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Cauchy problem for multidimensional
coupled system of nonlinear Schrodinger
equation and generalized IMBq equation®

CHEN GUOWANG
Dedicated to the memory of Prof. Jan Potocek and Prof. Josef Kolomy.

Abstract. The existence, uniqueness and regularity of the generalized local solution and
the classical local solution to the periodic boundary value problem and Cauchy problem
for the multidimensional coupled system of a nonlinear complex Schrédinger equation
and a generalized IMBq equation

1€t +V25 —ue =0,

uge — V2u — aV=2uy = V2 f(u) + V2([e]?)
are proved.

Keywords: coupled system of nonlinear Schrodinger equation and generalized IMBq,
multidimensional, periodic boundary value problem, Cauchy problem, generalized local
solution, classical local solution

Classification: 35L35, 35K55

1. Introduction

In [1], [2] the problems of soliton solutions for the Schrodinger field interacting
with the Boussinesq field have been studied and an approximate solution of system

(1.1) iet + €xp — ue = 0,

(32 0 534)u_5a_2 0

(1.2) 53 (1%) = 55 ()

a2 9z 39a%
have been found, where § > 0 is a constant. The exact soliton solutions of
the above system were obtained in [3]-[5] by various techniques. In [2] author
suggested that the Boussinesq equation (1.2) (which we call Bq-equation) was
replaced by the IBq equation (the improved Bg-equation)

2 9 5 ot 2 5 9?5
( Ju—b35(?) = 2= (P)

(1.3)

* The project was supported by National Natural Science Foundation of China (Grant
No. 1967/075).
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and the soliton solutions of system (1.1), (1.3) were obtained. A modification of
IBq equation analogous to the MKdV equation yields

22 92 ot 92
( )

(149 u= 55,

o2 9z 0x2012
which we call the IMBq equation. The IMBq equation with several variables
(see [2]) is

(1.4)/ Utt — V2utt - V2u = v2u3'

In this paper, we study the system of the multidimensional Schrédinger field
interacting with real generalized IMBq field

(1.5) iey + Ve —ue =0,
(1.6) ugt — V2u — aV3uy = V2f(u) + V2(¢]?),

where e(x,t) denotes complex unknown function of variables z = (z1, 22, -+ ,zp)
€ R"™ and t € R4, u(x,t) denotes a real unknown function of variables z and
t, V= (%,%, ,%), a > 0 is a constant, i = v/—1 and f(s) is a given
nonlinear function.

Let 2 C R™ be an n-dimensional cube with width 2D(D > 0) in each direction,
that is Q = {z = (z1, 22, ,7p)| lzjl < D, j =1,2,---,n}, z + 2D, denotes
(1, xj_1,25 + 2D, 2541, -+ ,2n) (j = 1,2,---,n) and Qr ={x € Q,0<
t < T}. For the system (1.5), (1.6), we discuss its periodic boundary value
problem in the (n + 1)—dimensional cylindrical domain Qp

(1.7)  e(x,t) = e(x + 2De;, t), u(w,t) = u(x +2De;,t), j=1,2,--- ,n,
(1.8) e(x,0) = eo(2), u(z,0) = ¢(x), ut(z,0) = p(z),

where eg(z), ¢(z) and ¢(z) are given functions of n-dimensional initial value,
satisfying the periodic boundary conditions (1.7). For the system (1.5), (1.6) we
also study the Cauchy problem

(1.9) e(x,0) = eo(2), u(x,0) = ¢(x), ut(z,0) = p(z),

where eg(2), ¢(x) and ¥(z) are given functions defined in R".

In Section 2 the existence and uniqueness of the generalized local solution and
the classical local solution of the periodic boundary value problem (1.5)—(1.8)
are proved. Moreover the regularity of the classical local solution of the problem
(1.5)—(1.8) is considered. In Section 3 the existence, uniqueness and regularity
of the generalized local solution and the classical local solution of the Cauchy
problem (1.5), (1.6), (1.9) are proved.

For simplicity, let @ =1 in (1.6). We prove only the existence, uniqueness and
regularity of the generalized local solutions and the classical local solution for the
2-dimensional problem, because we can treat the n-dimensional problem by the
method of the 2-dimensional case.
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2. Periodic boundary value problem (1.5)—(1.8)
We first establish an orthonormal base on La(€2).

Lemma 2.1 ([6], [7]). Let Q1 C R™ and A C R™ be measurable sets. If {¢;}ecr
and {xitrerx (J and K are the index sets) are orthonormal bases in Lo({1)
and La(A) respectively, then the system of functions {¢;(x)xx(y)}jesreK is an
orthonormal base in La(Q1 X A).

It is clear that Lemma 2.1 is valid for the case of any finite orthonormal bases.
Let us consider the eigenvalue problem for the ordinary differential equation

{ y" + Xy =0,
y(z1 +2D) = y(21).

We can obtain eigenvalues Aj; = 0‘12 = (%)2 (I = 0,1,--+) and the family

of eigenfunctions {y;(z1)} = {\/%, \/_15 cos 1, % sinoqzi,l = 1,2, },
which composes an orthonormal base. Similarly, we can obtain eigenvalues
Aoj = 6]2- = (%)2 (j = 0,1,---) and the family of eigenfunctions {z;(z2)} =
{\/%, % cos 312, % sinBjx2, j = 1,2,--- } of the periodic boundary value
problem 2”4+ z = 0, z(x2+2D) = z(x2).{z;(x2)} composes an orthonormal base.
According to Lemma 2.1, the family of functions {y;(x1)z;(z2), 1,5 = 0,1,---}
composes an orthonormal base in Lo ().

Let (e(z,t),u(x,t)) be the solution of the problem (1.5)—(1.8), with (z,t) =
Z?S‘:o Lij(t)y(w1)z;(x2) and u(x,t) = 2?3':0 Ty (t)yi(w1)2;(x2). The initial
value functions may be expressed eo(z) = > 75 oeyyi(e1)zi(22), ¢(z) =
>olj=0Piy(1)zj(v2) and P(x) = 3275 Yiyi(1)zj(w2), where g5 are com-
plex numbers, ¢;;, 1;; are real numbers.

Substituting the expressions of e(x, t) and u(x, t) into the system (1.5), (1.6), mul-
tiplying both sides of (1.5) and (1.6) by ;(x1)2;(x2) respectively and integrating
over (), we get

(2.1) iLy; = (af + B7)Lij — /QUEyz(Ccl)Zj(Iz) dr =0,

(1+ a2 + 62)T; + (0F + 62T — /Q (V2 f(u) + V2(e))-

y1(w1)zj(22) dx = 0, l,j=0,1,---.

