

2
(Z?:l(xik - Tk)xim) 1 min(n — k,n — m)
Sy (wag —TR)?2 @/m +0f n2 )

uniformly in 1 < k < n, where

SN

(1 — max(6,t))*(1 + 2max(6,t) — 3min(6?,2))?
(1—1)3(1 +3t)

This immediately implies (2.2). Calculating the derivative of Q(¢) we find that

Q) = ,0<t<l1.

Q'(t)>0for0<t<0
Q'(t)y<0for1>t>0

which implies (2.3). O
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152 M. Huskova

Lemma 2. Let the assumptions of Theorem A be satisfied then, as n — oo,

( >y (g — fk)ei)2 1
2. _
27) 1gk§i%’f_en) S (g — Tg)? Op(€n ),

for every sequence {en}, 0 < €y, < 1 and

2
(Y (@i, — Tg)ey)

2.8 — = 0O, (logl

(28) nemh<n S (T — Tk)? plloglog i)

for every sequence {nn}, nn < n, np — 00. Moreover,

— 2 V3

(i (@i — Tr)es) z+log ¥=
2.9 P( i > \/2logl 74”)
(2:9) lréll?i{n o230 (@i — Tg)? oglogm + V2loglogn

— 1 — exp{—exp{—=x}}, z € R

PRroOOF: By the Héjek-Renyi inequality (e.g., Theorem 7.4.8 in Chow and Teicher
(1987)), as n — oo,

|Z?:k+1 il _ —1/2
(2.10) 192?(;(_5”){7} = Op((nen)™ /%),

which together with standard arguments gives

( > (T — Tk)ei) ’

1§k2?>—{en)n{ S (i — Tg)? }

-0 ( max {(Z(i—k)Jrei)Q(n—k)_?’}—i— (anei)%nen)—l)

1<k<(1—en)n

3

=1 i=1
- Op(l<k;£niaxgn n ( %“;1 el) n— _3) +Oplen ') = Oplen).

To prove (2.8) we realize that by the Darling-Erdés theorem (see, e.g., Theo-
rem A.4.2 in Csérgd and Horvéath (1997)), as n — oo

|Z k+1ez|
2.11 Op(+y/1ogl .
e (R - 0o

Now, proceeding analogously as in proving (2.7) and using (2.11) instead of (2.10)
we obtain (2.8). Assertion (2.9) follows from Theorem 2 in Jaruskova (1996). O
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The estimator m can equivalently be defined as a solution of the maximization
problem as

(2.12) max {A; +20,B; +62C;},  j=1,....n—1,
where
A Zi:l(xzk xk)ez Zi:l(xzm Im)ez
P (e — Th)? i (@im — Tm)?
(Y (@i — T)ed) (Ximy (i — Te)Zim) <o _
By, = — - Tim — Tm)€Ej,
Z?:l(xik _ Ik)2 ;( m m) 7
n . . 2 n
o Zi:l(xzk xk)xzm Z( _ )2
k= — — X — X .
ST G —mr o im

Lemma 3. Let the assumptions of Theorem A be satisfied. Then, as n — o0,

m—£k)20(1—0 m—k

Ay + 6n B
2.14 —
( ) rn|5n\*1\/I?rLl§a|)in—k|Snen{5%(771—]4;)2”} Op( )7

vn
(219 |m—k|s1?f|b§nr%{(m—k)|6n|| k|} (1)
and

Vi 1
(2.16) \m_k\gr?j?nrlﬁ{Bkm—k Zn\/ﬁ|}_op(1),

where {e,} and {ry} satisfy, as n — oo,

onlv/n
(2.17) 0<é€n, €n — 0, 7y — 00, % —
and where

n n 2 n
218)  Zu= 3 (ei—ew) WO S (s — en)rim:
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PROOF: By (2.4)—(2.6) we have, as n — oo,

(2.19) i(wlk — ) = n(l ;29)3 (1+360) +0(m — k),
i=1
(220) Dok~ T — o) = (10200 + 0" )
=1
and
n m— k)2
221) Y w7 = 0 g+ 0"

i=1
uniformly in (m — k) = o(n).
Next, the terms Ag, B and C can be rewritten as
n . . 2
(Zi=1($ik — Tim — Tk + me)ei)

Sty (g — Tp)?

n n — —
— >ic1 (@il — Tim — Tp, + Tm)€i
+ 2( g (Tim — @ )e~) = —
L T >oica (@i — Tp)?

(O @im = Tm)en)® SR (i — Tim — Tg + Tim)?

