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Inequalities for surface integrals

of non-negative subharmonic functions

M.P. Aldred, D.H. Armitage

Abstract. Let H denote the class of positive harmonic functions on a bounded domain
Ω in R

N . Let S be a sphere contained in Ω, and let σ denote the (N − 1)-dimensional
measure. We give a condition on Ω which guarantees that there exists a constant K,
depending only on Ω and S, such that

R
S

u dσ ≤ K
R
∂Ω

u dσ for every u ∈ H∩ C(Ω). If
this inequality holds for every such u, then it also holds for a large class of non-negative
subharmonic functions. For certain types of domains explicit values for K are given. In
particular the classical value K = 2 for convex domains is slightly improved.

Keywords: subharmonic, surface integral

Classification: 31B05

1. Introduction

Throughout this note Ω is a bounded Lipschitz domain in the Euclidean space
R

N , where N ≥ 2. Let σ denote the (N − 1)-dimensional surface measure and let
S be the class of functions u on Ω that are non-negative and subharmonic on Ω
and satisfy

u(y) = lim sup
x→y,x∈Ω

u(x) (y ∈ ∂Ω)

and

0 <

∫

∂Ω
u dσ < +∞.

(Elements of S may take the value +∞ at points of ∂Ω.) Let H be the set
of functions in S that are harmonic on Ω. Also let Sb, Hb denote the sets of
bounded elements of S,H respectively. A function in S (respectively H) is called
quasi-bounded if it is the pointwise limit on Ω of some increasing sequence in Sb
(respectively Hb); we denote the sets of quasi-bounded elements of S and H by
Sqb and Hqb. Let S be a sphere contained in Ω. If E is a subset of S, then we
define

M(Ω, S, E) = sup
{

∫

S
u dσ

/

∫

∂Ω
u dσ : u ∈ E

}

.

We shall give estimates for M(Ω, S,Sqb) when Ω satisfies certain geometrical hy-
potheses.
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Many years ago Gabriel [2] and Reuter [8] showed in the cases N = 2, 3 respec-
tively that if Ω is convex, then M(Ω, S, C(Ω)∩S) ≤ 2. More recently Hayman [4]
improved this result in the case N = 2 by showing that M(Ω, S,Sb) < 2 when Ω
is convex. In fact his proof shows that the constant 2 can be replaced by a smaller
constant depending on Ω and S, comparable with that in the following theorem.
We denote the radius of S by ρ.

Theorem 1. If Ω is convex, then

(1) M(Ω, S,Sqb) ≤ 2(1− (ρ/d)N ),

where d is the diameter of Ω. The result fails if (ρ/d)N is replaced by ψ(ρ/d) for

any function ψ on (0, 1] such that t−Nψ(t)→ +∞ as t→ 0+.
In Theorem 1 the class Sqb cannot be replaced by the larger class S. Indeed

a very simple example (see Section 2) shows that even when Ω is a ball we have
M(Ω, S,S) = +∞ when S ⊂ Ω.
Next we examine the effect of strengthening the convexity hypothesis. Recall

that Ω is convex if and only if for each y ∈ ∂Ω there exists an open half-space
D such that Ω ⊂ D and y ∈ ∂D. Modifying this characterization of convexity,
we shall say that Ω is R-convex if for each y ∈ ∂Ω there exists an open ball B of
radius R such that Ω ⊆ B and y ∈ ∂B.

Theorem 2. If Ω is R-convex, then

(2) M(Ω, S,Sqb) ≤ 2− ρ/R.

Equality is possible in the case where Ω is a ball of radius R.

Likewise we can relax the convexity hypothesis. We shall say that Ω satisfies
the exterior R-ball condition if for each y ∈ ∂Ω there exists an open ball B of
radius R such that B ⊂ R

N\Ω and y ∈ ∂B.

Theorem 3. If Ω satisfies the exterior R-ball condition, then

(3) M(Ω, S,Sqb) ≤ 2 + ρ/R.

If ǫ > 0 and the right-hand side of (3) is replaced by 2 + (1 − ǫ)ρ/R, then the
result fails.

