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On non-homogeneous viscous incompressible fluids.

Existence of regular solutions

Jérôme Lemoine

Abstract. We consider the flow of a non-homogeneous viscous incompressible fluid which
is known at an initial time. Our purpose is to prove that, when Ω is smooth enough,
there exists a local strong regular solution (which is global for small regular data).

Keywords: Navier-Stokes equations

Classification: 35Q30, 76D05

Introduction

Let Ω be a bounded connected open subset of R
3, T > 0 and QT = Ω×]0, T [ .

A non homogeneous fluid is described by its velocity u = (u1, u2, u3), its density ρ,
its viscosity ν = ν(ρ) and its pressure p. It is modelized by

(1)











ρ ∂tu −∇ .
(

ν(ρ)(∇u + t∇u)
)

+ ρ (u . ∇)u+∇p = ρ f,

∇ . u = 0,
∂tρ+ u . ∇ρ = 0,

(2) u = 0 on ΣT = ∂Ω×]0, T [,

(3) u|t=0 = u0 and ρ|t=0 = ρ0 in Ω.

The aim of this work is to prove the existence of a local regular solution of
(1)–(3) in QT , when f and u0 are regular data and ρ0 is supposed to be regular
and strictly greater than 0, i.e.

0 < M1 ≤ ρ0 in Ω.

When the viscosity does not depend on the density, S.A. Antonzev and A.V. Ka-
jikov [1] proved the existence of weak solutions (see also J.L. Lions [7]). O.A. La-
dyzenskaya and V.A. Solonnikov [5] proved the local existence of a strong regular
solution and the global existence for small data.
When ν = ν(ρ), E. Fernández-Cara and F. Guillén [3] obtained the existence of

a weak solution for u0 ∈ L2(Ω)3, ∇ . u0 = 0 and u0 . n = 0, ρ0 ∈ L∞(Ω), ρ0 ≥ 0,
f ∈ L1

(

0, T ;L2(Ω)3
)

and ν ∈ C(R+) such that ν(s) ≥ β > 0 for all s ∈ R+ (see
also P.L. Lions [8]). According to uniqueness, M. Kabbaj [4] gives a result for a
regular strong solution of (1)–(3) when ρ is supposed to be in C2(QT ).
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1. Existence result

In all the paper long, we suppose that

Ω is a bounded open subset of R3 with a C2 boundary,

ρ0 ∈ C1(Ω) satisfies M2 ≥ ρ0(x) ≥ M1 > 0 for all x ∈ Ω,
ν ∈ C1(]0,+∞[), ν(a) ≥ ν1 > 0 for all a > 0,

f ∈ Lq(QT )
3, u0 ∈ W 2−2/q,q(Ω)3, ∇ . u0 = 0, u0|∂Ω = 0 with q > 3.

Under these hypotheses, one has the following result:

Theorem 1. There exists t ≤ T such that the equations (1)–(3) have a solution
(u,∇p, ρ) which satisfies

u ∈ W2,1
q (Qt), ∇p ∈ Lq(Qt)

3, ρ ∈ C1(Qt).

Moreover, there exists R > 0 depending on Ω, ν, T , ρ0, such that if

‖f‖Lq(QT )3 + ‖u0‖W 2−2/q,q(Ω)3 ≤ R,

then (u,∇p, ρ) is a solution of (1)–(3) for t = T . �

Outline of the proof. We use a fixed point argument, decoupling the variables

u and ρ. More precisely, let us consider z ∈ W2,1
q (QT ) satisfying ∇ . z = 0,

z(0) = u0 in Ω and z|ΣT
= 0.

In the first part, we prove that there exists a unique regular solution (u,∇p, ρ)
of the equations

(4)































ρ ∂tu −∇ .
(

ν(ρ)(∇u + t∇u)
)

+ ρ (z . ∇)u+∇p = ρ f in QT ,

∇ . u = 0 in QT ,

∂tρ+ z . ∇ρ = 0 in QT ,

u(0) = u0 and ρ(0) = ρ0 in Ω,

u|ΣT
= 0.

In the second part, we prove that there exists R such that if ‖f‖Lq(QT )3 +

‖u0‖W 2−2/q,q(Ω)3 ≤ R or if T is small enough, then z 7→ u is a continuous map

from a convex closed bounded subset ofW2,1
q (QT ) with the topology of a Banach

space Xq,T defined below into itself, where W2,1
q (QT ) ⊂ Xq,T with compact

imbedding, and by Schauder’s theorem, we infer the existence of a fixed point.

Remark. The proof of Theorem 1 is based on results of O.A. Ladyzenskaya and
V.A. Solonnikov [5].
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2. Functional spaces and preliminaries

Let D(Ω) be the space of C∞ functions with compact support in Ω, D′(Ω) the
space of distributions on Ω and 〈 , 〉Ω the duality product between D(Ω) and
D′(Ω).
For 1 ≤ r < +∞, Lr(Ω) is the space of distributions f on Ω for which |f |r is

integrable. This space is endowed with the norm

‖f‖r =
(

∫

Ω
|f |r

)
1

r
,

and L∞(Ω) is the space of distributions f on Ω locally integrable and satisfying

‖f‖∞ = supess |f | < +∞.

For 1 ≤ s ≤ +∞, the Sobolev spaces are defined by

W 1,s(Ω) = {v ∈ Ls(Ω) : ∇v ∈ Ls(Ω)3},
W 1,s

0 (Ω) = closure of D(Ω) in W 1,s(Ω),

W−1,s(Ω) =
{

v ∈ D′(Ω) : v = v0 +
3
∑

i=1

∂ivi : vi ∈ Ls(Ω), i = 0, . . . , 3
}

,

and we denote H1(Ω) =W 1,2(Ω), H1
0 (Ω) =W 1,2

0 (Ω), H
−1(Ω) =W−1,2(Ω) and

V = {v ∈ D(Ω)3 : ∇ . v = 0},
V = {v ∈ H1

0 (Ω)
3 : ∇ . v = 0}.

Let us recall that V coincides with the closure of V in H1(Ω)3 (cf. Temam [12]).