Ay =

Y1 (Tim — Tm)? iy (@i — Tg)?
+9 (Z?:l(xzm - Em)ei)z Z?:l(xik - xzm)(xzm - Em)
S (@i, — Tm)? i (@i — Tg)? ’
n n
Z 1 (i = Tp) (T, — Tim)
By = Tik — X4 —e 1= — ,
;( (3 zm Z n ; lel(xlk _ xk)2

2

(Z?:ﬂilfik —Tp) (Tim — xik)) z":( ¢

— — Tik — Tim — Tk +T .
Yin1 (@i — Tp)? A "

=

Inserting (2.19)—(2.21) into these expressions for A, Bj, and Cj and applying
standard arguments we obtain (2.13) and, as n — oo,

A =0p ((i(%’k — Zim) (e — €n))?/n
=1
4 (@i = zam)es = )2 /0) 2 4k = )

i=1

(2.22)
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and
(2.23)
By = Sl aim) (e ) =3 (- xzk%uw«m—mm»

uniformly for (kK —m) = o(n). Moreover, we find that, as n — oo,

’Bk m\/—ﬁk n%‘
(2.24) ; Tik = Tim)(€i = En) = % i:%l(ez ~ )|
60 ‘Z ik — Tim) (€5 — en)‘ +o0p(1)

uniformly for (kK —m) = op(n). Hence to establish (2.15) and (2.16) it suffices to
prove that, as n — o0,

(2.25) S e m)e— )~ = (e )| = 0p(1)
i=1 i=m+1
and
(2.26) | > @i = i) (es = )| /v = 0p(1)
i=1
uniformly for (k —m) = op(n). We have
(2. 27)
n 1 m—k &
‘Tz - xzm € _én) I~ (ei _En)
k
< 31/2 (1{k>m} 3 (k= i)ei — )| + I{k < m}| S G-k )(ei — 7))
i=m+1 i=k+1

- 3/2(I{k>m}| Z Z i — &) + I{k < m}] Z Z i—z)l).

j=m+2i=m+1 Jj=k+11i=j
Since by the law of iterated logarithm, as n — oo,
m+k

max {| Z ez’|k_1/2+| Z €i|/€_1/2}20p(\/10glogn)

L<k<mlonl=tvn b 200y i=m—k
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we also have

m+k j—1
e (15 Y @il 3 Se-a)
1<k<ra|dn|~1v/n j=m+2i=m+1 j=m—ki=j

= Op((Tn|5n|_1/2\/ﬁ)3/2 vV log log n)

The last relation together with (2.27) and assumption (2.17) then imply (2.26).
Relation (2.25) follows from (2.26) and > 7", e; = Op(y/n). Our lemma is
proved. (I

PRrROOF OF THEOREM A: Lemma 1, Lemma 2 and Lemma 3 imply that, as n — oo,

(S - m0%:)”
P Sy
2
- (Z?:ﬂ%’k —fk)Yi) ) L

= max —
k—m|<ralon|"tvm  2ier (Tik — Tg)?

Next, Lemma 3 ((2.12), (2.14), (2.15)) implies that

Al + 26,By, + 620,

—k —ko(1—-4 Zn
mE (MR I ),

:511

Vn vn 1430 Vn
uniformly for |k —m| < 7, |6,|~1\/n, where 1, satisfies (2.16). Then regarding the
m—in 0(1—0)

definition of m we can infer that 5,17 1739 has the same limit distribution as

2Z,n~ /2. The random variable Z,, is the sum of independent random variables,
its variance fulfills, as n — oo,

var —02 En c; —¢C 2 n292(1—9)4
" (2 1(Z g +4Z?:1(Iim—fm)2)
0(1—0)
=o2n 30 (1+0(1))

and it can be easily checked that the assumptions of CLT are fulfilled and there-

fore, as n — oo,

26(1 — 9))
1+30 7

This together with the above arguments imply the assertion (1.8). O

n=127, -P N(o,
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PROOF OF THEOREM B: Since Theorem A implies that m — m = Op(y/nd,; 1) =
op(n), then by (2.4)—(2.6) we have

> @in = Fw)® =Y (Tim — Tm)? + Op(v/nd, 1)
=1 =1
> @im — wim)ei = Op((m — m)n=12) = 0,(5,1).
=1

This together with (2.6) and (2.23) further implies that /n(m —m) has the same
limit distribution as n _
\/ﬁzizl(xim — Tm)e; '
i1 (Tim — Tm)?

This is the sum of independent random variables and it can be easily checked that
the assumptions of CLT are satisfied and hence (1.9) holds true.

The limit distribution of & can be obtained in a very similar way and hence
the proof is omitted.

Concerning (1.11) we notice that by (1.9)~(1.10) &, — 6, = Op(n~1/2) and
fn, — p = Op(n_l/ 2) which after few standard steps leads to the desired assertion.

O
PrOOF OF THEOREM C: By (2.9) we have, as n — oo,
— 2
P( max (Xi ik —Tr)es) > 4/log logn) —1
1<k<n o2 Z?:l(xik — Tk)2 ’
which together with (2.8)—(2.9) yields the assertion of the theorem. O
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