(2.2)

Substituting the expressions of e(x, t), u(z, t), eg(x), ¢(x) and ¢ (x) into the initial
conditions (1.8), we obtain

(2.3) Li;(0) = e, Ti;(0) =5, T3;(0) =y, 1,j=0,1--+,
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where le (t) = %le (t), etc. Hence L;;(t) and Tj;(t) satisfy the infinite system of
ordinary differential equations (2.1)—(2.3). Let us now prove the existence of the
solution for the initial value problem (2.1)—(2.3). For this purpose, we shall first
consider the existence of the solution for the following initial value problem of a
finite system of ordinary differential equations

(2.4) il — (of + B3) Ly = AUNENyl(Il)Zj($2)d$,
(2.5) (14 af + B7)Iny; + (of + 83) Ty,

= [ (u) + T (en P (ar)z a2) o
(2.6) Lngj(0) =e15, Tni(0) =y, Tagi(0) =y, 1,j=0,1--- N,

where e (2, t) = ;o Lij ()i (1) 2;(w2) and up (z,t) =

Zl]?szo Tnij(t)yi(z1)zj(x2). In order to use Leray-Schauder’s fixed-point argu-
ment we are also going to consider the following initial value problem of the finite
system of ordinary differential equations with the parameter 6

(2.7) il — (of + B7) Ly = 9/QUNENyz($1)Zj($2)dw,
(2.8) (1+of + ) Tny; + (af + BT

=0 [ (V1) + T2 (enPD(ar)z a2) do.
(2.9) Lni;(0) = 0g15, Tnij(0) = Ogyy,

TNlj(O):ewljv l,jZO,I,N,OSHS]_

Lemma 2.2. Suppose that the following conditions are satisfied.

1. fec® |fU(s)| < K;ls|PT679) (j =1,2,3,4,5), where
Kj(j =1,2,3,4,5) are constants, p > 1 is a natural number and (j) denotes the
order of derivatives.

2. (L(t),T(t)) is the solution of the system (2.4), (2.5), where
L(t) = (Lny;(t), 1,j=0,1,--- ,N) and T'(t) = (Tny;(t), 1,5 =0,1,--- ,N).
Let

N
(2.10) En(t)=> (+af+8+ >  ab]
1,j=0 h+m=8
h,m=0,2,4,6,8
+2 Z alhﬁjm + 04110 + ﬁ}O)T]%,lj
h+m=10

h,m=2,4,6,8
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N

+3 A+af+p+2 > oA+ + 81Ty,
1,j=0 htm=10
hym=2,4,6,8
h 2
+ Z > o' B7") | Lvi | + 1.
l,j=0 h+m=10

h,m=0,2,4,6,8,10
Then there is

dEN (t) P+6

(2.11) o S Ke(En() 2,

where Kg > 0 is a constant independent of 6, D and N.

PROOF: Mllltiplying both sides of (2.7) by (1 + a?ﬂ? + a?ﬂ? + 04126? + 04185]2- +
allo + ﬁjl-O)LNlj, summing up the products for I, = 0,1,--- ;N and taking the
imaginary part, we get

d h 2
Ao+ X el
1,j=0 h+m=10
(2.12) h,m=0,2,4,6,8,10
=201 (unen, — Z ENx;’:c’zn%
h+m=10
h,m=0,2,4,6,8,10
where LNl] is the conjugate number of Lx;; and (u,v) fQ x) dx.

Multiplying both sides of (2.8) by (1 + a?ﬁ‘l + a?62 + al266 —i— al —|— B; )TNlj7
summing up the products for [,j = 0,1,---, N, adding < T El] -0 ng to both
sides of the obtained equation and adding the equation (2.12), we have

dEN(t)
e 20(V2 f(un) + V2(len?), une+ > UNghamt)
(2.13) d 7m_07 K 7678
+op{un, un) +200m (unen, — > enalias!).
h+m=10
h,m=0,2,4.6,8,10
| Nra@) =111 |- Lo () and [ - | m(q) denote the norm of the space Lo (),

Lo () and Sobolev space H™ () respectively.
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Since by (2.10) we have

2
EN(t) = Z Z <UNZC?t’ uNx;-’t> + Z <U’N:c]f:cglt’ UNSC]fSCth>

J=1 h=0.145 b=
hym=1,2,3
2
+2 <uNx xmt’ulexmt> (un,un) Z UN:L‘Jv'UJNxJ
h+m=5 j=1
(2.14) hm=1,2,3,4

2
+2 Z <uNx;’x5n’uNx;’x2 Z uNx5 uNx

+<€N’ €N> + Z <€N:C§L:c§"’EN:c§Lng> +1,

h+m=>5
hm=0,1,2,3,4,5

by using the Gagliardo-Nirenberg theorem [8] and (2.14) we obtain
1
(2.15) lunllzoo (@) < Crllunl? ||UN||H5(Q) < Cy(En(t))?,

[
(2.16)  [lunz; Lo (@) < Callunl|? ||uN||H5(Q) < Cy(En(t))2, j=1,2,

1
(2.17) lunz ol 1un o | L) < C5(En()2, 4.k =1,2,
1
(2.18) 14 g 2 1 1 g3 o | Loo() < Co(EN ()2,
Jtk=373k=0,1,23,
1
(2.19) 1 g ot I N gt | Loo() < CT(EN (D)7,

j+k=4,5,k=0,1,2,3 4.

Similarly we can obtain

1 .
(220)  llenllza(@) lena; b llena; o) < Ce(ENn(1)2, =1,2,
1 .
(221) ||5ijxk||7 ||€N:L‘Jxk||Loo(Q) < CQ(EN(t))zv Js k= 1,2,
1
(2.22) I gt e watas Nty < Cro(En (),
J+k=3,j,k=0,123,

1
(2.23) 1€ i g s 1€ v ot oo () < C11(EN (D)2,
j+k=4,5,k=0,1,234.
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Using the assumptions of Lemma 2.2, Holder inequality and the inequalities
(2.15)—(2.23) and (2.10), we have

(V2 f(un), un)]

= | [ 1 )0k, + es,) () gy + )l o
Q

2 2
p+a
< Op(Ex ()Y / S (e, | + g2 )yl da
(2.24) Pl ot J

2
pt4
< Cra(Bn ()= Y (lluna, Il + llungz Dllunl
j=1
p+6

< Ci(En() 2.