Let W2,1
q (QT ) be the space of distributions u ∈ Lq

(

0, T ;W 2,q(Ω)3
)

such that

∂tu ∈ Lq(QT )
3. This space, endowed with the norm

‖u‖(2,1)
q,QT

= ‖∂tu‖Lq(QT )3 + ‖∇(∇u)‖Lq(QT )27 + ‖∇u‖Lq(QT )9 + ‖u‖Lq(QT )3

is a Banach space. All functions of W2,1
q (QT ) are in Cu

(

0, T ;W 2−2/q,q(Ω)3
)

,

where Cu(0, T ) = C([0, T ]), so we can define ||| |||T on W2,1
q (QT ) by

|||u|||T = ‖u‖(2,1)
q,QT

+ sup
0≤t≤T

‖u‖W 2−2/q,q(Ω)3 .

Endowed with this norm, W2,1
q (QT ) is a Banach space. Let us recall that for all

u ∈ W2,1
q (QT ) and all t, 0 ≤ t ≤ T we have (cf. V.A. Solonnikov [11]):

‖u(t)‖W 2−2/q,q(Ω)3 ≤ ‖u0‖W 2−2/q,q(Ω)3 + c‖u‖(2,1)
q,Qt

,
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where c is independent of t ∈ [0, T ].
We denote by

|||(u,∇p)|||T = |||u|||T + ‖∇p‖Lq(QT )3 .

Finally, let Cε(Ω), 0 < ε < 1, be the set of functions f ∈ C(Ω) which satisfy
|f(x)−f(y)| ≤ c|x−y|ε for all x, y ∈ Ω and C1,ε(Ω) the set of functions f ∈ C1(Ω)
which satisfy |∇f(x)−∇f(y)| ≤ c′|x − y|ε for all x, y ∈ Ω.
Let us now give an evolution case of De Rham’s theorem (cf. J. Simon [10,

Lemma 2, p. 1096]).

Lemma 2. Let h ∈ D′
(

0, T ;H−1(Ω)3
)

satisfy 〈h, v〉Ω = 0 for all v ∈ V . Then
there exists g ∈ D′

(

0, T ;L2(Ω)
)

such that h = ∇g. �

Now one gives a compactness result:

Lemma 3. There exists 1 > εq > 0 such that

W2,1
q (QT ) ⊂

(

Lq(0, T ; C1,εq(Ω)3
)

∩ Cu
(

0, T ; C(Ω)3
)

)

=: Xq,T

with compact imbedding. �

The proof is based on the following result (see J. Simon [9, Corollary 8, p. 90])

Lemma 4. Let X and Y be two Banach spaces, X ⊂ Y with corresponding
compact imbedding and B a Banach space, X ⊂ B ⊂ Y , such that there exists
C and θ, 0 < θ < 1 such that

‖v‖B ≤ C‖v‖1−θ
X ‖v‖θ

Y ∀ v ∈ X.

Let 1 ≤ s0 ≤ +∞, 1 ≤ s1 ≤ +∞ and let F be a bounded subset of Ls0(0, T ;X)
such that ∂tF is bounded in Ls1(0, T ;Y ). Then,

(i) if θ(1 − 1/s1) ≤ (1 − θ)/s0, F is relatively compact in Ls(0, T ;B) ∀ s < s∗,
where 1/s∗ = (1 − θ)/s0 − θ(1− 1/s1);

(ii) if θ(1 − 1/s1) > (1− θ)/s0, F is relatively compact in Cu(0, T ;B). �

Proof of Lemma 3:

(i) One hasW2,1
q (QT ) ⊂ Lq

(

0, T ; C1,εq(Ω)3
)

with corresponding compact imbed-
ding.

For X = W 2,q(Ω)3 and Y = Lq(Ω)3, since we have W 2,q(Ω)3 ⊂ Lq(Ω)3 with
compact imbedding, using Lemma 4 (i), with s1 = s0 = q, we obtain for all
θ ≤ 1/q

W2,1
q (QT ) ⊂ Lq(0, T ; (W 2,q(Ω)3, Lq(Ω)3)θ

)

= Lq(0, T ;H
2(1−θ)
q (Ω)3

)

with compact imbedding (cf. H. Triebel [13, Theorem 2, p. 317] and [11, p. 185]).

In addition we have (cf. H. Triebel [13, p. 328]) H
2(1−θ)
q (Ω)3 ⊂ C1,α(Ω)3 for

α = 1− 2θ − 3/q > 0. Therefore we have

W2,1
q (QT ) ⊂ Lq(0, T ; C1,εq(Ω)3

)

with compact imbedding, where εq = 1− 2θ − 3/q and θ < inf{1/q, (q − 3)/2q}.



On non-homogeneous viscous incompressible fluids. Existence of regular solutions 701

(ii) One has W2,1
q (QT ) ⊂ Cu

(

0, T ; C(Ω)3
)

with corresponding compact imbed-
ding.

Using Lemma 4 (ii) with s1 = s0 = q, we obtain for all θ > 1/q

W2,1
q (QT ) ⊂ Cu

(

0, T ;H
2(1−θ)
q (Ω)3

)

with compact imbedding.

In addition we have (cf. H. Triebel [13, p. 328]) H
2(1−θ)
q (Ω)3 ⊂ C(Ω)3 for all

θ < 1− 3/2q. Since 1/q < 1− 3/2q (q > 3), we have

W2,1
q (QT ) ⊂ Cu

(

0, T ; C(Ω)3
)

with compact imbedding. �

3. Transport equation

Proposition 5. Let z ∈ W2,1
q (QT ) satisfy ∇ . z = 0 and z|ΣT

= 0. Then for all

ρ0 ∈ C1(Ω), there exists a unique solution ρ ∈ C1(QT ) of

(5)

{

∂tρ+ z . ∇ρ = 0 in QT ,

ρ|t=0 = ρ0.

It satisfies

min
x∈Ω

ρ0(x) ≤ ρ(y, t) ≤ max
x∈Ω

ρ0(x) ∀ (y, t) ∈ QT ,

and the following estimates, for all t ≤ T :

(6) ‖∇ρ‖L∞(Qt)3 ≤
√
3‖∇ρ0‖L∞(Ω)3 exp{‖∇z‖L1(0,t;L∞(Ω)9)},

(7) ‖∂tρ‖L∞(Qt) ≤
√
3‖∇ρ0‖L∞(Ω)3‖z‖L∞(QT )3 exp{‖∇z‖L1(0,t;L∞(Ω)9)}.

