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Fixed point theorems for nonexpansive operators

with dissipative perturbations in cones

S.S. Chang, Y.Q. Chen, Y.J. Cho, B.S. Lee

Abstract. Let P be a cone in a Hilbert space H, A : P → 2P be an accretive mapping
(equivalently, −A be a dissipative mapping) and T : P → P be a nonexpansive mapping.
In this paper, some fixed point theorems for mappings of the type −A+T are established.
As an application, we utilize the results presented in this paper to study the existence
problem of solutions for some kind of nonlinear integral equations in L2(Ω).

Keywords: nonexpansive mapping, accretive mapping, fixed point theorem, nonlinear
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Classification: 45H10, 47H06, 47H09, 47H15

1. Introduction

The study of fixed point problem for nonexpansive mapping for a closed convex
subset of a Banach space into itself was started by F.E. Browder, D. Göhde and
W.A. Kirk. Since then, whether a nonexpansive mapping from a bounded closed
convex subset of a Banach space into itself has a fixed point, has become an
interesting problem. As we know, the answer to this problem is negative in
general Banach spaces ([2]). But this problem is still open for reflexive Banach
spaces. Recently, some existence theorems for fixed points of nonexpansive type
mappings related to accretive mappings have been considered by some authors
([8], [10], [11], [12]).
The purpose of this paper is to establish some existence theorems for mappings

of the type −A + T in a cone P of a real Hilbert space H , where the mapping
A : D(A) ⊆ P → 2P is accretive and T : P → P is nonexpansive. As an
application, we utilize the results presented in this paper to study the existence
problem of solutions for some kind of nonlinear integral equations in L2(Ω).

2. Main results

Throughout this paper, suppose that H is a real Hilbert space with an inner
product 〈·, ·〉, P is a cone in H and there is an order “ ≤ ” induced by P in H ,
i.e., for any given x, y ∈ H , define x ≤ y ⇐⇒ y − x ∈ P .
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A mapping A : D(A) ⊆ H → 2H is said to be accretive (or monotone) if

〈u − v, x − y〉 ≥ 0

for all x, y ∈ D(A), u ∈ Ax and v ∈ Ay. If A is accretive, then −A is said to be
dissipative. In this paper, we always assume that

(2.1) (A+ I)(D(A)) = P.

For further details on accretive mappings which satisfy the condition (2.1), we
may refer to [5], [6], [7].

Theorem 2.1. Let A : D(A) ⊆ P → 2P be an accretive mapping satisfying the
condition (2.1), Ω be an open bounded subset of H with θ ∈ Ω and T : P → P
be a nonexpansive mapping. If the condition Tx � x for all x ∈ ∂Ω ∩ D(A) is
satisfied, then −A+ T has a fixed point in D(A).

Proof: For each 0 ≤ kn < 1, knT : Ω̄ ∩ P → P is a kn-set contraction. Since
Tx � x for all x ∈ ∂Ω ∩ D(A), knTx � x for all x ∈ ∂Ω ∩ D(A). By Lemma 1
in [5], we have

i(−A+ knT,Ω ∩ D(A)) = 1

and so −A+ knT has a fixed point xn ∈ Ω ∩ D(A), i.e.,

xn = (I +A)−1knTxn.

Letting kn → 1, {xn} has a subsequence (for simplicity, we still denote it by {xn})
such that {xn} converges weakly to x∗. Let xλ = (1− λ)x∗ + λ(I +A)−1Tx∗ for
all λ ∈ (0, 1). Since (I +A)−1 is nonexpansive, we have

〈xλ − (I +A)−1Txλ − [xn − (I +A)−1Txn, xλ − xn〉

≥ ‖xλ − xn‖
2 − 〈(I +A)−1Txλ − (I +A)−1Txn, xλ − xn〉

and, as n → ∞,

‖xn − (I +A)−1Txn‖ = ‖(I +A)−1knTxn − (I +A)−1Txn‖

≤ (1− kn) · ‖Txn‖ −→ 0.

Hence we have
〈xλ − (I +A)−1Txλ, xλ − x∗〉 ≥ 0

and so

(2.2)
〈(1− λ)x∗ + λ(I+A)−1Tx∗ − (I +A)−1T ((1− λ)x∗ + λ(I +A)−1Tx∗),

λ(I +A)−1Tx∗ − λx∗〉 ≥ 0.

Dividing (2.2) by λ and letting λ → 0+, we have

〈x∗ − (I +A)−1Tx∗, (I +A)−1Tx∗ − x∗〉 ≥ 0.

This implies that x∗ = (I +A)−1Tx∗, i.e., x∗ is a fixed point of −A+T in D(A).
This completes the proof. �



Fixed point theorems for nonexpansive operators 51

Corollary 2.2. Let A, Ω and T be the same as in Theorem 2.1. If the condition
Tx < x for all x ∈ ∂Ω∩D(A) is satisfied, then −A+T has a fixed point in D(A).

Proof: It is obvious that Tx � x for all x ∈ ∂Ω ∩ D(A). Hence the conclusion
can be obtained from Theorem 2.1 immediately. �

Theorem 2.3. Let A : D(A) ⊆ P → 2P be an accretive mapping satisfying the
condition (2.1), Ω be an open bounded subset of H with θ ∈ Ω and T : P → P
be a nonexpansive mapping. If ‖Tx‖ ≤ ‖x‖ for all x ∈ ∂Ω ∩ D(A), then −A+ T
has a fixed point in D(A).