By means of integration by parts, Holder inequality, inequalities (2.15)—(2.19) and
the assumptions of the lemma, we have
9 s pt6
1
Similarly we have

p+6

(2.26) |<V2f(uN)a UNzdzdt + UNz225t + UN28t + uNx§t>| < Ci5(En(t) 2,

@21)  [(VAenPhuni+ Y gl < Cle(En ()3,

J+k=8
j7k2072747678

Integrating by parts and using inequalities (2.15)—(2.23) we get

[T (UNEN € Nyiag)| = |Im/Q(UNEN)x§xg§Nx§xg da|

= |Im / (Upnp243EN + BUNL2,2E N2y + 3UN2229E N2
(2 28) Q 142 142 1 2

+ uNx%Eng + ZUlexSENu’Ul + 6uNx1m§ENSL‘1I2 + GUJlexzalem%

+ 2U‘N9U1€lexg + uN:c%EN:c% + 3uNx%‘€N:c%:cz
3
+ BUN s N2222)E N 203 42 < Cr7(EN(2))2.
Similarly, we have
1
(2.29) |Im<uN£N, ENx?x‘zl + EN:C%x% + ENx%xg + ENI}O + EN:(;%OH < Clg(EN(t)) 2,

Observe that p > 1 and it follows (2.11) from (2.13) and (2.24)—(2.29). The proof
is thus completed. O

It is easy to prove the following lemma by (2.11)
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Lemma 2.3. Under the conditions of Lemma 2.2, if

oo
: o 2 2 h am
Jim By(0)=b= 3" (1+af+82+ > g
h,m=0,2,4,6,8
h 1 1 2
+ 2 Z Oél ﬁ;n‘f'alo‘f'ﬁjo)wlj
h+m=10
h,m=2,4,6,8

N
+ 3 (a2 Y afgr+al® 5006}
1i=0

h+m=10
h,m=2,4,6,8
N
+ > (1 + > A+ + 6}°)|slj|2 +1< o0,
1,j=0 h+m=10

hym=2,4,6,8
then En(t) < b/(1— Mb(p""")/zt)z/(p""l) is uniformly bounded (let M be the
bound) and independent of N and D in any closed subinterval 0 < t < t; < t,
4
where ty, = 2/[Kg(p + 4)b"2" ].

It is easy to prove the following lemma by Lemma 2.3 and Leray-Schauder’s
fixed-point theorem [9] as in [10].

Lemma 2.4. Under the conditions of Lemma 2.3, there is a solution of the initial
value problem (2.4)—(2.6) of the finite system of ordinary differential equations in
[0,¢1], here 0 < t1 < tp.

From the Ascoli-Arzeld theorem we have

Corollary 2.1. Under the conditions of Lemma 2.4 and for the sequences
{LNlj}le:o and {TNlj}le:o (N =1,2,---) of the solution for the initial value

problem (2.4)—(2.6), there are convergent subsequences {L,;; }l]\;s:O and
{TNSlj}lJ?;S:O respectively. As Ng — oo, then

Lngj— Lij,  Tngj— Ty Twgi—T;  (Lji=0,1,--)
uniformly in [0, t1].
Lemma 2.5. Under the conditions of Lemma 2.3, the series 3 5 _ |Li;12,
S0 B Ly |* (hym = 2,4,6,8,h+m = 10), 3750 af°| Ly ?,
S0 B LA S0 T S50 o T (h=2,8,10), 750 BT
(m = 2,8,10), 375 a?ﬁf“b:ig. (hym = 2,4,6,h +1 = 8), 375 a?ﬁ;”:ig.
(h,m =2,4,6,8, h+m = 10), >75_, Tg., > P50 alth. (h =2,10), 3750 5;.“7}3.
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(m = 2,10) and Elo’c]’-zo alhﬁjmTl%. (h,m = 2,4,6,8, h + m = 10) are convergent
and uniformly bounded (let M be the bound) in [0, t1].

PrROOF: Let us denote Sj = Zi],jzo a?ﬁ?|Llj|2 (J is a natural number). Ob-
viously Syy1 > Sj. Fixing J, taking Ng(> J) sufficiently large and using the
Corollary 2.1 we obtain

7 N,
4 2 4 2
Sy< ’SJ - E a B9 Ly, ’+ E al B9 Ly 1> < 1+ En, ().
1,7=0 1,7=0

Since the functions E,(t) are bounded and independent of Ny in [0, ], then S
is bounded. Consequently the series Z?S‘:o a?ﬁﬂLlj |2 is convergent and bounded
in [0,¢1]. Using the same method we can prove the other conclusions. The lemma
is proved. (I

Corollary 2.2. Under the conditions of Lemma 2.3, there exists a constant
My > 0, such that
lell zs () + lull sy + luell s ) < M,
lellcan) + lullcan) + llutllcana) < M
in [0,t1], here e(z,t) = 3°75 ¢ Lij(t)yi(21)z;(v2) and
u(@,t) = 375 =0 Tij(O)yi(x1) 2 (22).

Lemma 2.6. Under the conditions of Lemma 2.3, ey, — €, €Ny — Ex
(I =1,2), un, — u, un,z, — Uz (I = 1,2) and uny — ut(Ns — 00) uni-

formly in Qy,, where ey (x,t) = ZIJE‘S:O L,y (21)2j(22) and uy,(z,t) =
N

> 5=0 TN (Oyi(w1)z (w2).

PrOOF: Let Ly,; =0 (I,j > Ns). From Lemma 2.5 it follows that

m

len, —el < ’ > (L - LNSlj)yl(xl)Zj(xﬂ}
Lj=1

) N,
> szyz(ivl)zj($2)‘+‘ > Lngjn(en)zi(x2)

l,j—m—i—l l,j—m+1
<p Z L1j = L + Z 253
l,j 1 lj m+1

Observe Corollary 2.1. We can make the right side of the above inequality small
by first choosing m and then choosing Ny, then ey, (z,t) — (z,t) uniformly in
Qty, as Ns — 00. un, — U, UN,q, — Uz, ([ =1,2) and uy, — uz (Ns — 00) are
proved in a similar manner. Lemma 2.6 is proved. O

23
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Theorem 2.1. Under the conditions of Lemma 2.3, (L;;(t),T;;(t)) is a solution
of the initial value problem (2.1)~(2.3) in 0 < t < t1 < tp, where Lj;(t) =

Hmpy, oo Lnyij(t), Ti5(t) = Hmpy, oo Tivgj(t) and (Lygj(t), Tngi(t), 1j =
0,1,---,Ns) being solution of the initial value problem (2.4)—(2.6).