It is natural to ask for a condition on Ω guaranteeing the finiteness of
M(Ω, S,Sqb). Let ω be a bounded domain such that R

N\ω is connected. We
call ω a Liapunov-Dini domain if ∂ω can be covered by finitely many right circu-
lar cylinders whose bases have positive distances from ∂ω, and corresponding to
each cylinder L there is a C1 function φ : R

N−1 → R and a coordinate system
(y1, . . . , yN ) = (y

′, yN ) such that

L ∩ ω = {(y′, yN ) : yN > φ(y′)} ∩ L, L ∩ ∂ω = {(y′, yN ) : yN = φ(y′)} ∩ L
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and
‖∇φ(x′)−∇φ(y′)‖ ≤ δ(‖x′ − y′‖) (x′, y′ ∈ R

N−1)

for some increasing continuous function δ : [0,+∞)→ [0,+∞) satisfying
∫ 1

0
t−1δ(t) dt < +∞;

here ∇ denotes the gradient operator and ‖ · ‖ the Euclidean norm. We shall say
that Ω satisfies the exterior Liapunov-Dini condition if there exists a Liapunov-
Dini domain ω such that for each y ∈ ∂Ω there is an isometry T : RN → R

N for
which y ∈ T (ω) ⊂ R

N\Ω.
Theorem 4. If Ω satisfies the exterior Liapunov-Dini condition, then
M(Ω, S,Sqb) < +∞.
Note that the domain ω given by

ω = {(x′, xN ) : ‖x′‖ < sinp xN , 0 < xN < π}

is a Liapunov-Dini domain if 0 < p < 1 but not if p = 1. Thus if π/2 < α < π,
then the domain

(4) {x ∈ R
N : xN > ‖x‖ cosα, ‖x‖ < 1}

just fails to satisfy the exterior Liapunov-Dini condition, and the following exam-
ple shows that Theorem 4 is close to being sharp.

Example 1. Suppose that π/2 < α < π and Ω is the domain given by (4). Then
M(Ω, S,Sqb) = +∞ for any sphere S ⊂ Ω.
Acknowledgment. The above definition of the exterior Liapunov-Dini condi-
tion is taken from S.J. Gardiner’s paper [3]. We are grateful to Dr. Gardiner
for drawing this definition to our attention and suggesting its relevance to our
investigations.

2. A preliminary result

2.1. The following Proposition simplifies the proofs of Theorems 1–4. Recall our
blanket hypothesis that Ω is a Lipschitz domain.

Proposition.
M(Ω, S,Sqb) =M(Ω, S, C(Ω) ∩H).

To prove the Proposition, suppose that u ∈ Sqb and let (un) be an increasing
sequence in Sb such that un → u on Ω. For each positive integer n define

Mn = n+ sup
∂Ω

un, fn(y) = min{Mn, u(y)} (y ∈ ∂Ω).
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Then fn is upper semi-continuous on ∂Ω and is therefore equal to the limit of
some decreasing sequence in C(∂Ω). Hence there exists gn ∈ C(∂Ω) such that
gn ≥ fn on ∂Ω and

(5)

∫

∂Ω
gn dσ ≤ n−1 +

∫

∂Ω
fn dσ ≤ n−1 +

∫

∂Ω
u dσ.

Let Hn denote the Perron-Wiener-Brelot (PWB) solution of the Dirichlet problem
on Ω with boundary data gn. (For the PWB approach to the Dirichlet problem
we refer to Helms [5, Chapter 8].) Extend Hn to Ω by defining Hn = gn on ∂Ω.
Then, since gn is continuous on ∂Ω and Ω is (Dirichlet) regular, Hn ∈ C(Ω) ∩H.
Also, since un ∈ Sb and un ≤ gn on ∂Ω, it follows that un belongs to the lower
PWB class for the Dirichlet problem with boundary data gn, and hence un ≤ Hn

on Ω. Since un → u on Ω, it follows that lim infn→∞Hn ≥ u on Ω. Hence, by
Fatou’s lemma,

∫

S∩Ω
u dσ ≤ lim inf

n→∞

∫

S∩Ω
Hn dσ.