Let K be a closed bounded subset of W2,1
q (QT ) ∩ L2

(

0, T ;V
)

. Then the map

z 7→ ρ is continuous on K endowed with the topology of Xq,T with values in

Cu
(

0, T ; C1(Ω)
)

.

Proof: The existence and uniqueness of such a solution, and the estimates (6)–
(7) are given by O.A. Ladyzenskaya and V.A. Solonnikov [5].

Let us remark that if z ∈ W2,1
q (QT ) satisfies ∇ . z = 0, z|ΣT

= 0, there exists

a unique y(τ, t, x) (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]) solution of

(8) yk(τ, t, x) = xk −
∫ t

τ
zk(y(ξ, t, x), ξ

)

dξ.
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In addition, for all τ, t, y(τ, t, .) is a one to one map on Ω with Jacobian equal to
1 (cf. V.A. Solonnikov [11]). The solution ρ of (5) satisfies

ρ(x, t) = ρ0
(

y(0, t, x)
)

.

Let us prove the continuity of the map z 7→ ρ. It is well known, (see [5])
that if ρ1 and ρ2 are two solutions of (5) associated to z1 and z2 belonging to

W2,1
q (QT ) and satisfying z1|ΣT

= z2|ΣT
= 0, ∇ . z1 = ∇ . z2 = 0, we have for all

t, 0 < t ≤ T , the following estimate:

‖ρ1 − ρ2‖L∞(Qt) ≤ ‖∇ρ2‖L∞(Qt)3

∫ t

0
‖z1 − z2‖L∞(Ω)3 dτ.

So the map z 7→ ρ is continuous from K endowed with the topology of Xq,T with
values in C(QT ).
Now, denoting yi(ξ) = yi(ξ, t, x), we have:

∣

∣∂jρ2(x, t)− ∂jρ1(x, t)
∣

∣ ≤
∣

∣

∣

∑

k

(

∂kρ0
(

y2(0)
)

− ∂kρ0
(

y1(0)
))

∂jy
k
2 (0)

∣

∣

∣

+
∣

∣

∣

∑

k

(

∂kρ0
)(

y1(0)
)(

∂jy
k
1 (0)− ∂jy

k
2 (0)

)

∣

∣

∣
.

Since ρ0 ∈ C1(Ω) and y2 ∈ C1(QT )
3, we have:

‖∇(ρ2 − ρ1)‖L∞(Qt)3

≤ 3‖∇y2(0)‖L∞(Qt)9‖
(

∇ρ0
)(

y1(0)
)

−
(

∇ρ0
)(

y2(0)
)

‖L∞(Qt)3

+ 3‖∇ρ0‖L∞(Ω)3‖∇
(

y1(0)− y2(0)
)

‖L∞(Qt)9 .

To prove the continuity of the map z 7→ ρ, since ∇ρ0 ∈ C(Ω)3, it is enough to
prove that if z1 → z2 inXq,T , then y1(0)→ y2(0) in Cu

(

0, T ; C1(Ω)
)

. To prove this

property we will estimate ‖y1(0)−y2(0)‖L∞(QT )3 and ‖∇
(

y1(0)−y2(0)
)

‖L∞(QT )9

in terms of ‖z1 − z2‖Xq,T
.

Estimate of ‖y2(0)− y1(0)‖L∞(Qt)3 . We have, according to (8):

∣

∣yk
1 (τ)−yk

2 (τ)
∣

∣ ≤
∫ t

τ

∣

∣zk
1

(

y1(ξ), ξ
)

−zk
1

(

y2(ξ), ξ
)∣

∣+
∣

∣zk
1

(

y2(ξ), ξ
)

−zk
2

(

y2(ξ), ξ
)∣

∣ dξ.

Since z1 ∈ L1
(

0, T ; C1(Ω)3
)

, for all x, y ∈ Ω and almost all t ∈]0, T [ we have:

|z1(x, t)− z1(y, t)| ≤ ‖∇z1(t)‖L∞(Ω)9 |x − y|.
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In addition, taking into account that y2(ξ, t, .) is a one to one map on Ω and zi is
in C(Q)3, we obtain:

∣

∣yk
1 (τ) − yk

2 (τ)
∣

∣

≤
∫ t

τ
‖∇z1(ξ)‖L∞(Ω)9 |y1(ξ)− y2(ξ)

∣

∣ dξ +

∫ t

τ
‖zk

1 (ξ)− zk
2 (ξ)‖L∞(Ω)3 dξ.

So, using Gronwall lemma, we obtain:

‖y2(τ) − y1(τ)‖L∞(Qt)3 ≤ ct‖z1 − z2‖Xq,t
exp

{

ct1/q′‖z1‖Xq,t

}

,

where q′ satisfies 1/q + 1/q′ = 1.

Estimate of ‖∇
(

y1(0)− y2(0)
)

‖L∞(Qt)9 . We have

∣

∣∂iy
k
1 (τ)− ∂iy

k
2 (τ)

∣

∣ ≤
∣

∣

∣

∑

ℓ

∫ t

τ

(

(∂ℓz
k
1 )
(

y1(ξ), ξ
)

− (∂ℓz
k
1 )
(

y2(ξ), ξ
))

∂iy
ℓ
1(ξ) dξ

∣

∣

∣

+
∣

∣

∣

∑

ℓ

∫ t

τ

(

(∂ℓz
k
1 )
(

y2(ξ), ξ
)

− (∂ℓz
k
2 )
(

y2(ξ), ξ
))

∂iy
ℓ
1(ξ) dξ

∣

∣

∣

+
∣

∣

∣

∑

ℓ

∫ t

τ
(∂ℓz

k
2 )
(

y2(ξ), ξ
)

∂i
(

yℓ
1(ξ)− yℓ

2(ξ)
)

dξ
∣

∣

∣
.