ProOF: The functions Ly, ;;(t) and Ty, ;(t) satisfy the system of the Volterra
integral equations

t
iLNslj = iElj +/O {(0412 + 6]2)LN51_7

Hun,en,, vi(r1)zi(x2))} dr = ie; + Hyyj,

(2.30)

(2:31) (1+a} + B)Tn,15 = (L+ af + 83) (1 + it
t
—/0 (t =D} + BTN,y — (V2 f(un,) + V(len, 1), mi(a1)z;(x2))] dr
E(1+al2+ﬁ]2)(spl‘] +wljt)_FNslj7 lajzoalu"'aNS'

The aim is to show that the functions €;;(¢) and Tj;(t) satisfy a similar system,
indeed, by using of (2.30) and (2.31) we have
|iLlj —iegy; — Hlj| < |iLlj — iLNSljl + |HNSlj — Hlj|

< |Lyj — Ll + (of + Bt Li; — Lvgjllcomn]

+ 11| (ue — un, &, yi(z1) 2 (22)) | cpo,44]

+ t1[(un,e — un,en,, yi(z1)zi(@2)) oo,

(2.32)

(1 +af + 83T — (1+of + 83)(¢y; + Wit) + Fj
< (14 + B2)|Tij — Tyl + [Fi; — Fujl
(2.33) <[ +af + 65 + (of + BHFINT; — Tivillcpon]
+ 10 () = Flun,)s 5125 + izl o)
+ el = len, P02 + wiz]) o) (15 = 0,1+, Ny),

where
t
Hy; = /0 {(af + B Lij + (ue, yi(w1)zj(x2))} dr,

t
k= /0 (t = )(af + BTy = (V2 (u) + V() yu(21) 2 (22))] dr.
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From Corollary 2.1 and Lemma 2.6 it follows that the right side of (2.32) and
(2.33) approaches zero as Ns — oo. Therefore (L;;(t),T;;(t)) is a solution of the
integral equations
iLlj = iglj + Hljv
(1+af + 81Ty = (L+of + 57) (e +yt) = Fyo Lj=01---.

Differentiating the above first formula with respect to ¢ and differentiating the
above second formula twice with respect to ¢t we get the conclusion of the theorem.

Theorem 2.1 is proved. (Il
Lemma 2.7 [11]. Suppose that H(zg, 21, ,2;) is k-times (k > 1) continuously
differentiable with respect to variables zp, z1,--- ,2 and zj(z,t) € Loo(QT) N

Ly([0,T); H*(Q)), j = 0,1,--- ,1. Then we have

aEH 2 l 2
o R SCWMED Y 1zl gy
H axlfl .. -(95[:2" Lo (&) ; I k()
where M = max;_g1,... | max . |zj(x, 1), Qr={z = (21, ,3,) €Q C

R, te€[0,T]}, Q is a bounded domain in R™, k= (k1,--- ,kn), kj >0, |%| =k=
E?:l kj :

Theorem 2.2. Suppose that the conditions of Lemma 2.3 are satisfied and
co(z), o(x),y(x) € HO(Q). Then there exists a classical solution (x,t) =

=0 LijOyi(x1)z5(z2), uz,t) = 32750 Tyj(t)yi(x1)2;(z2) of the problem
(1.5)(L.8) in Q.

PrOOF: It follows from the assumptions

050 aljZ/an(:v)yz(:m)Zj(wz)dx, Pl Z/ng(:c)yl(xl)zj(@)dxj

iy = /Q‘/’(I)yz(xl)zj(@)d% Lj=0,1,-

and they satisfy the condition b < co. In this case Theorem 2.1 guarantees the
existence of a solution of the initial value problem (2.1)-(2.3) in 0 < ¢ < t; <t
and we have

(2.35) iLlj = (Ozl2 + 5]2)131]‘ + (ue, y1z;),

(1+af + BTy = —(of + 53Ty,

(2.36) .
+<f(u)+|E|2ayl//zj+ylz_;/>v la.] =0,1,---
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in [0,¢1]. It follows from the finite system (2.4)—(2.6) of ordinary differential
equations that

(2.37) iLngj = (of + B7) LN,y + (un, Ny iz5),
(1+af + 8 Tn,5 = —(af + 5))Tn;

+<f(uNs) + |ENS|27 ylﬂzj + ylz‘;'/>7 lu] = 07 17 e 7NS'
Since Ly,;; and Ty, ;; converge uniformly to L;; and T; (1,5 = 0,1,---) in [0, 1]
as Ns — oo, and en,, un,, UN,z; (J = 1,2) and up,¢ converge uniformly to e,
u, ug; (j = 1,2) and uy respectively in Qy,, as Ns — o0, it follows from (2.35),
(2.36) and (2.37), (2.38) that Ly,;; — L;; and Tiy,;; — T}; uniformly in [0,#1] as
Ng — oo.

Multiplying both sides of (2.4) by (all2 + alloﬁjz + a?ﬁ?‘ + a?ﬁ? + a?‘ﬁ? +
04126]1-0 + ﬁjl»z)lej, summing up the products for I, =0,1,--- , N and taking the
imaginary part, we have

(2.38)

d 9 86
il 2 lenapapl) = 2hmlg s unen)inag +enutas

h-+m=6 1
(2.39) h,m=0,1,,6

66
TENp2ed T ENLG) T 2Im<a—gg(UN€N)= ENwtel T ENa2ad T ENGS)-
Multiplying both sides of (2.5) by (al10 + a?ﬁ? + a?‘ﬁ? + a?ﬁ;-l + a?ﬁ? + B}O)TNU
and summing up the products for [,7 =0,1,--- , N, we obtain

d 2 2
(00X e 42 Y Ty

h+m=>5 h+m=6
h,m=0,1,---,5 h,m=0,1,---,5

2 2 2
 lunvgoe? + s l® + llupgsl

+2 u h.,.m 2)

2
+ gl

2 2 2
< 2‘<6—$111[v f(uN) +V (|‘€N| )]7“Nx§'t + uN:cgt + uN:c%:c%t

64
+ a0z + 2I<a—$421[v2f(w) + V2(len )], Unazags + Unage)|

By using the Holder inequality and Lemma 2.7, we obtain

0t o 2 2
2 (92 (un) + 21w )] Uvage + g + Unaate + Unataze)|

(2.41) O}

< CIQ(HU’N”%{S(Q) + ||UNt||§{6(Q) + HEN”?{S(Q))a



Cauchy problem for multidimensional coupled system of nonlinear Schrédinger equation

o4 9 9
(.42) 2053 (7T ) + TPt + )|
2 2 2
< C20(||UNHHG(Q) + HUNtHHG(Q) + ”ENHHG(Q))a
86
(2.43) ‘ In(G (“N EN):ENag T ENwtad +ENaTad T ENag)
2 2
< C21(||UNHHG(Q) + lenlzey)
6
(2.44) ‘2Im xfli (unen), 1 € Nada2 + ENz2zd + EN:CS>

< O (llun o) + el (oy)-

Combining (2.39)—(2.44) and by means of Gronwall’s inequality, we get

2 2 2
(245) 3 Ulungrap I+ Nungopl + g 12) < Cos, t € [0,11].

