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The inverse distribution for

a dichotomous random variable

Elisabetta Bona, Dario Sacchetti

Abstract. In this paper we will deal with the determination of the inverse of a dichoto-
mous probability distribution. In particular it will be shown that a dichotomous distri-
bution admit inverse if and only if it corresponds to a random variable assuming values
(0, a), a ∈ R

+.
Moreover we will provide two general results about the behaviour of the inverse

distribution relative to the power and to a linear transformation of a measure.

Keywords: inverse measure, inverse probability distribution, Laplace transform, variance
function

Classification: 62E10

1. Introduction

Let X be a random variable and P (x) its probability distribution; if the mo-
ment generating function (MGF) exists, then let denote it by MX(t) and the
cumulant generating function (CGF) by KX(t) = logMX(t).
If

T =
{
t ∈ R : K ′(t) > 0

}
6= ∅,

then K(t) is a one-to-one function on T . In this case let

K̃(t) = −K©-1(−t),

M̃(t) = eK̃(t)

and P̃ (x) the inverse Laplace transform of M̃(t). Note that with f©-1 we will

indicate the inverse function of f , i.e. f ◦ f©-1 = identity function.
If P̃ (x) is a probability distribution i.e. is always positive with total mass equal

to one, then P̃ (x) is called the inverse distribution of P (x).
Alternatively, if X is a discrete random variable taking values on {1, 2, . . .},

let GX (t) =MX(log t) denote the probability generating function; in this case we
have

G̃(t) = M̃ [log t] =

[
1

G(1/t)

]©-1
.
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If G̃(t) can be expanded as a power series around the origin, that is

G̃(t) =
∑

h

aht
h

with ah ≥ 0, then

P̃ (x) =
∑

h

ahδh(x)

and P̃ (x) is the inverse distribution of P (x). The definition of inverse distribution
was introduced by Tweedie [9]; the Gaussian and the Inverse Gaussian are the
most popular examples of inverse distributions. Moreover the binomial distribu-
tion with parameters (p,N) has as inverse the distribution of X/N where X is
distributed as a geometric with parameter p; the inverse of the gamma distribu-
tion with parameters (p,N) is the distribution of X/N where X is a Poisson with
parameter p ([7]).
Let observe that, given a probability distribution, the existence of its inverse

is not in general guaranteed, since P̃ (x) is not always (strictly) positive. For
instance, if P (x) is the distribution of the logarithmic series (LSD),

P (x, θ) =
∞∑

n=1

θn

n log(1− θ)
δn(x),

where θ ∈ (0, 1) and δn(x) is the Dirac function in n, we have

P̃ (x, θ) = θ

{
1

| log(1− θ)|
δ1(x) +

1

2
δ0(x)+

+

∞∑

n=1

(−1)n−1
|B2n|

(2n)!
| log(1− θ)|2n−1δ−(2n−1)(x)

}
,

where B2n are the Bernoulli numbers. In this case P̃ (x, θ) is a signed measure
whose total mass is still equal to one ([6]).

The application that defines P̃ (x) keeps some of the original properties of P (x).
The following results hold:

Proposition 1.1.

(i) Both P (x) and P̃ (x) have total mass equal to one;

(ii) both K(t) and K̃(t) are convex functions;

(iii) both M(t) and M̃(t) are analytical functions.

Proof: (i) M̃(t) =
∫
R
etx dP̃ (x) therefore M̃(0) =

∫
R
dP̃ (x), but

M̃(0) = eM
©-1 (
e−t

)
t=0 = 1.
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(ii) K(t) = logM(t) where M(t) denotes the Laplace transform of P (x). Both
M(t) and K(t) are infinitely times differentiable. Convexity of K(t) follows di-

rectly from Hölder’s inequality; by the K̃(t) definition it is

K̃ ′(t) =
1

K ′(K©-1(−t))

and

K̃ ′′(t) =
K ′′(K©-1(−t))

[K ′(K©-1(−t))]3
.

Since K ′′(t) > 0 and K ′(t) > 0, it is K̃ ′′(t) > 0 too.

(iii) As it is known,M(t) is analytic in his natural domain; since M̃(t) is obtained

by composing analytic functions, it results that M̃(t) is an analytic function in a
certain neighbourhood of the origin. �

Remark. The initial assumption K ′ > 0 is justified since, as shown in (ii), it

implies the convexity of K̃, a necessary condition for K̃ to be the CGF of a
positive measure.

With respect to the probability distributions in the natural exponential family
(NEF), the problem of existence of the inverse distribution can be approached in
an alternative way.
Let µ be a positive, not necessarily bounded measure, and assume that:

• Mµ(θ) =
∫
R
eθx dµ(x) is the Laplace’s transform of µ;

• Kµ(θ) = logMµ(θ);

• Dµ = {θ :Mµ(θ) < +∞} is the domain of Mµ(θ);

• Θµ is the interior of Dµ.