Also, since Hn = gn ≥ fn on ∂Ω and (fn) is increasing to the limit function u
on ∂Ω,

∫

S∩∂Ω
u dσ = lim

n→∞

∫

S∩∂Ω
fn dσ ≤ lim inf

n→∞

∫

S∩∂Ω
Hn dσ.

Hence

(6)

∫

S
u dσ ≤ lim inf

n→∞

∫

S
Hn dσ.

By (5),

(7) lim sup
n→∞

∫

∂Ω
Hn dσ ≤

∫

∂Ω
u dσ.

From (6) and (7) we obtain

∫

S
u dσ

/

∫

∂Ω
u dσ ≤ lim inf

n→∞

(

∫

S
Hn dσ

/

∫

∂Ω
Hn dσ

)

≤M(Ω, S, C(Ω) ∩H),

and the Proposition follows.

2.2 Example 2. If Ω is the open unit ball and S is any sphere such that S ⊂ Ω,
S 6= ∂Ω, then M(Ω, S,Sqb) < 2 but M(Ω, S,S) = +∞.
The inequality in Example 2 is a consequence of Theorem 1. To prove the

equality, fix a point y of ∂Ω\S and define

h(x) = (1 − ‖x‖2)‖x− y‖−N (x ∈ Ω\{y}), h(y) = +∞.
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(Thus h is proportional to the Poisson kernel of Ω with pole y.) Define a sequence
of functions (hn) on Ω by hn = n−1 + h. Clearly hn ∈ H and, writing z for the
centre of S, we have

∫

S
hn dσ

/

∫

∂Ω
hn dσ = nσ(S)hn(z)/σ(∂Ω)→ +∞ (n→ ∞).

3. Proofs of the inequalities in Theorems 1-4

3.1. We need some more notation. The Green function of a Greenian domain ω
is denoted by Gω . The open ball and sphere of centre x and radius r in R

N are
denoted by B(x, r) and S(x, r) respectively, and we write σN for σ(S(0, 1)).
Since Ω is assumed to be Lipschitz, it follows from a result of Dahlberg [1] that

harmonic measure and surface measure σ on ∂Ω are mutually equivalent; indeed

(8)
dµx

dσ
(y) = kN

∂

∂ny
GΩ(x, y) (x ∈ Ω),

where µx denotes harmonic measure on ∂Ω relative to x, kN = (σN max{1,
N−2})−1, and ∂/∂ny denotes differentiation in the direction of the inward normal
to ∂Ω at y (when the normal exists). Let us denote the right-hand side of (8) by
KΩ(x, y). Then if h ∈ C(Ω) ∩H, we have

h(x) =

∫

∂Ω
KΩ(x, y)h(y) dσ(y) (x ∈ Ω).

We refer to KΩ as the Poisson kernel of Ω.

The proofs of the inequalities in Theorems 1-4 are elaborations of the proofs
given by Gabriel [2] and Reuter [8]. They depend on the following simple obser-
vations. If Ωo is a Greenian domain containing Ω, then GΩ ≤ GΩo

on Ω × Ω.
Hence if, further, y is a point of ∂Ω ∩ ∂Ωo at which ∂Ω and ∂Ωo have a common
normal, then

KΩ(·, y) ≤ KΩo
(·, y)

on Ω.
In view of the Proposition, it is enough to prove the inequalities in Theorems 1–

4 with C(Ω) ∩H in place of Sqb.

3.2. Of the inequalities we have to prove, (2) in Theorem 2 is technically the
simplest, so we begin with it. Let S be the sphere S(w, ρ) and for each y ∈ ∂Ω
let B(zy , R) be a ball such that Ω ⊆ B(zy , R) and y ∈ S(zy, R). For simplicity,
we write By = B(zy, R). Note that

(9) KBy
(x, y) =

1

σNR

R2 − ‖x− zy‖2
‖x− zy‖N

(x ∈ By).
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If h ∈ C(Ω) ∩ H, then it follows from the mean value property of harmonic
functions and the remarks in Section 3.1 that

(10)

∫

S
h dσ = σNρ

N−1h(w)

= σNρ
N−1

∫

∂Ω
KΩ(w, y)h(y) dσ(y)

≤ σNρ
N−1

∫

∂Ω
KBy
(w, y)h(y) dσ(y).