Hence, from Corollary 2.2 and (2.45) it follows that
(2.46) lunllgs@) + luntll o) + llenllge) < Mz, t€[0,11].

Using the same method as in Lemma 2.5 we can prove that the series

h 2 h 2 h 2 _
Eloj':o o ﬂ§n|Llj| , Eloj':o Q ﬂ;nTl] and ijzo Q ﬂ;nTl] (h,m = 4,6,8, h+
m = 12) are convergent and bounded (let M3 be the bound) in [0,¢1]. Therefore
we have

Ly (1)) < 8 Ms

4627 |LNl]( )|< 4627

From the inequality

l,j=1,2,---, t€0,t1].

m (o]
2 2
leN, 22 = €p2] < ‘ > o (L — Lij)uiz +‘ > afLnuiz
1,7=0 l,j=m+1
(o]
2
+ ‘ > o Lljyle‘
l,j=m+1
m o0 1
2
< } > af (L — Llj)ylzj‘ +Co Y 262 ;
1,7=0 l,j=m+1

27
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it follows that € 23 ™ €g2 uniformly in ¢, as Ng — oo. Using the same method
we can prove that ENsmg — ‘%%7 ENgz1za — ExiTa) “ngﬁ — uw%, UNyz1my —
Ugqxoy uNsx% - ux%’ UNgzit = Uzity UNgzot — Uxat, uNsx%t - u:c%t’ uNsx%t -
Uy2ts and UN, g zot — Uzqzot Uniformly in Q¢ , as Ng — oo.
C T : 236 4341 6821 8 38\]

Similarly, multiplying both sides of (2.4) by («; ﬁj +a ﬁj +a; ﬁj +aj —i—ﬁj )L N1
summing up the products for I, = 0,1,--- , N and taking the imaginary part, we
have

N
S (X aba) i
1,j=0 h+m=8

h,m=0,2,--,8

N N _
(2.47) < ’Im % +8°+2 > a8l

l,j=0 h+m=10
h,m=2,4,6,8,

—|—‘Im/Q’UJNEN Z ng;’x;"tdx"
h4+m=8
h,m=0,2,4,6,8

Integrating by parts and using Cauchy’s inequality and Lemma 2.7, we obtain

N
(2.48) > ( > 04?5;”)|LNU|2 <C, te0,tq].

h,m=0,2,4,6,8

Multiplying both sides of (2.5) by (a%ﬁ? + a?ﬁ? + 0416631 + 04185]2- + 04110 + 5]10)Tsz

and summing up the products for [,5 =0,1,--- , N, we have
N
h h 2
> ( > ars+ > ' B )TNU
1,j=0 h+m=10 h+m=12
h,m=0,2,4,6,8,10 h,m=0,2,4,6,8,10,12,
N
(2.49) h 9 9
<oxl( Y S s TRy + lunleg

1,7=0 h+m=12
h,m=0,2,4,6,8,10,12

+ ||€N||H6(Q)] < Cor, t € [0,1],

where constant Co7 is independent of N. From (2.48) and (2.49) it follows that the
series 2?3:0 a?6;¥|Llj|2, ijzo a?ﬁ?Té, Elo’c]’-zo a?ﬁ?Té and 2?3:0 a?ﬁ?Té
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are convergent and bounded (let My be the bound) in [0, ¢;]. Hence

M, : M, M,
|Ly;(t)] < . L] € =5, 1Ty()] < ;
J 262 J a%ﬂ? J 462
.. My )
|TNlj(t)|§ﬂa 17]21725"'3 te[ovtl]'
alﬂj

Using the above method we can prove that ey,; — &t and UN 22— Ug2ge
uniformly in @, as Ny — oco. Using the same method we can prove that
UN 2262 7 Up2g2y UNg2 = Up2 uniformly in Q¢,, as N5 — oo.

Thus if the nonlinear operators defined by (1.5) and (1.6) respectively are ap-
plied to e(z,t) = =75 o Lij(t)yi(z1)y;(z2) and
u(z,t) = 327520 T1j(t)yi(z1)y;(22), the results are two functions, say F(z,?) and
G(z,t), which are certainly continuous. Thus it is enough to prove F(x,t) =
0 and G(z,t) = 0, because for all [,j, (F(z,t),y;(x1)zj(x2)) is just the left
side of (2.1) and (G(z,t),y;(21)z;(22)) is just the left side of (2.2). Therefore
(F(x,t), yl(xl)yj (22)) =0, (G(z,1),y (xl)zj(x2)> = 0. Noticing that

{w(z1)zj(x2),1,j = 0,1,---} is an orthonormal base, we have F(z,t) = 0 and
G(z,t) = 0. Thus (e(x,t), u(z,t)) is a classical solution of the problem (1.5)—(1.8),
where &(x,1) = 37750 Lij(Oyi(w1)zj(w2), w(x,t) = 3275-0 Ti;(0)yi(r1)2(x2)-
Theorem 2.2 is proved. ([l

It is easy to prove the following theorem as in [10].
Theorem 2.3. Suppose that f € C3, eo(x),80(x) € HY(N), o(z), 5(z), ¥(z),
Y(x) € H2(Q). Let (e(x,t),u(z,t)) and (e1(x,t),u1(z,t)) be two different clas-
sical local solutions corresponding to eo(z), ¢(x), ¥ (z) and £y(x), ¢(z), P (x),
respectively, of the problem (1.5)—(1.8) in Q¢,. Then for any € > 0 there exists a

6 >0, such that if |leg — €ollg1(q) + 1 — Gl p2() + ¥ — 1;”]{2(9) < &, we have

le —e1llm2() + et — cuellm@) + llu — vl g2) + llue — viell g2(o)

(2.50)
+ l|uee — uoet| g2y <&, 0<t<t.