Since z1 ∈ L1
(

0, T ;C1,εq(Ω)3
)

, for all x, y ∈ Ω and almost all t ∈]0, T [ we have:

|∇z1(x, t)−∇z1(y, t)| ≤ b(t)|x − y|εq ,

where b(t) = ‖∇z1(t)‖Cεq (Ω)9 is in L1(0, T ). In addition, y2(ξ, t, .) is a one to

one map on Ω and ∇zi is in L1
(

0, T ; C(Ω)9
)

, so we have, using the estimate of
∣

∣y1(τ) − y2(τ)
∣

∣:

∣

∣∇
(

y1(τ) − y2(τ)
)∣

∣ ≤ c

(

‖∇y1‖L∞(Qt)9

∫ t

τ
‖∇
(

z1 − z2
)

(ξ)‖L∞(Ω)9 dξ

+ ‖∇y1‖L∞(Qt)9

∫ t

τ
b(ξ)

(

∫ t

ξ
‖(z1 − z2)(ζ)‖L∞(Ω)3 dζ

× exp
{

c

∫ t

0
‖∇z1(ζ)‖L∞(Ω)9dζ

}

)εq
dξ

+

∫ t

τ
‖∇z2(ξ)‖L∞(Ω)9

∣

∣∇(y1(ξ)− y2(ξ)
)∣

∣ dξ

)

.
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Using the Gronwall lemma, we deduce the estimate
∣

∣∇
(

y1(0)− y2(0)
)
∣

∣ ≤ c‖∇y1‖L∞(Qt)9 exp
{

ct1/q′‖z2‖Xq,t

}(

tεq‖z1 − z2‖εq

Xq,t

× ‖b‖L1(0,t) exp
{

ct1/q′εq‖z1‖Xq,t

}

+ t‖z1 − z2‖Xq,t

)

,

which yields

‖∇
(

y1(0)− y2(0)
)

‖L∞(Qt)9

≤ c‖∇y1‖L∞(Qt)9 exp
{

ct1/q′‖z2‖Xq,t

}(

tεq‖z1 − z2‖εq

Xq,t

× ‖b‖L1(0,t) exp
{

ct1/q′εq‖z1‖Xq,t

}

+ t‖z1 − z2‖Xq,t

)

.

With all these estimates, we deduce the continuity of the map z 7→ y(0), and the
proof of Proposition 5 is complete. �

4. Existence and uniqueness of a solution of the uncoupled
equations (4)

4.1 The result.

Proposition 6. Let z ∈ W2,1
q (QT ) satisfy ∇ . z = 0, z|t=0 = u0 in Ω, z|ΣT

= 0.
Under the hypothesis of Theorem 1, there exists a unique

u ∈ W2,1
q (QT ), ∇p ∈ Lq(QT )

3, ρ ∈ C1(QT )

solution of (4).
It satisfies

(9) |||(u,∇p)|||T

≤ cM
2

1−α

1 (1+TeT/2+TeT/2‖z‖
2

1−α

L∞(QT )3
)
(

‖f‖Lq(QT )3+‖u0‖W 2−2/q,q(Ω)3

)

,

whereM1 = (M
9
3 +M4)

3M
12
3 , M3 = ‖∇ρ‖L∞(QT )3 , M4 = ‖∂tρ‖L∞(QT ), M i =

Mi + 1, α = 3(q − 2)[3(q − 2) + 4q]−1 and c does not depend on T , M3 and M4.

The proof is given in several steps.

4.2 Simplified auxiliary equations. We consider here the following problem:
Find a solution (u,∇p) of

(10)























ρ∂tu − ν(ρ)∆u +∇p = f in QT ,

∇ . u = 0 in QT ,

u|t=0 = u0 in Ω,

u|ΣT
= 0.

We have the following result:
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Proposition 7. Let ρ ∈ C1(QT ), ρ(x, t) ≥ M1 > 0 for all (x, t) ∈ QT . Under

the hypothesis of Theorem 1, there exist

u ∈ W2,1
q (QT ), ∇p ∈ Lq(QT )

3,

solving (10).
In addition, there exists at most one solution of (10) in the space

(

Cu
(

0, T ;L2(Ω)3
)

∩ L2
(

0, T ;H1(Ω)3
)

)

× H−1(QT )
3.

Proof: Existence. The existence of a solution of (10) in
(

L∞
(

0, T ;H1(Ω)3
)

∩

H1
(

0, T ;L2(Ω)3
)

)

× L2
(

0, T ;H−1(Ω)3
)

is well known (see for example [6]).

Uniqueness. Let (u1,∇p1) and (u2,∇p2) be two solutions of (10) in
(

Cu
(

0, T ;L2(Ω)3
)

∩ L2
(

0, T ;H1(Ω)3
)

)

× H−1(QT )
3. Then u = u1 − u2, ∇p =

∇(p1 − p2) is a solution of























ρ∂tu − ν(ρ)∆u +∇p = 0 in QT ,

∇ . u = 0 in QT ,

u|t=0 = 0 in Ω,

u|ΣT
= 0.

For all ϕ ∈ D(0, T ;V), we have in W−1,1(0, T )

〈ρ∂tu, ϕ〉Ω − 〈ν(ρ)∆u, ϕ〉Ω = 0.

Since 〈ν(ρ)∆u, ϕ〉Ω = −
∫

Ω ∇
(

ν(ρ)
)

. ∇u . ϕ −
∫

Ω ν(ρ)∇u . ∇ϕ is in L1(0, T ),

we have 〈ρ∂tu, ϕ〉Ω ∈ L1(0, T ). In addition, ϕ 7→
∫

Ω ν(ρ)∇u . ∇ϕ and ϕ 7→
∫

Ω ∇
(

ν(ρ)
)

. ∇u . ϕ are continuous in the space L2(0, T ;V ) with values in

L1(0, T ), so ϕ 7→
∫

Ω ρ∂tu . ϕ is continuous in L2(0, T ;V ) with values in L1(0, T ).

Therefore, we deduce that for all v ∈ L2(0, T ;V ), we have in L1(0, T ):
∫

Ω
ρ∂tu . v +

∫

Ω
∇
(

ν(ρ)
)

. ∇u . v +

∫

Ω
ν(ρ)∇u . ∇v = 0.

In particular, for v = u, we obtain in L1(0, T ):

1

2

∫

Ω
ρ∂t|u|2 + ν1

∫

Ω
|∇u|2 ≤

∫

Ω
|∇
(

ν(ρ)
)

. ∇u . u|.

In addition, we have ∂t
(

ρ|u|2
)

= ρ∂t|u|2 + ∂tρ|u|2, so we obtain
∫

Ω
∂t
(

ρ|u|2
)

+ ν1

∫

Ω
|∇u|2 ≤ c

∫

Ω
ρ|u|2,
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where c depends only on ν, ρ, and we deduce from the Gronwall lemma that
u = 0. The De Rham theorem implies that ∇p = 0, and the uniqueness follows.

