
Commentationes Mathematicae Universitatis Carolinae

Anzelm Iwanik
How restrictive is topological dynamics?

Commentationes Mathematicae Universitatis Carolinae, Vol. 38 (1997), No. 3, 563--569

Persistent URL: http://dml.cz/dmlcz/118954

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118954
http://project.dml.cz


Comment.Math.Univ.Carolin. 38,3 (1997)563–569 563

How restrictive is topological dynamics?

A. Iwanik

Abstract. Let T be a permutation of an abstract set X. In ZFC, we find a necessary and
sufficient condition it terms of cardinalities of the T -orbits that allows us to topologize
(X, T ) as a topological dynamical system on a compact Hausdorff space. This extends an
early result of H. de Vries concerning compact metric dynamical systems. An analogous
result is obtained for Z2-actions without periodic points.

Keywords: abstract dynamical system, pointwise periodic system, symbolic dynamics,
Z2-action

Classification: 54H20

Introduction

By topological dynamics one usually means the study of a transformation group
of a topological phase space. In the most common setup the infinite cyclic group
Z acts on a compact Hausdorff space X , that is to say we study iterates of a
single homeomorphism T of X . From an abstract point of view — forgetting
the topology — we are left with a permutation T of a set X , i.e. an abstract
dynamical system (X, T ). A natural question arises whether it is possible to make
such an abstract system into a compact Hausdorff one with T a homeomorphism.
Some results in this direction have been known for a long time. De Vries proved
in [V] that, assuming the continuum hypothesis, if |X | = c, the cardinality of
continuum, then (X, T ) can always be endowed with a compact metric in which
T is a homeomorphism. We also mention other papers where under suitable
assumptions T is realized as an isometry ([I-J-K], [K], [I]), or it is embedded into
a linear system on a Hilbert space ([E],[J], where noninvertible transformation are
also studied).
In the present note we characterize completely the abstract systems possessing

compact Hausdorff models. As we will see, this requirement is only restrictive if
|X | < c, in which case the argument relies on two results from [I-J-K]. We also
illustrate how the problem complicates in the case of Z2-actions.

The author would like to thank Tomasz Downarowicz for a helpful remark
concerning symbolic realizations.

1. Z-actions

Let T be a permutation of a set X .
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1. First we are assuming that there are no periodic points, i.e., all the orbits
under the T -action are infinite.
If |X | = c then an obvious topological model for (X, T ) is provided by any

irrational rotation x → x + α of the circle T = R/Z. There is also no problem
in extending this to |X | > c as now we may just take X = T× Y with T (x, y) =
(x+ α, y), where Y is any compact Hausdorff space of a suitable cardinality, e.g.
a closed initial interval of the ordinals with its order topology.
On the other hand, if |X | < c, no such model exists. Indeed, suppose (X, T )

is a compact Hausdorff dynamical system with no periodic points and |X | < c.
Without loss of generality we may assume that the system is minimal. Observe
that X is not dense-in-itself because otherwise we would have |X | ≥ c by the
familiar Cantor set construction. There must exist an isolated point in X , whence
by minimality all the points are isolated, so X is discrete. By compactness, X is
finite, which contradicts the absence of periodic points.
The case of infinite orbits is now completely settled.

2. Now assume there are no infinite orbits, in other words the system is point-
wise periodic. Denote by νk the number of orbits of length k.
Suppose first that |X | ≥ c. We have