Corollary 2.3. Under the conditions of Theorem 2.3, the solution of the problem
(1.5)—(1.8) in @y, is unique.

Now, we are going to consider the regularity of the solution for problem (1.5)—
(1.8).

Lemma 2.8. If f(s) € C*(R) and go(z), p(z),1(x) € H*(Q) (k > 7, the case of
k < 6 was proved), then

(2.51) lenll ey + lunll gr ) + lunell gr) < Ms, € [0,t],

29
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where My is a constant independent of N.

PRrROOF: Multiplying both sides of (2.4) by > b2k oalhﬁgnf]vlj(t), sum-
m=
h,m=0,2,.-- 2k

ming up the products for [,7 = 0,1,--- , N and taking the imaginary part, we
get

{ Z > 04?5;”|LNU|2}

(2.52) hm 072, ,2k
= 2Im/ (unen)(—1)F Z ENghap dT.
@ h+m=2k
hym=0,2,-- 2k
Multiplying both sides of (2.5) by > htm=2(k_1) a;‘ﬁgnTNU and summing
m=2(k—

h,m=0,2,- 2(k=1)
up the products for [, =0,1,--- , N, we get

N
%{ Z [ Z (a?ﬁj + o‘lh—i-zﬁj o 5m+2)} TNZJ

Li=0" h4m=2(k—1)
h,;m=0,2,,2(k—1)

. X @ ey TRy,

l,7=0 h+m=2(k—1)
hym=0,2, 2(k—1)
- /Q V2 f(uy) + V2(len )] -
N .
> > ) B Ty (1) 25 (w2) da.

L,i=0  h4m=2(k—1)
h,m=0,2,-,2(k—1)

(2.53)

Combining (2.52) and (2.53) and integrating by parts with respect to z, we im-
mediately get

(2.54)
d 5 )
2 (D DR (S R B DI [
htm=k-1 h+m=k
h,m=0,1,---,(k—1) h,m=1,2,-- ,(k—1)
2
2
+ 3 gyl + e ) + S sl
=1 h+m=k

h,m=1,2,- 7(k_1)
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2
S D

h+m=k
h,m=0,1,--- k
A 2(
< 2‘<axk 5[V f(un) +V (len]?)] ZuNm By ‘
1
k—2 2
+2‘< [V flun) + V2(len|?) Z“Nx Byt ‘
6:102
+ 2’Im /Q Z (U’NEN)x}llng Z ng}llxgl d(E‘,
h7m:0717"'7k h7m:0717"'7k

where > * =3, g, h=kk—=2,-- k- 2(%), when k is an odd number;
h=kk—-2,-- k— 2(%), when k is an even number; Y =37, .. m =
kyk—2,--  k—2(252), when k is an odd number; m = k, k—2,--- , k —2(£5%),
when £ is an even number.

By using Hoélder’s inequality and Lemma 2.7, we obtain

6k 2
25 92 (un) + V2] Sty

33:1

(2.55)
< C28(H”N||§{k(g) + ||uNtH%{k(Q) + ||ENH%{I<:(Q))7

8k—2 .
‘2<6,’E§_2 [v2f(uN) + V2(|€N|2)], E uNSC]f:Cth>‘

(2.56)

< C29(||“N||?qk(g) + ”’U’Nt”%(k(ﬂ) + ”‘EN”%{k(Q))v

21m / > neNapap D Ewafep da]

ht+m=k htm=k
(2.57) hum=—0,1,- .k h,m=0,1,- k

< C3O(||UN||%]1€(Q) + HEN”%I’“(Q))'

Substituting (2.55)—(2.57) into (2.54) and by means of Gronwall’s inequality, we
get (2.51). Lemma 2.8 is proved. O

Lemma 2.9. Under the conditions of Lemma 2.8, if k = 2r+& (& >0, r > 1),
then there are estimates

(2.58) sup lenys | gre-26(q) < Cs1, B=1,2,--,m
0<t<t1

(2.59) sup |lups+1|l gr—208-1) < Csa, =121,
0<t<t; Nt H ()
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where constants C3; and C39 are independent of N.

PROOF: By mathematical induction we prove that (2.58) and (2.59) hold. Multi-
plying both sides of (2.4) by LNlj(t) +> hm—2¢ ozlhﬁ;nL'Nlj, summing up
—4GQ1
hvm:0727"' 7251
the products for I, =0,1,--- , N and taking the imaginary part we have

N
2 2 2 2 T
llenell® + > lenghagll” = Im > (of + B3) Ly Ly
h4+m=&; 1,j=0
h7m:0717"'7§1
+Im/UN€N§Ntd£U
Q

N
(2.60) I h+2 om hgm+2\p T
+ Im Z Z (Ozl 6]' + o 6j ) NijLNij
1,j=0 h4+m=2£;
h,m=0,2,-,2¢1

+ImLuNEN(—1)§1 Z ng;‘x;nt dx.
h+m:2§1
hvm:0727“' 7251

Integrating by parts with respect to x and using Cauchy’s inequality, Lemma 2.7
and (2.51), from (2.60) we can obtain (2.58) for § = 1.

Multiplying both sides of (2.5) be Ty;(t) + > himez(ie1) M BT (1),
h,m=0,2, 2(k—1)
summing up the products for [,7 =0,1,--- , N we obtain
(2.61)
2 2 2
huveel + 1Vunel®+ 3 uygggpel
h+m=k—1
h,m=0,1, ,k—1
2
2 2
£2 Y lungpepel® + Y sl
h+m=k j=1
h,m=0,1,--- k
N
--> {(0412 + B3) T, (TNlj + > O‘lhﬁ;'ﬂTNlj)}
1,j=0 h4m=2(k—1)

h,m=0,2,- 2(k—1)