Regularity of such a solution. Choose p such that
∫

Ω p/ν(ρ) = 0. Dividing by
ν(ρ) ≥ ν1 > 0 and denoting P = p/ν(ρ), λ = ρ/ν(ρ), the equation (10) can be
rewritten in the following form































λ∂tu −∆u+∇P =
f

ν(ρ)
− ν′(ρ)∇ρ

ν(ρ)
P,

∇ . u = 0,
u|t=0 = u0,

u|ΣT
= 0,

with λ ∈ C1(QT ) and λ ≥ λ1 > 0.

Let us consider the following equation:

(11)































λ∂tu
′ −∆u′ +∇P ′ =

f

ν(ρ)
− ν′(ρ)∇ρ

ν(ρ)
P,

∇ . u′ = 0,
u′|t=0 = u0,

u′|ΣT
= 0,

where P ∈ L2(QT ) is defined above. Since f ∈ L2(QT )
3, there exists a unique so-

lution (u′,∇P ′) of (11) in
(

Cu
(

0, T ;L2(Ω)3
)

∩ L2
(

0, T ;H1(Ω)3
)

)

× H−1(QT )
3.

In addition (cf. O.A. Ladyzenskaya and V.A. Solonnikov [5]), u′ ∈ W2,1
2 (QT ),

∇P ′ ∈ L2(QT )
3. Now, since

(

u,∇P
)

is solution of (11) we deduce that u ∈
W2,1

2 (QT ), ∇P ∈ L2(QT )
3, and therefore ∇p ∈ L2(QT )

3. Then, from Lemma 9
(in appendix) we deduce that p ∈ Lσ0(QT ), where σ0 = min(q, 8/3). Therefore,

since f ∈ Lq(QT )
3, we deduce from the equation (11) that u ∈ W2,1

σ0 (QT ) and

∇p ∈ Lσ0(QT )
3 (see O.A. Ladyzenskaya, V.A. Solonnikov [5]). Repeating this

process a finite number of times, we obtain Proposition 7. �

4.3 Auxiliary equations. We consider now the following problem: Find a so-
lution (u,∇p) of

(12)























ρ∂tu −∇ .
(

ν(ρ)(∇u + t∇u)
)

+∇p = f in QT ,

∇ . u = 0 in QT ,

u|t=0 = u0 in Ω,

u|ΣT
= 0.

We have the following result:
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Proposition 8. Under the hypothesis of Proposition 7, there exist

u ∈ W2,1
q (QT ), ∇p ∈ Lq(QT )

3,

solving (12).
It satisfies

(13) |||(u,∇p)|||T ≤ M1
(

‖f‖Lq(QT )3 + ‖u‖Lq(QT )3 + ‖u0‖W 2−2/q,q(Ω)3
)

,

whereM1 = c
(

M
9
3 +M4

)

M
12
3 , M i = (Mi + 1), 1 ≤ i ≤ 4,

(14) |||(u,∇p)|||t ≤ cM2
1

(

‖f‖Lq(Qt)3 + ‖u0‖W 2−2/q,q(Ω)3
)

exp{cM1t},

for all t, 0 ≤ t ≤ T , where c depends only on ν, M1, M2, M3 and M4.

In addition, there exists at most one solution of (12) in the space
(

Cu
(

0, T ;L2(Ω)3
)

∩ L2
(

0, T ;H1(Ω)3
)

)

× H−1(QT )
3.

Proof: Existence. The existence of a solution of (12) in
(

L∞
(

0, T ;H1(Ω)3
)

∩

H1
(

0, T ;L2(Ω)3
)

)

× L2
(

0, T ;H−1(Ω)3
)

is known (see for example [6]). As in

Proposition 7, we can prove that there exists at most one solution of (12) in
(

Cu
(

0, T ;L2(Ω)3
)

∩ L2
(

0, T ;H1(Ω)3
)

)

× H−1(QT )
3.

Regularity of this solution. The first equation of (12) can be written in the form

ρ∂tu − ν(ρ)∆u +∇p = f +∇
(

ν(ρ)
)(

∇u+ t∇u
)

.

Since f + ∇
(

ν(ρ)
)(

∇u + t∇u
)

∈ L2(QT )
3, there exists (cf. Proposition 7) one

solution u′ ∈ W2,1
2 (QT ), ∇p′ ∈ L2(QT )

3 of

(15)























ρ∂tu
′ − ν(ρ)∆u′ +∇p′ = f +∇

(

ν(ρ)
)(

∇u+ t∇u
)

,

∇ . u′ = 0,
u′|t=0 = u0,

u′|ΣT
= 0,

where (u,∇p) is the solution of (12). In addition, this solution is unique in the

space
(

Cu
(

0, T ;L2(Ω)3
)

∩ L2
(

0, T ;H1(Ω)3
)

)

× H−1(QT )
3. Since the solution

(u,∇p) of (12) is a solution of (15), we deduce that the solution of (12) verifies u ∈
W2,1

2 (QT ), ∇p ∈ L2(QT )
3. Therefore (cf. Lemma 9), there exists σ0, 2 < σ0 ≤ q

such that u ∈ Lσ0
(

0, T ;W 1,σ0(Ω)3
)

. So we deduce from (15), since f ∈ Lq(QT )
3,

that u ∈ W2,1
σ0 (QT ) and ∇p ∈ Lσ0(QT )

3. Repeating this process a finite number
of times (until σm = q), we obtain the regularity.
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Estimates. Choose p such that
∫

Ω p = 0. Then setting P = p/ν(ρ), (12) can
be rewritten in the following way:































ρ

ν(ρ)
∂tu −∆u +∇P =

f

ν(ρ)
− ν′(ρ)∇ρ

ν(ρ)
P +

ν′(ρ)∇ρ

ν(ρ)
.
(

∇u+ t∇u
)

,

∇ . u = 0,
u|t=0 = u0,

u|ΣT
= 0.

