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Fixed points for multifunctions on generalized metric

spaces with applications to a multivalued Cauchy problem

Adrian Petruşel

Abstract. The purpose of this paper is to prove an existence result for a multivalued
Cauchy problem using a fixed point theorem for a multivalued contraction on a gener-
alized complete metric space.
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1. Introduction

In 1958 W.A.J. Luxemburg, using a fixed point theorem for a single-valued
contraction on a generalized metric space, proved the existence and the uniqueness
of solution of the following Cauchy problem:

(1) x′(t) = f(t, x(t)), x(t0) = x0,

where t and x are real variables and f is a real function defined on the rectangle
|t − t0| ≤ a, |x − x0| ≤ b, a, b > 0.
The purpose of this paper is to prove an existence result for a multivalued

Cauchy problem using a fixed point theorem, for a multivalued contraction defined
on a complete generalized metric space.

2. Preliminaries

The concept of a generalized metric space was introduced by Luxemburg and
Jung as follows:

Definition 2.1 ([6], [9]). The pair (X, d) will be called a generalized metric space
if X is an arbitrary nonempty set and d is a function d : X × X → [0,∞] which
fulfills all the standard conditions for a metric.

In this paper, the generalized metric d is allowed to take the value +∞ as well.
In a generalized, just as in a metric space, we can define open and closed balls,
convergence of sequences, completeness of the space, etc.
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If (X, d) is a generalized metric space, Y ⊂ X , x ∈ X and ε > 0 then:

δ(Y ) = sup{d(a, b) | a, b ∈ Y },

D(Y, x) = inf{d(y, x) | y ∈ Y },

BX (x, ε) = {y ∈ X | d(x, y) < ε},

V (Y, ε) = {x ∈ X |D(Y, x) ≤ ε},

P(X) = {Y |Y ⊆ X},

P (X) = {Y ∈ P(X) |Y 6= ∅},

Pcl(X) = {Y ∈ P (X) |Y = Y },

Pcp,cv(X) = {Y ∈ P (X) |Y compact and convex in X} (here X is a generalized
normed space),

H(A, B) =

{

inf{ε > 0 |A ⊂ V (B, ε), B ⊂ V (A, ε)}, if the infimum exists

+∞, otherwise.

The pair (Pcl(X), H) is a generalized metric space and H is called the genera-
lized Hausdorff-Pompeiu distance induced by d.

Lemma 2.2 ([11]). If (X, d) is complete generalized metric space then
(Pcl(X), H) is a complete generalized metric space.

Definition 2.3 ([3]). Let (X, d) be a generalized metric space and T : X →
Pcl(X) be a multivalued operator. Then, T is called an a-contraction if there
exists a real number a ∈ [0, 1[ such that x, y ∈ X , d(x, y) < ∞ ⇒ H(T (x), T (y)) ≤
ad(x, y).

Definition 2.4. Let (X, d) be a generalized metric space and T : X → P (X) a
multivalued operator. Then x∗ ∈ X is called a fixed point for T if x∗ ∈ T (x∗).
The set of all fixed points will be denoted by FixT .

The concept of semi-continuous mappings was introduced in 1932 by Bouligand
and Kuratowski.
We consider here the notion of an upper semicontinuous multivalued operator.

Definition 2.5 ([7]). Let X, Y be two metric spaces. A multivalued operator
T : X → P (Y ) is called upper semicontinuous at x0 ∈ X if and only if for any
neighborhood U of T (x0), there exists a neighborhood V of x0 such that for each
x ∈ V we have T (x) ⊂ U . T is said to be upper semicontinuous (u.s.c.) on X if
it is u.s.c. at any point x0 ∈ X .

Definition 2.6. Let (X, d) be a generalized metric space and T : X → Pcl(X)
be a multivalued operator. A sequence (xn)n∈N ⊂ X is called the sequence of
successive approximations of T if and only if x0 ∈ X and xn ∈ T (xn−1), ∀ n ∈ N∗.

The following result is well known in the field of set-valued analysis (see [1]).
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Proposition 2.7. Let Ω ⊂ R ×Rn be an open set, (t0, x0) ∈ Ω and F : Ω →
Pcp(R

n) an u.s.c. multivalued operator.
Then there exist I = [t0 − a, t0 + a] ⊂ R (where a > 0) and M > 0 such that:

(i) I × BRn(x0, aM) ⊂ Ω,
(ii) ‖F (t, x)‖ ≤ M on I × BRn(x0, aM).

An important concept is that of integrably bounded multivalued operator.

Definition 2.8 ([4]). Let (S,A, µ) be a complete σ-finite measure space and
(X, ‖ · ‖) be a separable Banach space. A multivalued operator T : S → Pcl(X)
is said to be integrably bounded if and only if there is a function r ∈ L1(S) such
that for all v ∈ T (s) we have ‖v‖ ≤ r(s) a.e.

For 1 ≤ p ≤ ∞ we define the set:

S
p
T := {f ∈ Lp(Ω, X) | f(s) ∈ T (s), a.e.},

i.e. S
p
T contains all selectors of T that belong to Lebesgue-Bochner space L

p(Ω, X).