[ 9 )+ Ve (e + (D ) o

h+m=k—1
hym=0,1,,k—1

Integrating by parts with respect to x and using Cauchy’s inequality,
Lemma 2.7 and (2.51), from (2.61) we can obtain (2.59) for 8 = 1.
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Assume that (2.58) and (2.59) hold for 5. We are going to prove that (2.58)
and (2.59) hold for § + 1. Differentiating (2.4) 3 times with respect to ¢, mul-
tiplying both sides of the obtained equations by ZNljfﬂ“"‘ >

hAm=2£511
hym:0727"' 725ﬁ+1
ozlhﬁ;nfmjtﬁﬂ, summing up the products for [, = 0,1,--- | N, integrating by
parts and taking the imaginary part, we get
2 2
(2.62) lensilP+ Y lenaapenl
hAm=¢511
hvm:0717“' 7£ﬁ+1
N
< }Im Z {(0‘[2 + 6]2')LNljtﬁ (LNljtﬁ+1 + Z alhﬁgnLNljtﬁJrl)H
1,j=0 h+m 25
=BG
Him [ (e {zwn + (-1 >  Natapennt | 4o
hAm=2£511

h,m=0,2,-- 72£ﬁ+1

Integrating by parts with respect to z and using Cauchy’s inequality,
Lemma 2.7, (2.51) and the assumptions of the mathematical induction, we obtain

(2.58) for 5+ 1.
Differentiating (2.5) § times with respect to ¢, multiplying both sides of the
obtained equations by TNljtﬁ+2 +> ham=2(65_1) ozlhﬁ;nTNljtmrz, summing
hym:0727"' 72(§ﬁ71)
up the products for [, =0,1,--- , N and integrating by parts, we obtain
(2.63)

2 2 2
luno+2ll” + VU2l + > [ zhgggot2ll
h—i—m:fﬁ—l
h7m:0717"'75ﬁ_1
2
2
+2 Yyl sgtﬁHH
h+m:§ﬁ .7—
hm:1727“'7£

=— Z { al + ﬁ TNlJtﬁ (TNl]tﬁJrz + Z af‘ﬁjmTNljtﬁH)}
LI=0 hrm=2(65—1)
h,m=0,2,-- ,2(¢5—1)

+ (92 un) + T2 (enhe (unese:

+ (—l)sﬁ—l Z uNx]fCCgltﬁ+2) dx.

htm=2(£5—1)
hvm:0727"' 72(5ﬁ_1)
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Using the same method as above, from (2.63) we can obtain (2.59) for 8 + 1.
Lemma 2.9 is proved. ([

It is easy to prove that the following theorem is valid by Lemmas 2.8, 2.9 and
the compactness theorem.
Theorem 2.4. Suppose that f(s) € CK(R), |fU)(s)] < Kj|s|p+(5_j) (j =
1,2,3,4, 5, p > 1) and eo(z), p(z),(x) € HFYQ). If k = 2r + & (& >
0,7 > 1), then the solution (e(x,t),u(z,t)) of the problem (1.5)—(1.8) has ge-
neralized derivatives Dg‘Dtﬁs (0 < |a|+28 < k), D%Dtﬁu O0< |a| <k, 8=0,1;
0 <l|ao+2(6-2) <k, 8=23,---,r) and continuous derivatives Dg‘Dfs
0 <la|+2B8+1) < k—2) and DDPu (0 < |a| < k-2, 8 =0,1; 0 <

ol +2(6-1) < k-2, 08=2,3,---, r) where Dy = %, a = (a1,a3),
a; >0 (i=1,2), |a| = a1 + ag; Dy = &, Dﬁ = gf;
Remark 2.1. Obviously, after obtaining the integral estimates (2.51), (2.58) and
(2.59) of the approximate solution for the problem (1.5)—(1.8), we can obtain the
existence and regularity of the generalized local solution (when k& > 5) and the
classical local solution (when k > 6) for the problem (1.5)—(1.8) by the compact-
ness theorem, too.

3. Cauchy problem (1.5), (1.6), (1.9)

In this section, we are going to consider the Cauchy problem (1.5), (1.6), (1.9).

Theorem 3.1. Suppose that the condition (1) of Lemma 2.2 is satisfied and
e0(z), (x),¢(x) € H¥(R?). If k > 5, then there exists a unique generalized local
solution (¢(z,t),u(x,t)) of the Cauchy problem (1.5), (1.6), (1.9) in [0,#*] x R?,
where 0 < t* < tpx,

2 2 2 2
O = 017 + 1w 12+ e 1P+ Y0 [l

h+m=4
h,m=0,1,2,3,4
2 2 2 2 2 2
+2 > e 1P Igs 12 + 10l + 110l + oz I + la, |
h+m=5
h,m=1,2,3 4
2 2 2 2
+2 3 e l® + legs I + leagll? + lleol
h+m=5
h,m=1,2,3,4
2 2 2
D gutapl® + lleaus I + lleaug 12 + 1,
h+m=5
h,m=1,2,3,4
ty = 2/[Ke(p + Db P2 and || - | = || - | py(r2)- If k > 6, then there exists a

unique classical local solution (e(z,t),u(z,t)) of the Cauchy problem (1.5), (1.6),
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(1.9) in [0,t*] x R2. The solution (¢(z,t),u(x,t)) of the Cauchy problem (1.5),
(1.6), (1.9) has the same regularities as in Theorem 2.4.
PROOF: Let us take a real sequence {Ds} (Ds > 1) such that Dy — oo, as

s — oo. For every s, let us construct periodic functions egs(z), () and ()
with period 2Dg, such that

(1) 20s, @s, s € H*(Q), where Qs = {z € (v1,22) | |25 < Ds,j = 1,2},
(2) cos(@) = co(x), ps(x) = @(x), ¥s(x) = 1(x), as x € [-(Ds — 1), Ds — 1] X
[-(Ds —1),Ds — 1] = Qs.
Then
||605x]11x5n”[,2(ﬁs) < HEO:C]fx;nHa (h +m = ka hvm = 07 17 e 7k)7
||g0550}111'5n”L2(ﬁs) < H<P;c]11xg’b”5 (h +m = ka hvm = 07 17 T 7k)7
||2/]S-’E:}1LZE§HHL2(§S) S me?w%””’ (h +m = k, h,m = 07 1, N 7]{)

We consider the following periodic boundary value problem

(3.1) iet + Ve —ue = 0,

(3.2) u — V2 — Vi = V2 f(u) + V2(Je]?),

(3.3) e(z,t) = e(x + 2Dse;, t), u(x,t) = u(x + 2Dse;, 1), ji=1,2,
(3.4) e(x,0) = ep(x), u(z,0) = p(z), ut(z,0) = Y(x).