Proof: For each 0 ≤ kn < 1, knT is a kn-set contraction and we have

‖knTx‖ ≤ ‖Tx‖ ≤ ‖x‖

for all x ∈ D(A) ∩ ∂Ω. By Theorem 3 in [5], −A + knT has a fixed point xn in
Ω∩D(A). Without loss of generality, we may assume that {xn} converges weakly
to x∗ as kn → 1. Thus, by the same proof as given in Theorem 2.1, we can prove
that x∗ is a fixed point of −A+ T in D(A). This completes the proof. �

Theorem 2.4. Let A : D(A) ⊆ P → 2P be an accretive mapping satisfying the
condition (2.1), Ω be an open bounded subset of H with θ ∈ Ω and T : P → P be
a nonexpansive mapping. If 〈u − Tx, x〉 ≥ 0 for all x ∈ ∂Ω ∩ D(A) and u ∈ Ax,
then −A+ T has a fixed point in D(A).

Proof: For each 0 ≤ kn < 1, knT is a kn-set contraction. Let

H(t, x) = tknTx

for all (t, x) ∈ [0, 1]× (Ω̄ ∩ P ).
Now, we prove that

x /∈ −Ax+H(t, x)

for all (t, x) ∈ [0, 1] × (∂Ω ∩ D(A)). Suppose that this is not true. Then there
exist t0 ∈ [0, 1], x0 ∈ ∂Ω ∩ D(A) and u0 ∈ Ax0 such that x0 = −u0 + t0knTx0.
Thus we have

(2.3) ‖x0‖
2 = −t0kn〈u0 − Tx0, x0〉+ (−1 + t0kn) · 〈u0, x0〉.

Since (I + A)(D(A)) = P , we have θ ∈ Aθ. In view of the assumption, it follows
from (2.3) that ‖x0‖

2 ≤ 0, which implies that x0 = θ. This contradicts θ ∈ Ω.
Thus, by using Theorem 1(c) in [5], we have

i(−A+ knT,Ω ∩ D(A)) = i(−A+ 0,Ω ∩ D(A)).

By virtue of Theorem 1(a) in [5] again, we have i(−A + 0,Ω ∩ D(A)) = 1 and
so −A + knT has a fixed point xn in Ω ∩ D(A). Without loss of generality, we
may assume that {xn} converges weakly to x∗ as kn → 1. Therefore, by the same
proof as given in Theorem 2.1, we can prove that x∗ is a fixed point of −A + T
in D(A). This completes the proof. �
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3. Application

In this section, we shall use the results presented in Section 2 to study the
existence problem of solutions for some kind of nonlinear integral equations.
Let Ω ⊂ Rn be a nonempty measurable subset with m(Ω) = 1, where m(Ω)

denotes the measure of Ω, and let f(x, y) : Ω× [0,+∞)→ [0,+∞) be a function
satisfying the Carathéodory condition, i.e.,
(i) for each y ∈ [0,+∞), f(x, y) is measurable in x,
(ii) for almost all x ∈ Ω, f(x, y) is continuous in y.

In addition, if f satisfies the following conditions:
(a) (f(x, y)− f(x, z))(y − z) ≥ 0 for all x ∈ Ω and y, z ∈ [0,+∞),
(b) for each x ∈ Ω, there exists N(y) > 0 such that

f(x, y) ≤ N(y) · y

for all y ∈ [0,+∞), where N(y) depends on y, then, by the condition (a), for x ∈ Ω
such that f(x, y) is continuous in y, f(x, y) : [0,+∞) → [0,+∞) is accretive.
Therefore, it follows from the assumption (b) and Proposition 1 in [5] that

(I + f(x, ·))([0,+∞)) = [0,+∞)

for almost all x ∈ Ω. Now let P = {u(·) ∈ L2(Ω) | u(x) ≥ 0 for almost all x ∈ Ω}.
Then P is a cone in L2(Ω). Denote

D(A) = {u(·) ∈ P |f(x, u(x)) ∈ L2(Ω)}

and define the mapping A : D(A) ⊆ P → P by

Au(x) = f(x, u(x))

for all x ∈ Ω and u(·) ∈ D(A). By the condition (a), we know that A : D(A) ⊆
P → P is accretive. For v(·) ∈ P , we have (I + f(x, ·))−1v(x) ∈ L2(Ω) since
(I + f(x, ·))[0,+∞) = [0,+∞) and (I + f(x, ·))−1 is nonexpansive for almost all
x ∈ Ω. Therefore, we have

(I +A)(D(A)) = P.

Suppose that k(x, y) : Ω × [0,+∞) → [0,+∞) is a function satisfying the
following conditions:

k(x, 0) ∈ L2(Ω)

and
|k(x, y)− k(x, z)| ≤ |y − z|

for all x ∈ Ω and y, z ∈ [0,+∞). Let T : P → P be a mapping defined by

Tu(x) =

∫

Ω
k(x, u(y)) dy
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for all u(·) ∈ L2(Ω) and x ∈ Ω. Since k(x, y) ≤ y+ k(x, 0), T is well defined on P
and it is easy to see that T is nonexpansive.

Now, we consider the following nonlinear integral equation:

(E3.1) u(x) = −f(x, u(x)) +

∫

Ω
k(x, u(y)) dy

for all x ∈ Ω. We make a further assumption on k(·, ·) as follows:

k(x, y) ≤ M · y + g(x)

for all (x, y) ∈ Ω × [0,+∞), where 0 < M < 1 and g(·) ∈ P . Choose r > 0 such
that

M + r−1
(

∫

Ω
g2(x) dx

)
1

2

≤ 1.

Then, for each u(·) ∈ P with (
∫

Ω u2(x) dx)
1

2 = r, we have

‖Tu(x)‖L2(Ω) ≤ ‖u(x)‖L2(Ω).

By Theorem 2.3, (E3.1) has a solution u(·) ∈ P .
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