Since ν2 ≥ ν(ρ) ≥ ν1 > 0 and ν′2 ≥ ν′(ρ), we have the following estimate (cf.
O.A. Ladyzenskaya, V.A. Solonnikov [5]),

|||(u,∇P )|||T ≤ c
(

M4 +M
9
3

)

(

‖f‖Lq(QT )3 +M3‖P‖Lq(QT ) +M3‖∇u‖Lq(QT )9

+ ‖u‖Lq(QT )3 + ‖u0‖W 2−2/q,q(Ω)3

)

,

where c depends on ν, M1 and M2 only. Then we obtain

|||(u,∇p)|||T ≤ c
(

M4 +M
9
3

)(

‖f‖Lq(QT )3 +M3‖p‖Lq(QT ) +M3‖∇u‖Lq(QT )9

+ ‖u‖Lq(QT )3 + ‖u0‖W 2−2/q,q(Ω)3
)

,

where c depends on ν, M1 and M2 only.
Using (15) we have (cf. Lemma 9):

‖p‖Lq(Qt) ≤ cM
3
3

(

‖f‖Lq(Qt)3 +M3‖∇u‖Lq(Qt)9 + ‖∇u‖Lq(Σt)9
)

,

so we obtain

(16)
|||(u,∇p)|||T ≤A2

(

‖f‖Lq(QT )3 + ‖∇u‖Lq(ΣT )3
)

+A1‖∇u‖Lq(QT )9

+ c
(

M4 +M
9
3

)(

‖u‖Lq(QT )3 + ‖u0‖W 2−2/q,q(Ω)3
)

with
A1 = c

(

M4 +M
9
3

)

M
5
3

A2 = c
(

M4 +M
9
3

)

M
4
3,

where c depends on ν, M1 and M2 only.
Using the following interpolation inequalities (cf. O.A. Ladyzenskaya and

V.A. Solonnikov [5]), since (aq + bq) ≤ (a+ b)q we have

‖∇u‖Lq(QT )9 ≤ α1‖∇(∇u)‖Lq(QT )27 + cα−1
1 ‖u‖Lq(QT )3 ,

‖∇u‖Lq(ΣT )9 ≤ α2‖∇(∇u)‖Lq(QT )27 + cα
− q+1

q−1

2 ‖u‖Lq(QT )3 ,
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for all αi ∈]0, 1], and taking α1 =
(

4A1)
−1 and α2 =

(

4A2
)−1
, we obtain:

A1‖∇u‖Lq(QT )9 ≤
1

4
‖∇(∇u)‖Lq(QT )27 + cA2

1‖u‖Lq(QT )3 ,

A2‖∇u‖Lq(ΣT )9 ≤
1

4
‖∇(∇u)‖Lq(QT )27 + cA

2q/(q−1)
2 ‖u‖Lq(QT )3 ,

where c depends on Ω and q only. With these estimates, (16) gives:

|||(u,∇p)|||T ≤ c
(

A2‖f‖Lq(QT )3 +A2
1‖u‖Lq(QT )3 +A

2q/(q−1)
2 ‖u‖Lq(QT )3

+
(

M4 +M
9
3

)(

‖u‖Lq(QT )3 + ‖u0‖W 2−2/q,q(Ω)3
)

)

.

Now, since A2
1, A2 and A

2q/(q−1)
2 are smaller than c

(

M
9
3 +M4

)3
M

12
3 , we deduce

from the previous inequality the estimate (13).
To prove the estimate (14), let

y(t) =

∫ t

0
‖u(τ)‖q

Lq(Ω)3
dτ = ‖u‖q

Lq(Qt)3
.

We have y ∈ W 1,1(0, T ), y(0) = 0 and y′(t) = ‖u(t)‖q
q. In addition, for all t

′ ≤ t
we have:

y′(t′) =

∫ t′

0

d

dτ
‖u(τ)‖q

q dτ + ‖u0‖q
q =

∫ t′

0

∫

Ω

d

dτ

(

|u(τ)|2
)

q
2 dτ + ‖u0‖q

q

≤ q‖∂tu‖Lq(Qt′)
3‖u‖q−1

Lq(Qt′)
3 + ‖u0‖q

q

≤ qM1‖u‖q
Lq(Qt′)

3 + qM1
(

‖f‖Lq(Qt)3 + ‖u0‖W 2−2/q,q(Ω)3
)

‖u‖q−1
Lq(Qt′)

3

+ ‖u0‖q
W 2−2/q,q(Ω)3

.

SinceM1 > 1, using Young’s inequality we obtain:

y′(t′) ≤ (2q − 1)M1y(t
′) + q2M1

(

‖f‖Lq(Qt)3 + ‖u0‖W 2−2/q,q(Ω)3
)q

.

Integrating this equation from 0 to t we have:

y(t) ≤ q2M1
(

‖f‖Lq(Qt)3 + ‖u0‖W 2−2/q,q(Ω)3
)q
exp{(2q − 1)M1t}.

Now, taking into account thatM1 > 1 we obtain:

‖u‖Lq(Qt)3 ≤ cM1
(

‖f‖Lq(Qt)3 + ‖u0‖W 2−2/q,q(Ω)3
)

exp{cM1t}.

Using this estimate, (13) gives

|||(u,∇p)|||t ≤ cM2
1

(

‖f‖Lq(Qt)3 + ‖u0‖W 2−2/q,q(Ω)3
)

exp{cM1t},

and the proof is complete. �
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4.4 Proof of Proposition 6.

Existence of a regular solution. We prove the existence by successive approxima-
tions. Let u0 = 0 and for all m ≥ 1:
(17)










































ρ∂tu
m −∇ .

(

ν(ρ)(∇um + t∇um)
)

+∇pm = ρf − ρ
(

z . ∇
)

um−1 in QT ,

∂tρ+ z . ∇ρ = 0 in QT ,

∇ . um = 0 in QT ,

um|t=0 = u0 in Ω,

um|ΣT
= 0,

ρ|t=0 = ρ0 in Ω.