Let {y;(z1)} be an orthonormal base of eigenfunctions of the following boundary
value problem of an ordinary differential equation
y'+xy=0,  ylz1) = y(z1 +2Ds),
corresponding to eigenvalue \j; = a? = (3—2)2, (1=0,1,---) and {zj(x2)} be an
orthonormal base of eigenfunctions of the following boundary value problem
2+ A2 =0, z(x9) = z(x2 + 2Dy),
corresponding to eigenvalue Ay; = ﬁjz = (%)2, (j = 0,1,---). According to
z

S

Lemma 2.1, the family of functions {y;(21)z;(x2), [,j = 0,1,---} composes an

orthonormal base in La(Qs).
Suppose that the approximate solution of the problem (3.1)—(3.4) is (ens(z,t)

= O Lt (Oyi(@1)2j(w2), un, (@,t) = 3V Tv,1j (yi(1)2j(x2)), where

L,5(t) and Ty, 1;(t) are the coefficients to be determined. The coefficients should

satisfy the initial value problem

(3.5) (ienyt + Ve, —un,en,, uizj) =0,

(3.6)  (unyt — Viun, — Vune — (VEf(un,) + V2(len,]?), wizj) = 0,
Ln,i5(0) = (€0s, w125), Tn,15(0) = (s, yi25),

(37) TNSlj: <w87ylzj>7 l,j=0,1,---, Ns.
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Let
N,
En, ()= [A+af+82+ > afplr+2 > apsr
1,j=0 h+m=8 h4+m=10
h,m=0,2,4,6,8 h,m=2,4,6,8
+aof® +BOTR + A+af +87+2 Y o B+ o+ BT
h+m=10
h,m=2,4,6,8
+(1+ > a8+ a4 B0 Ly + 1
h+m=10
h,m=2,4,6,8

It follows that for any s, limy, o En,(0) = bs < b*. Hence t3 < t;,_. By the
same method as above for obtaining the estimates (2.51), (2.58) and (2.59) and
by imbedding theorem we have

(38) len,lar(a,y + lun, lar,y + lungtllmr@,) < Cs3, T € [0,+],
(3:9)  llen,llor-2x0,) + lungller-—2x(0,) + lunillor-2a0,) < Cs4,

t €0, tp],
(3.10)  llenasllgr—28(,) <Cs5,  B=12,--,1r  t€[0,],
(3.11) HENStﬁHck*%ﬁJrl)A(QS) < Csg, B=1,2,---,m t € [0, 1],
(312) lluyystillgr-—26-1(q,) < Csr,  B=12,--,1r  t€[0,t],
(313)  lun,siillon—28n(,) < T8 B=1,2,-,r,  t€[0, 8],

where constants C; (j = 33-38) are independent of N5 and Ds, 0 < A < 1,
k=2r+& (£>0,r>1).
If k£ =5, then from (3.8)—(3.13) we obtain

len s,y + lenallmsq + lunlms@.) + lunal s,

(3.14)
+llun, 2 lgs,) < C9 t€[0,t],

lenllcaay) + llenillcray) + llungllesa,) + llungellesaqy)

3.15
(3.19) tlunelmong) < Cio £ €[04,

where the constants C39, Cy9 are independent of Ng and Dg. By virtue of
(3.15) and the Ascoli-Arzela theorem, we can select from ({en,}, {un,}) a sub-
sequence, still denoted by ({en,}, {un,}), such that when Ny — oo, the sub-
sequences {DFen,} (0 < |of < 1), {DFun,} (0 < |af < 3) and {DFun}
(0 < |a| < 3) uniformly converge to the limit functions {Dges} (0 < |af < 1),
{D%us} (0 < || <3) and {DYus} (0 < || < 3) in Qg X [0, tp«] respectively.
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The estimate (3.14) still holds for the above subsequence ({en, }, {un,}). Hence
we can select from ({en, }, {un,}) a subsequence, still denoted by ({en, }, {un,}),
such that when Ng — oo, the subsequences {D%epn,} (0 < |a| < 5) and {Dgun, }
(0 < |a] < 5) in Loo([0, tp«]; L2(Qs)) weakly star converge to limit functions
{D%es} (0 < |a] <5) and {DFus} (0 < |a| < 5) respectively; the subsequences
{Dien.i} (0 < Jal < 3) and {D3un.i} (0 < Ja| < 5) in Loo([0, t-]); Lo(2,))
weakly star converge to limit functions {D%g} (0 < |o| < 3) and {Dus}
(0 < |a| < 5) respectively and the subsequences {DZun 4} (0 < |of < 5) in
Loo ([0, tp+]; L2(2s)) weakly star converge to limit functions {DSusi} (0 < |a| <
5) respectively. From a corollary of the resonance theorem ([12]) it follows that the
estimates (3.8)—(3.13) still hold for ({es}, {us}), which is a generalized local solu-
tion of the problem (3.1)—(3.4). Using the Ascoli-Arzela theorem we can select a
subsequence of ({5}, {us}), still denoted by ({es}, {us}), such that when s — oo
the subsequences {D%es} (0 < |a] < 1), {D%us} (0 < |a| < 3) and {DGus}
(0 <|a| <3) in any domain {—L < z1, 22 < L, 0 <t < t3+} (L > 0) uniformly
converge to limit functions Dge (0 < |a| < 1), DQu(0 < |a| < 3) and DSuy
(0 < || < 3) respectively. From (3.8)—(3.13) of k = 5 it follows that when s — oo
the subsequences { D%} (0 < |a| <5) and {D%us} (0 < |a] <5) in Loo([0, tp+];
Lo(—L,L) x (—L, L)) weakly star converge to limit functions D%e (0 < |a| < 5)
and D%u (0 < |a| < 5) respectively, the subsequences {D%eg} (0 < || < 3) and
{D%ust} (0 < || <5)in Loo([0,ty]; La((—L, L) x (—L, L)) weakly star converge
to limit functions D%e¢ (0 < |o| < 3) and Dgu; (0 < |a| < 5) respectively and
the subsequences {D%ustt} (0 < || < 5) in Loo ([0, tp+]; Lo((—L,L) x (=L, L))
weakly star converge to limit functions DS uy (0 < |a| < 5) respectively. There-
fore if k > 5, then there exists a generalized local solution (e(z,t), u(x,t)) of the
problem (1.5), (1.6), (1.9).

Similarly, we can prove that if k¥ > 6, then there exists a classical local solution
(e(z,t),u(z,t)) of the problem (1.5), (1.6), (1.9). The solution has the same
regularities in Theorem 2.4.

Obviously, the generalized local solution or the classical local solution of the
problem (1.5), (1.6), (1.9) is unique. The proof is complete. O
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