Since ‖w − zy‖ ≥ ‖zy − y‖ − ‖w − y‖ = R− ‖w − y‖, we obtain from (9) that

KBy
(w, y) ≤ 1

σNR

(2R− ‖w − y‖)
‖w − y‖N−1

≤ 1

σNR

(2R− ρ)

ρN−1
.

Hence, by (10),
∫

S
h dσ ≤ (2 − ρ/R)

∫

∂Ω
h dσ,

as required.

3.3. To prove inequality (1) in Theorem 1, we imitate the proofs of the preceding
section, but the role played by the balls By is now played by half-balls. Suppose
that y ∈ ∂Ω. Since we now suppose that Ω is convex, there is an open half-space
Dy such that Ω ⊂ Dy and y ∈ ∂Dy. If d is the diameter of Ω, then Ω is contained
in the open half-ball Dy ∩B(y, d), which we denote by βy . Arguing as before, we

find that if h ∈ C(Ω) ∩H, then

(11)

∫

S
h dσ ≤ σNρ

N−1
∫

∂Ω
Kβy
(w, y)h(y) dσ(y),

where again S = S(w, ρ). We now need to estimate Kβy
(w, y). We have (see

Kuran [6, p. 615])

(12)

Kβy
(w, y) =

2dist(w, ∂Dy)

σN

(

1

‖w − y‖N
− 1

dN

)

≤ 2

σN

(

1

‖w − y‖N−1
− ‖w − y‖

dN

)

≤ (2/σN )(ρ
1−N − ρd−N ).

It follows from (11) and (12) that
∫

S
h dσ ≤ 2(1− (ρ/d)N )

∫

∂Ω
h dσ,

as required.
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3.4. We now turn to the proof of inequality (3) in Theorem 3. Here we cannot
make direct use of the mean value property of harmonic functions, since it is
not necessarily true that the ball B(w, ρ) bounded by S is contained in Ω. (For
instance, Ω might be an annular domain and S a concentric sphere.) The following
lemma circumvents this minor difficulty.

Lemma. Let w, y, z ∈ R
N , y 6= z, let ‖y − z‖ = R and let

H(x) =
‖x− z‖2 −R2

‖x− y‖N
(x ∈ R

N\{y}).

If t > ‖w − y‖, then
∫

S(w,t)
H dσ = σN t.

It is well known that H is harmonic on R
N\{y}. (In fact, modulo a constant

factor, H is a harmonic continuation of the Poisson kernel of B(z,R) with pole y.)
We writeM(t) for the mean value of H on S(w, t); that is

M(t) = (σN t
N−1)−1

∫

S(w,t)
H dσ.

Since H is harmonic on R
N\B(w, ‖w − y‖), we have M(t) = aφN (t) + b when

t > ‖w − y‖, where φ2(t) = log t, φN (t) = t2−N (N ≥ 3) and a, b are constants.
(See e.g. Helms [5, Theorem 4.22].) It is easy to see that tN−2M(t) → 1 as
t → +∞. Hence a = 0, b = 1 when N = 2, and a = 1, b = 0 when N ≥ 3. Thus
in all casesM(t) = t2−N when t > ‖w−y‖, and this is equivalent to the required
result.
Suppose now that the hypotheses of Theorem 3 are satisfied. For each y ∈ ∂Ω

let B(zy, R) be a ball such that B(zy , R) ⊂ R
N\Ω and y ∈ S(zy, R). Define

Ay = R
N\B(zy, R). Then Ω ⊂ Ay and

KAy
(x, y) =

1

σNR

‖x− zy‖2 −R2

‖x− y‖N
(x ∈ Ay)