Also, let us suppose that µ is not degenerate and that Θµ 6= ∅.
For each θ ∈ Θµ, let

Pµ(θ)dx =
eθx

Mµ(θ)
µ(dx)

and let
F = {Pµ(θ), θ ∈ Θ}

be the NEF generated by µ; µ is called basis of Fµ.
It is well known that Kµ(θ) is convex and, therefore, that K

′
µ(θ) is invertible.

Let EF be the image of Θµ through the application K
′
µ(θ) and let ψ(m) the

inverse function of K ′
µ(θ); Eµ is called mean domain of Fµ.

Definition 1.1. The application Vµ : Eµ → R defined as

Vµ(m) =

∫

R

(x−m)2Pµ(m) dx, m ∈ Eµ
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is called variance function of the NEF F .

The importance of the variance function relies on the fact that any NEF is
uniquely determined by its domain and by the variance function itself ([5]). The
following results are well known ([3]).

Theorem 1.1. Let Fµ be the NEF generated by µ, and Vµ its variance function.
Then:

(i) Vµ(m) > 0 ∀m ∈ Eµ;

(ii) Vµ(m) = K
′′
µ(ψ(m)) =

1
ψ′(m)

∀m ∈ Eµ;

(iii) Vµ(m) is analytical in Eµ.

Theorem 1.2. Consider

ϕ(x) = ax+ b, a 6= 0, b ∈ R

and let Fµ be the NEF generated by µ, µ1 the image measure of µ through ϕ,
and Fµ1 the NEF generated by µ1; then:

(i) Eµ1 = ϕ(Eµ);

(ii) Vµ1(m) = a
2Vµ[(

m−b
a )] ∀m ∈ Eµ1 .

Analogously to the probability distribution case, it is possible to introduce the
concept of inverse measure.

Definition 1.2. Let µ and µ̃ be two non degenerate measures such that Θµ and
Θµ̃ are nonempty; let us define

Θ+µ =
{
θ ∈ Θµ : K

′
µ(θ) > 0

}
.

The measure µ̃ is the inverse measure of µ if:

(i) Θ+µ is nonempty;

(ii) −Kµ̃(−Kµ(θ)) = θ ∀ θ ∈ Θ∗
µ ⊂ Θ+µ , where Θ

∗
µ 6= ∅.

If µ and µ̃ are positive measures then the following theorem provides the con-
nection between the variance functions Vµ and Vµ̃.

Theorem 1.3. Let Fµ and F̃µ be the NEF’s generated by the inverse measures
µ and µ̃ respectively. Then

(i) the applicationm→ 1/m is one-to-one from Eµ∩(0,+∞) to Eµ̃∩(0,+∞);

(ii) Vµ(m) = m
3Vµ̃(1/m).

The problem of inversion of a NEF has been considered by several authors, clas-
sifying the NEF’s according to their variance functions, computing the variance
function of the inverse and then identifying the probability distribution.
Such a classification is exhaustive for the NEF whose variance function is a

polynomial of degree less or equal to three [3], [4], [5].
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2. Dichotomous measure

In this section we will consider the problem of the inversion of a dichotomous
measure using two different methods: directly, i.e. using the inverse Laplace trans-
form, or using the variance function.
We will determine the conditions for which the inverse of a dichotomus mea-

sure is positive and it will be then calculated, in an explicit manner, the inverse
probability distribution.
First consider the following theorem

Theorem 2.1 (Lagrange’s formula). Let g be analytic in (−r, r), r > 0 and
g(0) 6= 0, then there exist an R > 0 and an analytic function t = t(y) on (−R,R)
such that t = y g(t) ∀ y ∈ (−R,R).
Furthermore, if F analytic on (−r, r), then for all y ∈ (−R,R) it is:

F (t) = F (0) +

∞∑

n=1

yn

n!

{
Dn−1

[
F

′
(t)(g(t))n

]}
t=0

.

Proof: See for example [1]. �

Theorem 2.2. Let µ = δa+δb, with a, b ∈ R+, then the inverse measure µ̃ exists
if and only if a = 0.

Proof: 1◦ method:
If µ = δa + δb, a, b ∈ R+, a < b, then

G(t) = ta + tb, t > 0 and
1

G(1/t)
=

tb

1 + tb−a
.

Let w = [G(1/t)]−1 then tb = w
(
1 + tb−a

)
. Let z = tb−a then z

b
b−a = w(1 + z)

e.g. z = w
b−a

b (1+z)
b−a

b . The function g(z) = (1+z)
b−a

b is analytic in (−1, 1) and

g(0) = 1 then for Theorem 2.1, when F is the identity function and y = w
b−a

b , it
is:

z =

∞∑

n=1

wn
b−a

b

n!

{
Dn−1(g(z))n

}
z=0

.

Since

(g(z))n = (1 + z)n
b−a

b =

+∞∑

h=0

(
n b−ab
h

)
zh,

it is

Dn−1(g(z))nz=0 =

(
n b−ab
n− 1

)
(n− 1)!
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Then

z =

+∞∑

n=1

(
n b−ab
n− 1

)
(n− 1)!

wn
b−a

b

n!
=

+∞∑

n=1

(
n b−ab
n− 1

)
wn

b−a
b

n

= w
b−a

b

{
1 +

+∞∑

n=2

(
n b−ab
n− 1

)
w(n−1)

b−a
b

n

}
∀w ∈ (−R;R).