ν1 + 2ν2 + 3ν3 + . . . = |X |

so by König’s theorem, νk ≥ c for at least one of the k’s. We fix one such k. Now
for any natural number n choose a relatively prime pn ∈ {1, . . . , n− 1} such that
pn/n → 1/k as n → ∞. Such a sequence pn exists, e.g. as a simple consequence of
the Prime Number Theorem: for any ǫ > 0 and 0 < λ < 1 there are approximately
2ǫλn/ log(λn) primes situated between (1− ǫ)λn and (1+ ǫ)λn, while the number
of all prime divisors of n is bounded by log2 n. Without loss of generality we may
assume that there are exactly c orbits of length k (if there are more, we can make
the others into a disjoint closed-and-open compact dynamical system of the type
Z × Y as in 1, where Z is a single k-cycle). We also assume for simplicity that
there is only one orbit of each length n 6= k.
Now the argument runs as in de Vries [V] where, however, the author ignored

the necessity of pn being relatively prime with respect to n. First take the circle
model for the k-orbits with T rotated by Tx = x + 1/k. Next choose a sequence
of concentric n-cycles of distinct radii rn → 1 with the n points situated corre-
sponding to the angles 2πj/n, j = 0, . . . , n− 1 (we construct only those n-cycles
for which νn 6= 0). Now define the transformation T on the n-cycle by j → j+pn

modulo n. Since (n, pn) = 1, we still have a single n-cycle. Since the n-cycles
converge to T with pn/n → 1/k, we obtain a compact dynamical system. If there
are more orbits of each length, we pass to suitable products as before and make
the whole “packs” of n-cycles converge to the circle — one can easily do this by
a quotient space construction.
We have shown that any pointwise periodic system with |X | ≥ c has a compact

model. In the case |X | < c we need a finer analysis.
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According to [I-J-K], we say that the set of orbits of (X, T ) is finitely based if
there exists a finite family of orbits of lengths k1, . . . , kr such that the length of
any orbit in X is a multiple of some ki.
It is not hard to see that if the orbits are finitely based then a compact model

exists. One way of seeing this is a symbolic construction of X as a closed subshift
in [0, 1]Z. Clearly there is no loss of generality in assuming that all the periods
are multiples dk of a single number k. Also, by using suitable products to obtain
“packs” of cycles of the same length and passing to a quotient space as before,
we may restrict ourselves to the case where there is only one orbit of each length.
Now define the word W = W1 = 10 . . .0 (a 1 followed by k − 1 symbols 0) and
for each d = 2, 3, . . . set Wd = W ′W . . . W , where W ′ the word W with the first
symbol replaced by 1d = 1−1/d. Now form periodic sequences xd = . . . WdWd . . .

in [0, 1]Z, where the first symbol of someWd always occurs at the zero coordinate
(use only those d’s that actually occur in the given abstract system). It is clear
that xd is dk-periodic and since 1d → 1,the least closed subshift containing the
elements xd consists only of the xd’s and their translates, and has exactly the
orbits we need.
It remains to see what happens if |X | < c and the orbits are not finitely based.

We show that in this case no compact model exists. To this end first note that
|X | < c implies that X is 0-dimensional (if not, there would exist a nontrivial
connected component which, by a Cantor set construction would be of cardinality
at least c). We now quote two results from [I-J-K]:

(a) If (X, T ) is a 0-dimensional pointwise periodic compact Hausdorff dynam-
ical system then (X, T ) is equicontinuous;

(b) If the equicontinuous system (X, T ) is pointwise periodic then the orbits
are finitely based.

Putting this together we can see that in the pointwise periodic case a compact
model does not exists if and only if |X | < c and the orbits are not finitely based.

3. Finally we consider the mixed case and assume that there are both finite and
infinite orbits in our abstract system (X, T ). We will show that now a compact
model always exists regardless of the cardinality of X .
It is clear how to “wind around” an infinite orbit (or a “pack” of them) about

a finite cycle — so there is no difficulty in finding a compact model if the set of
finite orbits is finite or finitely based. As before, it is also not difficult to find
a compact model with a preassigned number of orbits of given lengths, once a
model with single orbit of each kind has been constructed. Therefore we may
assume that (X, T ) consists of a single infinite orbit and an infinite collection of
finite orbits which are not finitely based and have only one representative of each
length. An example of this would be an infinite orbit along with finite orbits of all
prime lengths, one of each kind. Our task is to show that such orbits can coexist
in a compact model.
Let n1 = N < n2 < n3 < . . . be the lengths of finite orbits that occur in
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(X, T ). Of course we may assume

n2 ≥ N2,

for any finite collection of orbits has a compact model. It will also be convenient
to assume that no nk, k ≥ 2, is a multiple of N (we take care of the multiples
as in the finitely based case by winding them around N).