It is known (cf. Proposition 8) that there exists a unique solution of (17). Denoting
wm = um − um−1, ∇Pm = ∇(pm − pm−1) and Wm(t) = |||(wm,∇pm)|||t, we
deduce from (14) the following estimate

Wq
m(t) ≤ c‖∇wm−1‖q

Lq(Qt)3
≤ c

∫ t

0
‖wm−1‖q

W 2,q(Ω)3
dτ

≤ c

∫ t

0
Wq

m−1(τ) dτ ≤ cm−1 tm−1

(m − 1)!W
q
1(t),

which implies the convergence of the series
∑Wm(t) for all t ≤ T . From this, it

follows the convergence of um in W2,1
q (QT ) and ∇pm in Lq(QT )

3.
The uniqueness of a such solution is obvious.

Estimation. We have the following estimate of |||(u,∇p)|||T given in Proposition 8
(18) |||(u,∇p)|||T ≤ M1

(

F + ‖u‖Lq(QT )3 + ‖
(

z . ∇
)

u‖Lq(QT )3
)

,

where F = ‖f‖Lq(Qt)3 + ‖u0‖W 2−2/q,q(Ω)3 .

Now, let us estimate each term of the right hand side of this inequality. Mul-
tiplying the first equation of (4) by u and integrating on Ω, we obtain

∫

Ω
ρ
[1

2
∂t
(

u2)+
(

z . ∇
)

u . u
]

+

∫

Ω
ν(ρ)

(

∇u+ t∇u
)

. ∇u =

∫

Ω
ρf . u.

Since ν(ρ) ≥ ν1 > 0, we obtain, summing this equation with the transport equa-
tion multiplied by (1/2)|u|2:

d

dt

∫

Ω
ρ|u|2 + 2ν1

∫

Ω
|∇u|2 ≤ 2

∫

Ω
ρf . u.

So we deduce the following estimate:

(

∫

Ω
|u|2

)

(t) ≤ cet
(

∫ t

0
‖f‖2

2 dτ + ‖u0‖2
2

)

,
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where c depends on M1 and M2 only.
Now, using Hölder inequality, we have:

(

∫

Ω
|u|2

)

(t) ≤ cet
(

∫ t

0
‖f‖2

q dτ + ‖u0‖2
q

)

≤ cet
(

∫ t

0
‖f‖q

q dτ
)2/q

+ cet‖u0||2q ,

and therefore

(19) ‖u‖2 ≤ cet/2(‖f‖Lq(QT )3 + ‖u0‖q
)

.

Using the fact that
‖u‖q ≤ c

(

‖u‖W 2,q(Ω)3
)α‖u‖1−α

2

with α = 3(q − 2)[3(q − 2) + 4q]−1 (cf. O.A. Ladyzenskaya and V.A. Solonnikov
[5]), the previous estimate gives:

(20) ‖u‖Lq(QT )3 ≤ c|||(u,∇p)|||αT
(

∫ T

0
‖u‖q

2 dt
)(1−α)/q

.

Since (19) gives
(

∫ T

0
‖u‖q

2

)1/q
≤ cT eT/2F,

we obtain from (20):

(21) ‖u‖Lq(QT )3 ≤ c|||(u,∇p)|||αT (TeT/2F )1−α.

Now, to estimate the last term of the right hand of (18), we remark that

‖(z . ∇)u‖Lq(QT )3 ≤ ‖z‖L∞(QT )3‖∇u‖Lq(QT )9 .

Since
‖∇u‖Lq(QT )9 ≤ c

(

‖u‖Lq(0,T ;W 2,q(Ω)3)

)1/2‖u‖1/2
Lq(QT )3

,

we obtain

‖(z . ∇)u‖Lq(QT )3 ≤ c‖z‖L∞(QT )3 |||(u,∇p)|||1/2
T ‖u‖1/2

Lq(QT )3

≤ c‖z‖L∞(QT )3 |||(u,∇p)|||
α+1
2

T (TeT/2F )
1−α
2 .

We deduce from this estimate and from the estimates (18) and (21)

(22)
|||(u,∇p)|||T ≤ cM1

(

F + |||(u,∇p)|||αT (TeT/2F )1−α

+ ‖z‖L∞(QT )3 |||(u,∇p)|||
α+1
2

T (TeT/2F )
1−α
2

)

,
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whereM1 = c
(

M
9
3 +M4

)3
M

12
3 . Using the following Young’s inequalities:

M1|||(u,∇p)|||αT (TeT/2F )1−α ≤ αε|||(u,∇p)|||T + (1− α)ε
− α
1−α TeT/2FM

1

1−α

1 ,

and

M1‖z‖L∞(QT )3 |||(u,∇p)|||
α+1
2

T (TFeT/2)
1−α
2

≤ 1 + α

2
ε|||(u,∇p)|||T +

1− α

2
ε
− 1+α
1−α

(

M1‖z‖L∞(QT )3
)
2

1−α TFeT/2,

with ε small enough, we deduce from (22) the following estimate, sinceM1 ≥ 1:

|||(u,∇p)|||T ≤ cFM
2

1−α

1

(

1 + TeT/2 + TeT/2‖z‖
2

1−α

L∞(QT )3

)

,

and the proof is complete. �

5. Proof of Theorem 1

As we have seen (cf. Proposition 6), for all z ∈ W2,1
q (QT ) satisfying z(0) = u0,

z|ΣT
= 0 and ∇ . z = 0, there exists a unique solution u ∈ W2,1

q (QT ), ∇p ∈
Lq(QT )

3, ρ ∈ C1(QT ) of (4).

Local existence. This proof is based on the Schauder theorem that can be found
for example in N. Dunford, J.T. Schwartz [2, Theorem 5, p. 456].
In the first step, let us prove that there exist TM > 0 and a convex compact

subset K of Xq,TM
such that z 7→ u maps K into K.

For all t ≤ T , we have:

|||(u,∇p)|||t ≤ cFM
2

1−α

1

(

1 + tet/2 + tet/2|||z|||
2

1−α
t

)

withM1 = c
(

M3
9
+M4

)3
M3

12
and

M3 = 1 +M3 ≤ 1 +
√
3‖∇ρ0‖L∞(Ω)3 exp{ct1/q′ |||z|||t},

M4 = 1 +M4 ≤ 1 +
√
3‖∇ρ0‖L∞(Ω)3‖z‖L∞(Qt)3 exp{ct

1/q′ |||z|||t},

where q′ satisfies 1/q + 1/q′ = 1. Let q1 be a real, 3 < q1 < q. Then

‖z‖L∞(Qt)3 ≤ c sup
0≤τ≤t

‖z‖W 2−2/q1,q1 (Ω)3 ≤ c
(

‖u0‖W 2−2/q1,q1 (Ω)3 + ‖z‖(2,1)
q1,Qt

)

,

where c is a constant which does not depend on t (see V.A. Solonnikov [11]).
Moreover

‖z‖(2,1)
q1,Qt

≤ ct(q−q1)/qq1‖z‖(2,1)
q,Qt

,
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so, since ‖u0‖W 2−2/q1,q1 (Ω)3 ≤ c‖u0‖W 2−2/q,q(Ω)3 ,

M4 ≤ 1 + c
√
3‖∇ρ0‖L∞(Ω)3

(

‖u0‖W 2−2/q,q(Ω)3

+ t(q−q1)/qq1‖z‖(2,1)
q,Qt

)

exp{ct1/q′ |||z|||t}.