(see e.g. Helms [5, Chapter 9]). It is enough to prove that M(Ω, S, C(Ω) ∩ H) ≤
2 + ρ/R in the case where S ⊂ Ω, for a continuity argument will then extend
the inequality to the case where S ⊂ Ω, and inequality (3) will follow from the
Proposition. Suppose then that S ⊂ Ω and h ∈ C(Ω) ∩H. Then

∫

S
h dσ =

∫

S

∫

∂Ω
KΩ(x, y)h(y) dσ(y) dσ(x)

≤
∫

∂Ω

∫

S
KAy
(x, y) dσ(x)h(y) dσ(y)
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by Fubini’s theorem and the inequality KΩ(x, y) ≤ KAy
(x, y), which holds when-

ever x ∈ Ω and the normal to ∂Ω at y exists. If we show that

(13)

∫

S
KAy
(x, y) dσ(x) ≤ 2 + ρ/R

for each y ∈ ∂Ω, then we shall have
∫

S
h dσ ≤ (2 + ρ/R)

∫

∂Ω
h dσ,

as required. If ‖w−y‖ > ρ, then by the mean value property of harmonic functions
∫

S
KAy
(x, y) dσ(x) ≤ σNρ

N−1KAy
(w, y)

≤ ρN−1

R

(‖w − y‖+R)2 −R2

‖w − y‖N

=
ρN−1

R

2R+ ‖w − y‖
‖w − y‖N−1

< 2 + ρ/R.

If ‖w − y‖ < ρ, then
∫

S
KAy
(x, y) dσ(x) = ρ/R,

by the Lemma. The case where ‖w− y‖ = ρ does not arise, since we assume that
S ⊂ Ω. Hence (13) holds for each y ∈ ∂Ω, and this completes the proof.

3.5. We come now to the proof of Theorem 4. Arguing as in the proof of The-
orem 3, we see that it is enough to prove that M(Ω, S, C(Ω) ∩ H) < +∞ when
Ω satisfies the exterior Liapunov-Dini condition and S ⊂ Ω. Suppose then that
S = S(w, ρ) ⊂ Ω and let ω be a Liapunov-Dini domain with the property that
for each y ∈ ∂Ω there is an isometry Ty such that y ∈ Ty(ω) ⊂ R

N\Ω. Define a
function g on R

N\ω as follows: in the case N = 2, let g be the Green function
of R

2\ω with pole at ∞; in the case N ≥ 3, let g be the solution of the Dirichlet
problem on R

N\ω with boundary data 0 on ∂ω and 1 at ∞. Then g is positive
and harmonic on R

N\ω and vanishes continuously on ∂ω. Let ρ1, ρ2 be such that
0 < ρ1 < ρ < ρ2 and the annular compact set A = {x : ρ1 ≤ ‖x − w‖ ≤ ρ2} is
contained in Ω. Let c = dist(∂A, ∂Ω) and let C1 = inf{g(x) : dist(x, ∂ω) ≥ c}.
Then C1 > 0. If z ∈ ∂A and y ∈ ∂Ω, then

dist(T−1
y (z), ∂ω) = dist(z, Ty(∂ω)) ≥ c.

Hence g ◦ T−1
y (z) ≥ C1. Now GΩ has a finite supremum, C2 say on S × ∂A. For

each x ∈ S and each y ∈ ∂Ω, the function C2g ◦ T−1
y − C1G(x, ·) is harmonic on
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Ω\A and has non-negative limit at each point of ∂Ω∪∂A. Hence, by the minimum
principle,

GΩ(x, ·) ≤ (C2/C1)g ◦ T−1
y

on Ω\A. By a result of Widman [9], there is a positive constant C3 such that

∂g

∂νy
(y) ≤ C3 (y ∈ ∂ω),

where ∂/∂νy denotes differentiation in the direction of the inward normal to R
N\ω

at y. It follows that

KΩ(x, y) = kN
∂

∂ny
GΩ(x, y) ≤ kNC2C3/C1 = C, say,

when x ∈ S and y is a point of ∂Ω at which ∂Ω has a normal (and ∂/∂ny

denotes differentiation in the direction of the inward normal to ∂Ω at y). Hence
if h ∈ C(Ω) ∩H, then

∫

S
h dσ =

∫

S

∫

∂Ω
K(x, y)h(y) dσ(y) dσ(x)

≤
∫

S
C

∫

∂Ω
h(y) dσ(y) dσ(x)

= CσNρ
N−1

∫

∂Ω
h dσ,

so that M(Ω, S, C(Ω) ∩H) ≤ CσNρ
N−1.