As a model for (X, T ) we will construct a closed subshift of {0, 1}Z. First let
B = 01 . . . 1 (N symbols). Now for every n = nk, k ≥ 2, write n = qN + r,
where 0 < r < N , q = rp+ s. Note that such a representation exists with r > 0,
p > 0, and 1 ≤ s ≤ r thanks to our assumptions that N does not divide nk and
nk ≥ N2. We define

Cn = B . . .B0B . . . B0 . . . B . . .B0B . . . B,

where there are r concatenations of p words B each, separated by single zeros
and followed by a terminal concatenation of s words B. Since n = rpN + r+ sN ,
the length of Cn is exactly n and the sequence yn = . . . CnCn . . . , with the first
symbol of Cn at the zero coordinate, is n-periodic with no shorter period (indeed,
the block 0B . . . B with more than p consecutive words B occurs exactly once
every n positions). The least closed subshift containing the points ynk

, k =
2, 3, . . . and the N -periodic sequence yN = . . . BBB . . . consists exactly of these
sequences and their translates plus one infinite orbit generated by the sequence
y = . . . BBB0BBB . . . . The latter is obtained as the limit of a subsequence of
some translates of the ynk

’s whenever the zero coordinate remains at a bounded
distance from the nearest separating 0 in Cnk

; otherwise we will end up with a
translate of yN . It is now clear that the orbits of the compact subshift obtained
by our construction have the same structure as in the abstract model (X, T ).
We have obtained the following result.

Theorem 1. Let X be a set and T : X → X be a bijection. Then (X, T ) can be
made into a compact Hausdorff dynamical system iff none of the following holds

(1) |X | < c and all the orbits are infinite,
(2) |X | < c, all the orbits are finite and are not finitely based.

2. Remarks on Z2-actions

In this section we consider an abstract dynamical system (X, S, T ), where S, T
are two commuting permutations of the set X . In other words, we study the Z2-
action ((m, n), x) → SmT nx on X . We are seeking a realization of our abstract
system as a compact Hausdorff space with two commuting homeomorphisms.
In general a solution seems much more complicated than in the case of a Z-

action. We only present the solution in the case where all the Z2-orbits are
infinite.
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First note that any Z2-orbit can be viewed as a homomorphic image of Z2

(actually the orbit is identified with the quotient group of Z2 divided by the
stabilizer of any point in the orbit). Consequently, there are three types of infinite
orbits: Z,Z2 , and Z × n, the latter meaning the product of Z with the finite
cyclic group of order n, i.e. the collection of points SmT kx0, where m ∈ Z,
k = 0, 1, . . . , n − 1.
We will say that the orbit Y of the type Z× n is minimal if there are no other

orbits Z × k, where k 6= n and k divides n. We use the same notation for the
n × Z orbits.
In any orbit of the type Z we can distinguish two integers m, n such that S, T

restricted to the orbit correspond to the translations by m, n in Z, respectively.
We will then say that the orbit is of the type Z(q), where q = m/n and q =∞ if
n = 0. Clearly m, n are always relatively prime and we may assume n ≥ 0.
Now we are in a position to state our result.

Theorem 2. Let X be a set on which on which Z2 acts by permutations and
assume that all the orbits are infinite. Then X can be made into a compact

Hausdorff space with continuous Z2 action iff none of the following holds

(1) for some n the number of minimal orbits of at least one of the types Z×n,
n × Z is positive and less than c,

(2) for some q the number of Z(q) orbits is positive and less than c,
(3) there exist only Z× Z orbits and 0 < |X | < c.