It is easy to see that S1T is a closed subset of L1(Ω, X) and it is nonempty if
and only if T is integrably bounded (see [2] and [4]).
Finally, the following theorem is a slight version of a result given in [10].

Theorem 2.9. Let (X, d) be a complete generalized metric space and T : X →
Pcl(X) be a multivalued a-contraction. We suppose that there is a sequence

(xn)n∈N ⊂ X of successive approximations of T such that there exists an index

N(x0) ∈ N with the following property: d(xN , xN+l) < ∞, for all l ∈ N∗. Then

Fix T 6= ∅.

3. Main result

Consider the following multivalued Cauchy problem

(2)

{

x′(t) ∈ F (t, x(t))

x(t0) = x0

where F : Ω ⊂ R × Rn → Pcp(R
n), with Ω = [t0 − a, t0 + a] × B̃Rn(x0, b),

(a, b > 0).
The main result of this note is the following existence theorem:

Theorem 3.1. Consider the multivalued Cauchy problem (2). We suppose that:

(i) F : Ω→ Pcp(R
n) is u.s.c. and integrably bounded,

(ii) |t − t0|H(F (t, u), F (t, v)) ≤ k‖u − v‖, for every (t, u), (t, v) ∈ Ω,
(iii) |t − t0|

βH(F (t, u), F (t, v)) ≤ A‖u − v‖α, for every (t, u), (t, v) ∈ Ω,
(iv) A, k > 0, 0 < α < 1, β < α and k(1− α) < 1− β.
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Then, the multivalued Cauchy problem (2) has a solution.

Proof: From Proposition 2.7 it follows the existence of a real constant M > 0
such that ‖F (t, x)‖ ≤ M on Ω.

We denote by I the interval I = [t0−h, t0+h], where h = min{a, b
M }. We shall

prove, by an application of Theorem 2.9, the existence of a solution of problem (2)
on this interval I.
For this purpose we shall consider a space X with a generalized metric d, as

follows:

X = {ϕ ∈ C(I,Rn) | ‖ϕ(t)− x0‖ ≤ b, ∀ t ∈ I, ϕ(t0) = x0}

d : X × X → R+ ∪ {+∞}

d(ϕ1, ϕ2) := sup

{

‖ϕ1(t)− ϕ2(t)‖

|t − t0|pk
| t ∈ I

}

,

where p > 1, pk(1− α) < 1− β.
From [9] we have that (X, d) is a complete generalized metric space.
Finally, we choose the multivalued operator T : X ⊸ X ,

T (x) :=

{

v ∈ X | v(t) ∈ x0 +

∫ t

t0

F (s, x(s)) ds a.e. I

}

,

(where
∫ t
t0

F (s, x(s)) ds denotes the multivalued integral of Aumann).

It is easy to see that a function ϕ∗ is a fixed point of T if and only if ϕ∗ is a
solution of problem (2).
We shall prove now that T satisfies all the hypotheses of Theorem 2.9.

(a) T (x) 6= ∅ for each x ∈ X .

Consider the multivalued operator Fx, given by Fx(t) = F (t, x(t)). By the
Kuratowski-Ryll-Nardzewski selection theorem, Fx has a measurable selection
w(t) ∈ Fx(t), for all t ∈ I.

Define v(t) = x0 +
∫ t
t0

w(s) ds, t ∈ I. We obtain v ∈ T (x) and so T (x) 6= ∅.

(b) T (x) is closed for each x ∈ X .

Suppose (xn) is a sequence in T (x) which converges to y ∈ X . But xn(t) ∈

x0 +
∫ t
t0

F (t, x(t)) a.e. and x0 +
∫ t
t0

F (t, x(t)) is closed (see [7]). Hence y(t) ∈

x0 +
∫ t
t0

F (t, x(t)) a.e.

(c) T is a multivalued contraction.

We shall prove that there exists L ∈ (0, 1) such that for each x, y ∈ X with
d(x, y) < ∞ one obtains H(T (x), T (y)) ≤ Ld(x, y).

To see this, let v1 ∈ T (x). Then v1 ∈ X and v1(t) ∈ x0 +
∫ t
t0

F (s, x(s)) ds, a.e.

on I. It follows that there is a mapping fx ∈ S1
F (·,x(·)) such that v1(t) = x0 +
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∫ t
t0

fx(s) ds a.e. on I. Since H(F (t, x(t)), F (t, y(t))) ≤ k
‖x(t)−y(t)‖

|t−t0|
one obtains

that there exists w ∈ F (t, y(t)) such that ‖fx(t) − w‖ ≤ k
‖x(t)−y(t)‖

|t−t0|
on I. Thus

the multivalued operator G defined by G(t) = Fy(t)∩K(t), t ∈ I (where Fy(t) =

F (t, y(t)) and K(t) = {w ∈ F (t, y(t)) | ‖fx(t)−w‖ ≤ k
‖x(t)−y(t)‖

|t−t0|
}) has nonempty

values.
Fy and K are measurable and hence G is also measurable. Let fy be a mea-

surable selection for G (which exists by the Kuratowski-Ryll-Nardzewski selection