4. Examples

4.1. Examples 3, 4, 5 below demonstrate the assertions of sharpness in Theo-
rems 1, 2, 3 respectively.

Example 3. Let Ω be an open half-ball of diameter d. If 0 < ρ < d/4, then
there is a sphere S of radius ρ contained in Ω such that

(14) M(Ω, S,Sqb) ≥ 2(1− 2N (ρ/d)N ).

Without loss of generality, let

Ω = {x ∈ R
N : ‖x‖ < d/2, xN > 0}

and let
τ = {x ∈ ∂Ω : xN = 0}, ν = {x ∈ ∂Ω : xN > 0}.
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For each positive integer n, define

hn(x) = (xN +
d

2n
)

{

(

x21 + . . .+ x
2
N−1 + (xN +

d

2n
)2
)−N/2

−
(

d

2
+

d

2n

)−N
}

.

Then hn ∈ C(Ω) ∩H. Clearly hn → 0 uniformly on ν as n→ ∞. Hence

(15)

∫

ν
hn dσ → 0 (n→ ∞).

Also,

∫

τ
hn dσ =

d

2n

∫ d/2

0
{(t2 + ( d

2n
)2)−N/2 − (d/2)−N (1 +

1

n
)−N}σN−1t

N−2 dt

=
dσN−1

2n

∫ d/2

0
tN−2(t2 + (

d

2n
)2)−N/2 dt+ o(1)

= σN−1

∫ n

0
sN−2(s2 + 1)−N/2ds+ o(1)(16)

→ σN−1
√
π
Γ((N − 1)/2)
2Γ(N/2)

(n→ ∞).

If S is the sphere of centre (0, . . . , 0, ρ) and radius ρ, then

(17)

∫

S
hn dσ = σNρ

N−1hn(0, . . . , 0, ρ)

= σNρ
N−1(ρ+

d

2n
){(ρ+ d

2n
)−N − (d

2
+

d

2n
)−N}

→ σNρ
N{ρ−N − (d/2)−N} (n→ ∞).

Recalling that σN = Nπ
N/2/Γ(N/2+1), we obtain from (15), (16) and (17) after

some simplification that

lim
n→∞

(

∫

S
hn dσ

/

∫

∂Ω
hn dσ

)

= 2(1− 2N (ρ/d)N ),

and this establishes (14).

4.2 Example 4. If Ω = B(0, R) and 0 < ρ < R, then there exists a sphere S of
radius ρ contained in Ω such that

M(Ω, S,Sqb) = 2− ρ/R.

Let y(n) = (0, . . . , 0, R+ 1/n) and define

hn(x) = ((R+ 1/n)
2 − ‖x‖2)‖x− y(n)‖−N
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for each positive integer n. Then hn ∈ C(Ω) ∩H and
∫

∂Ω
hn dσ = σNR

N−1hn(0) = σNR
N−1(R + 1/n)2−N .

If S is the sphere of centre (0, . . . , 0, R− ρ) and radius ρ, then

∫

S
hn dσ = σNρ

N−1hn(0, . . . , 0, R− ρ) = σNρ
N−1 (R+

1
n )
2 − (R− ρ)2

(ρ+ 1/n)N
.

Hence

lim
n→∞

(

∫

S
hn dσ

/

∫

∂Ω
hn dσ

)

= 2− ρ/R.

Thus M(Ω, S,Sqb) ≥ 2− ρ/R. The reverse inequality follows from Theorem 2.

4.3 Example 5. Let

Ω = {x ∈ R
N : R < ‖x‖ < 2R}.

If ǫ > 0 and ρ is sufficiently small, then there exists a sphere S of radius ρ
contained in Ω such that

(18) M(S,Ω,Sqb) > 2 + (1− ǫ)ρ/R.