Proof: We first handle the case where for some n there are at least c minimal
orbits Z×k and the only other orbits are of the type Z×dk, d = 2, 3, . . . . As in
Section 1, we reduce the task of finding a compact model to the case where there
are exactly c orbits Z× k and only one orbit of each kind Z× dk. We arrange the
Z× k orbits into the 2-torus T2 with the rotations S(x, y) = (x+α, y), T (x, y) =
(x, y+1/k), where α is an irrational number. Now, as in the finitely based case of
Section 1 we wind up the other orbits around the torus. Instead of the symbolic
description of Section 1 we now represent any other orbit geometrically as an
infinite sequence of dk-loops wound around the torus with the x-coordinate of the
j-th loop equal to jα, j ∈ Z. As |j| → ∞, the loops converge to the surface
of the torus and the T -rotation along the loop approaches the 1/n-rotation of
the y-coordinate on the torus. The S-rotation of any point coincides with the
α-rotation of the x-coordinate. It is clear that such a system is a compact model
for (X, S, T ).
If, apart from the specified orbits, there is one (or more) orbit of the type Z×Z,

we can easily wind it up around the same torus as a base, using infinite loops at
the same x-coordinates jα.
Now consider the more general situation where all the minimal orbits Z × k

and n×Z occur at least c times each and there are no orbits of the type Z. Again,
we may assume that there are exactly c orbits of each minimal type. To further
simplify the wording, assume that there are no orbits of the type n × Z and, for
each minimal Z×k, denote by Yk the 2-torus along with the accompanying orbits
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Z× dk and Z × Z as above (in general only some positive integers k will occur).
We fix one Yk0 and then make the others approach it as in 2 of Section 1. There is
no problem with the x-coordinate, as we may use the same α for all the tori. For
the y-coordinates, we choose the numbers pn/n → 1/k0 as before and change the
definition of T on each Yn to let it rotate by pn/n rather than 1/n (this does not
change the structure of the orbits nor does it affect the continuity of S on Yn).
For the Z × Z-orbits, S can also be changed accordingly. The resulting system
will be compact and will realize the abstract dynamics of X .
If, on the other hand, there are less than c orbits of some minimal type, say,

Z × n then there is no compact model. Indeed, the set of these orbits would
then be closed and invariant, so in particular it would constitute an S-dynamical
system (Y, S) with |Y | < c and no periodic points, contradicting Theorem 1.
Of course the same argument applies if there are only Z × Z-orbits and 0 <

|X | < c, which excludes the possibility of a compact model in the cases (1) and
(3) of the theorem. Since there is an easy model (two irrational rotations) if there
are at least c orbits of the type Z × Z, we have settled the problem if there are
no Z-orbits.
Now we study the Z-orbits. As we will see they can be treated independently

from the other types. First observe that if there are c orbits of the type Z(q),
where q = m/n, n 6= 0, then we can model them on T letting T be any irrational
rotation α and S be the rotation β = qα modulo 1.
If there are c orbits Z(q) for each q that occurs in the system, we may choose

one type, say, Z(q0), realize it as above as a 1-torus Y0 with rotations α, β and
make the other types Z(qk) — more precisely, their associated tori Yk — converge
concentrically to Y0. Now, however, each Yk is wound several times around Y0 in
such a way that the angles corresponding to its rotations αk and βk = qkαk of Yk

converge to the angles of α and β, respectively as k → ∞. This is possible as there
is no a priori bound for the number of times Yk encircles Y0. More specifically, it
is an exercise to see that given ǫ > 0 and qk ∈ Q, there exists a positive integer
K such that if |m| > K or |n| > K (here β/α = m/n) then we can find irrational
numbers α′, β′ such that |α − α′| < ǫ, |β − β′| < ǫ, and

P + β′

Q+ α′
= qk

for some integers P , Q. The numbers P , Q will determine how many times Yk

encircles Y0.
Clearly we may change the roles of S and T if q0 = ∞. If some of the cardi-

nalities exceed c, we use the same approach as in Section 1 (passing to products
and a quotient space). �
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