theorem). Then fy(t) ∈ F (t, y(t)) a.e. on I and ‖fx(t) − fy(t)‖ ≤ k
‖x(t)−y(t)‖

|t−t0|
on I.
Define v2(t) = x0 +

∫ t
t0

fy(s) ds, t ∈ I. It follows that v2 ∈ T (y) and

‖v1(t)− v2(t)‖ = ‖x0 +

∫ t

t0

fx(s) ds − x0 −

∫ t

t0

fy(s) ds‖

≤

∫ t

t0

‖fx(s)− fy(s)‖ ds ≤ k

∫ t

t0

‖x(s)− y(s)‖

|s − t0|
ds

= k

∫ t

t0

‖x(s)− y(s)‖

|s − t0|pk
|s − t0|

pk−1 ds ≤ kd(x, y)

∫ t

t0

|s − t0|
pk−1 ds

= kd(x, y)
|t − t0|

pk

pk
.

Finally, one obtains:

‖v1(t)− v2(t)‖

|t − t0|pk
≤
1

p
d(x, y) a.e.

Hence d(v1, v2) ≤
1
pd(x, y).

From this and the analogous inequality obtained by interchanging the roles of
x and y, we get

H(T (x), T (y)) ≤
1

p
d(x, y), for each x, y ∈ X with d(x, y) < ∞.

(d) T admits a sequence of successive approximations (ϕn)n∈N with the property
that there exists an index N ∈ N such that d(ϕN , ϕN+l) < ∞, for all l ∈ N∗.

To see this, let (ϕn)n∈N a sequence of successive approximations for T (where
ϕ0 ∈ X is arbitrary). Let ϕ1 ∈ T (ϕ0). It follows that there exists f0 ∈ L1(I,Rn),
f0(s) ∈ F (s, ϕ0(s)) a.e. such that

ϕ1(t) = x0 +

∫ t

t0

f0(s) ds a.e.
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Let ϕ2 ∈ T (ϕ1). By the definition of T , one obtains again that there exists
f1 ∈ L1(I,Rn), f1(s) ∈ F (s, ϕ(s)) a.e. such that

ϕ2(t) = x0 +

∫ t

t0

f1(s) ds a.e.

By the boundedness of F we have

‖ϕ2(t)− ϕ1(t)‖ = ‖

∫ t

t0

(f1(s)− f0(s)) ds‖ ≤

∫ t

t0

‖f1(s)− f0(s)‖ ds ≤ 2M |t − t0|.

Since f1(s) ∈ F (s, ϕ(s)) a.e. and F has compact values, we obtain that there
exists w ∈ F (s, ϕ2(s)), for each s ∈ I such that

‖w − f1(s)‖ ≤ H(F (s, ϕ2(s)), F (s, ϕ1(s))).

Consider the multivalued operator G defined by G(s) = Fϕ2(s) ∩ H∗(s) (where
Fϕ2(s) := F (s, ϕ2(s)) and

H∗(s) := {w ∈ X | ‖w − f1(s)‖ ≤ H(F (s, ϕ2(s)), F (s, ϕ1(s))) a.e.}.)

Clearly G is measurable and by the Kuratowski-Ryll-Nardzewski selection the-
orem it admits a measurable selection f2(s) ∈ G(s) a.e. on I. Thus f2(s) ∈
F (s, ϕ2(s)) a.e. and

‖f2(s)− f1(s)‖ ≤ H(F (s, ϕ2(s)), F (s, ϕ1(s))).

Let ϕ3(t) := x0 +
∫ t
t0

f2(s) ds. We have:

‖ϕ3(t)− ϕ2(t)‖ ≤

∫ t

t0

‖f2(s)− f1(s)‖ ≤

∫ t

t0

H(F (s, ϕ2(s)), F (s, ϕ1(s))) ds

≤ A

∫ t

t0

‖ϕ2(s)− ϕ1(s)‖

|s − t0|β
ds ≤ A(2M)α

∫ t

t0

|s − t0|
α−β ds

= A(2M)α
|t − t0|

1+α−β

1 + α − β
≤ A(2M)α|t − t0|

1+α−β .

Generally

‖ϕn+1(t)− ϕn(t)‖ ≤ A1+α+···+αn−2

(2M)α
n−1

|t − t0|
(1−β)(1+···+αn−2)+αn+1

< B|t − t0|
(1−β)(1+α+···+αn−2)+αn−1

,

where B = A
1

1−α max{2M, 1}.
In view of pk(1−α) < 1−β there exists an index N ∈ N such that (1−β)(1+

α+ · · ·+ αn−2) + αn−1 > pk, for each n ≥ N . Hence for n ≥ N , we have:

‖ϕn+1(t)− ϕn(t)‖

|t − t0|pk
≤ B|t − t0|

γn ,

where γn = (1− β)(1 + · · ·+ αn−2) + αn−1 − pk > 0.
This shows that d(ϕn+1, ϕn) < ∞, for all n ≥ N , which completes the proof.
After these verifications, an application of Theorem 2.9 in the preceding section

gives the desired conclusion. �
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Remark 3.2. For β = 0, we get an existence result which is an improvement of
Theorem 2 from [5].
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