For each integer n > 1/R let y(n) = (0, . . . , 0, R− 1/n) and define

pn(x) = (‖x‖2 − (R− 1/n)2)‖x− y(n)‖−N .

Let qn be the solution of the Dirichlet problem on Ω with boundary data 0 on
S(0, R) and pn on S(0, 2R). Define hn = pn−qn on Ω and extend hn continuously
to Ω. Then hn ∈ C(Ω) ∩H and

∫

∂Ω
hn dσ =

∫

S(0,R)
pn dσ = σNR,

by the Lemma. If S is the sphere of centre (0, . . . , 0, R+ ρ) and radius ρ < R/2,
then ∫

S
hn dσ = σNρ

N−1(pn − qn)(0, . . . , 0, R+ ρ)

≥ σNρ
N−1

(

2R+ ρ− 1
n

(ρ+ 1n )
N−1

−An

)

,

where An = supS qn. Hence

(19) lim inf
n→∞

(

∫

S
hn dσ

/

∫

∂Ω
hn dσ

)

≥ 2 + (ρ/R)(1− ρN−2 lim supAn).
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On S(0, 2R), we have

(20) pn ≤ (3R− 1
n
)(R +

1

n
)1−N < 3R2−N .

Hence qn < 3R
2−N on Ω, and in the case N ≥ 3 it follows that the expression on

the right-hand side of (19) exceeds 2 + (1 − ǫ)(ρ/R) if ρ is sufficiently small. In
the case N = 2, qn has boundary values 0 on S(0, R) and boundary values less
than 3 on S(0, 2R), by (20). Hence by the maximum principle,

qn(x) ≤ (3/ log 2) log(‖x‖/R) (x ∈ Ω),

so that An ≤ (3/ log 2) log(1+2ρ/R), and again the right-hand side of (19) exceeds
2 + (1 − ǫ)ρ/R if ρ is small enough. It follows in all cases that (18) holds if ρ is
small enough.

4.4. Finally, we verify Example 1. There exist a number p ∈ (0, 1) and a non-
negative continuous function f on S(0, 1) ∩ ∂Ω such that the function h defined
by

h(x) = (‖x‖−p−N+2 − ‖x‖p)f(x/‖x‖)
is harmonic on the cone Ωo = {x : xN > ‖x‖ cosα}, tends to 0 at each point of
∂Ωo\{0}, and is positive on Ω. (See e.g. Kuran [7, Theorems 1, 2].) We normalize
so that sup f = 1. For each positive integer n let y(n) = (0, . . . , 0,−1/n) and
define

hn(x) = h(x− y(n)) + (1 +
1

n
)p − (1 + 1

n
)−p−N+2.

Then hn ∈ C(Ω) ∩H. We shall show that

(21)

∫

∂Ω
hn dσ → 0 (n→ ∞).

Clearly hn → 0 uniformly on S(0, 1) ∩ ∂Ω, so

(22)

∫

S(0,1)∩∂Ω
hn dσ → 0 (n→ ∞).

If x ∈ ∂Ω\S(0, 1), then

‖x− y(n)‖ ≥ min{n−1 sinα, ‖x‖ − n−1}

and hence
‖x− y(n)‖ ≥ ‖x‖ sinα/(1 + sinα),

so that
hn(x) ≤ A‖x‖−p−N+2 + 2p (x ∈ ∂Ω\S(0, 1)),
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where A = (1 + cosec α)p+N−2. Since p < 1, the function ‖x‖−p−N+2 is
integrable on ∂Ω\S(0, 1). Since also hn → 0 pointwise on ∂Ω\{0}, we obtain by
dominated convergence that

(23)

∫

∂Ω\S(0,1)
hn dσ → 0 (n→ ∞).

From (22) and (23) we obtain (21). If S = S(w, ρ) ⊂ Ω, then
∫

S
hn dσ = σNρ

N−1hn(w)→ σNρ
N−1h(w) > 0 (n→ ∞).

Hence M(Ω, S,Sqb) = +∞.
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