Therefore we have
|||(u,∇p)|||t ≤ cH(t, |||z|||t),

where H(t, a) is continuous function in (t, a) defined by

H(t, a) = F
(

1 +
√
3‖∇ρ0‖L∞(Ω)3(1 + ‖u0‖W 2−2/q,q(Ω)3 + t(q−q1)/qq1a)

)
42

1−α

× exp{ 42
1− α

ct
1

q′ a}
(

1 + tet/2 + tet/2a
2

1−α
)

.

Since H(0, a) = H(0, a) for all a ≥ 0, forM = H(0, 0), there exists TM such that,
if |||z|||TM

≤ M , then |||(u,∇p)|||TM
≤ M .

Let us denote

K = {u ∈ W2,1
q (QTM

), u(0) = u0, u|ΣTM
= 0, ∇ . u = 0, |||u|||TM

≤ M}.

Then K is a convex compact subset of Xq,TM
, and z 7→ u maps K into K.

In the second step, let us prove that z 7→ u is continuous from K endowed with
the topology of Xq,TM

into itself. Let z1 and z2 be two elements of K. Then we
obtain, setting z = z1 − z2, u = u1 − u2, ∇p = ∇(p1 − p2) and ρ = ρ1 − ρ2:











































ρ1∂tu −∇ .
(

ν(ρ1)(∇u + t∇u)
)

+ ρ1
(

z1 . ∇
)

u+∇p = G in QT ,

∇ . u = 0 in QT ,

∂tρ+ z1 . ∇ρ = −z . ∇ρ2 in QT ,

u|t=0 = 0 in Ω,

u|ΣT
= 0,

ρ|t=0 = 0 in Ω,

where

G = ρf − ρ∂tu2 +∇ .
((

ν(ρ1)− ν(ρ2)
)(

∇u2 +
t∇u2

))

− ρ1
(

z . ∇
)

u2 + ρ
(

z1 . ∇
)

u2.

We deduce from (9) the following estimate:

|||(u,∇p)|||TM
≤ c‖G‖Lq(QTM

)3M
2

1−α

1

(

1 + TeT/2 + TeT/2|||z1|||
2

1−α

TM

)

,



714 J. Lemoine

where ‖G‖Lq(QTM
)3 verifies

‖G‖Lq(QTM
)3 ≤‖ρ‖L∞(QTM

)

(

‖f‖Lq(QTM
)3 + ‖∂tu2‖Lq(QTM

)3

+ ‖z1‖L∞(QTM
)3‖∇u2‖Lq(QTM

)9

)

+ ‖∇ .
((

ν(ρ1)− ν(ρ2)
)(

∇u2 +
t∇u2

))

‖Lq(QTM
)3

+ ‖ρ1‖L∞(QTM
)‖z‖L∞(QTM

)3‖∇u2‖Lq(QTM
)9 .

As we have proved in Proposition 5, if z2 → z1 in Xq,TM
, then ρ2 → ρ1

in the space Cu
(

0, TM ; C1(Ω)
)

. So, ν(ρ2) → ν(ρ1) in Cu
(

0, TM ; C1(Ω)
)

. From
this, we obtain that if z2 → z1 in Xq,TM

, then ‖G‖Lq(QTM
)3 → 0 and there-

fore |||(u,∇p)|||TM
→ 0. This proves that the map z 7→ u is continuous. Us-

ing the Schauder fixed point theorem, we obtain that there exist u ∈ K and
∇p ∈ Lq(QTM

)3 solving (1)–(3).

Global existence. We have

|||(u,∇p)|||T ≤ cFM
2

1−α

1

(

1 + TeT/2 + TeT/2‖z‖
2

1−α

L∞(QT )3

)

.

Let M > 0 and suppose |||z|||T ≤ M . Then there exists R > 0 such that if
F = ‖f‖Lq(QT )3 +‖u0‖W 2−2/q,q(Ω)3 ≤ R, then |||u|||T ≤ M . As in the proof of

the local existence,

K = {u ∈ W2,1
q (QT ), u(0) = u0, u|ΣT

= 0, ∇ . u = 0, |||u|||T ≤ M}
is a convex compact subset of Xq,T , and z 7→ u maps continuously K into K.

Therefore we deduce the existence of u ∈ K and ∇p ∈ Lq(QT )
3 solving (1)–(3).

�

Appendix

Lemma 9. Let f ∈ Lq(QT )
3 and let (u,∇p) be the unique solution of (10)

satisfying

u ∈ L2(0, T ;H2(Ω)3
)

, ∂tu ∈ L2(QT )
3, ∇p ∈ L2(QT )

3.

Suppose that u ∈ Ls
(

0, T ;W 2,s(Ω)3
)

∩ W 1,s
(

0, T ;Ls(Ω)3
)

and ∇p ∈ Ls(QT )
3

with 2 ≤ s < q. Choosing p such that
∫

Ω p = 0, there exists σ, s < σ ≤ q defined
by

σ =

{

q if s ≥ 5,
min

(

q, 4s
5−s

)

if 2 ≤ s < 5,

such that

u ∈ Lσ(0, T ;W 1,σ(Ω)3
)

, ∇u|ΣT
∈ Lσ(ΣT )

9 p ∈ Lσ(QT ).
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Moreover we have

‖p‖Lσ(Qt) ≤ c3
(

‖f‖Lσ(Qt)3 + ‖∇u‖Lσ(Qt)9 + ‖∇u‖Lσ(Σt)9
)

,

where

c3 = c
[

M−2
1 (M2 + 1)M3 +M−1

1

]

M2
(

1 +M−4
1 M2

2M2
3

)

.

�

A proof of this lemma is given by M. Kabbaj [4]. �
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