Note that
(
n b−ab
n− 1

)
=

1

(n− 1)!
n
b− a

b

(
n
b− a

b
− 1

)
. . .

(
n
b− a

b
− n+ 2

)

and (
n b−ab
n− 1

)
< 0 for a 6= 0, n =

⌊
2b

a

⌋
+ 1,

(
n b−ab
n− 1

)
> 0 ∀n ∈ N ⇐⇒ a = 0,

where ⌊x⌋ is the integer part of x. If a > 0, then the quantity

(∗)

t = z
1

b−a = w1/b

{
1 +

+∞∑

n=2

(
n b−ab
n− 1

)
w(n−1)

b−a
b

n

} 1
b−a

= w1/b
+∞∑

h=0

( 1
b−a

h

) [
+∞∑

n=2

(
n b−ab
n− 1

)
w(n−1)

b−a
b

n

]h

will be of the type

w1/b

{
+∞∑

r=0

arw
b−a

b
r

}
for w ∈

(
−R

′

;R
′
)
.

Let observe that if ar > 0, ∀ r ∈ N, the coefficients of the serie{∑+∞
r=0 arw

b−a
b
r
}b−a

will be all positive, but, as already seen, the coefficients of

the serie {
+∞∑

r=0

arw
b−a

b
r

}b−a

=

{
1 +

+∞∑

n=2

(
n b−ab
n− 1

)
wn

b−a
b

n

}

are all positive only if a = 0.
Finally, since

G(w) = w1/b

{
+∞∑

r=0

arw
b−a

b
r

}
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for Proposition (45.2) in [2], it is

µ̃ = δ 1
b

{
+∞∑

r=0

arδ b−a
b
r

}
=

+∞∑

r=0

arδ 1+(b−a)
b

r

and µ̃ comes out to be a signed measure.
If a = 0 the (∗) becomes

t = z1/b = w1/b

{
1 +

+∞∑

n=2

(
n

n− 1

)
w(n−1)

n

}1/b

= w1/b

[
+∞∑

n=1

w(n−1)

]1/b
= w1/b(1 − w)

−1/b
.

Therefore

G̃(w) = w1/b

{
+∞∑

h=0

(
−1/b

h

)
wh

}

and

µ̃ =

+∞∑

h=0

(
−1/b

h

)
δ 1

b
+h

is, as already seen, a positive measure.

2◦ method:
Let µ0 = δ0+ δ1, Fµ0 the NEF associated to µ0 and Vµ0 the variance function

of Fµ0 . Then ([3]),
Eµ0 = (0, 1) and Vµ0 = m−m2.

Now, let µ = δa + δb with a, b ∈ R+ − {0}, a < b, and Fµ the NEF associated to
µ. Then µ = ϕ(µ0), where ϕ is the affine transform

ϕ(x) = (b− a)x+ a.

From Theorem 1.2, we have

Eµ = ϕ((0, 1)) = (a, b) and Vµ = (m− a)(b −m).

Now, if Fµ̃ is the NEF associated to µ̃, from Theorem 1.3 it follows that

Eµ̃ =
(1
b
,
1

a

)
.

Furthermore
Vµ̃ = m(1 −ma)(mb− 1).
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However, the Mora-Morris classification [3] assures that no exponential family
exists with variance function equal to a third degree polynomial and bounded
domain. Therefore, µ does not have an inverse distribution.
Let us now consider the other cases.
Suppose a = 0 and b > 0. Then:

Eµ̃ =

(
1

b
,∞

)
and Vµ̃(m) = m(bm− 1)

that is the variance function of the inverse binomial distribution with parameter
p = 1/b up to the affine tranformation ϕ(x) = x+ 1/b ([3]).
Finally, let a = 0 and b < 0, then:

Eµ̃ = (−∞,
1

b
) and Vµ̃ = m(bm− 1);

this is absurd, since Vµ̃ turns out to be negative. Therefore, the inverse measure
µ̃ of a measure µ exists if and only if a = 0. �

Corollary 2.1. Let X be a random variable that assumes the values 0 and
a > 0 respectively with probability p and 1 − p. The inverse random variable,

X̃ , is discrete and assumes the values {1/a+ n− 1, n ∈ N} with probabilities
respectively:

(−1)n−1
(
−1/a

n− 1

)
pn−1(1 − p)1/a.

Proof: Since it is
G(t) = p+ (1− p)ta,

G̃(t) = (1− p)1/at1/a(1− pt)−1/a, |t| <
1

p
,

then

P̃ (x) = (1 − p)1/a
+∞∑

n=1

(−1)n−1
(
−1/a

n− 1

)
pn−1δ 1

a
+n−1

and the corollary is proved. �

3. Inverse measures transformations

In this section we will describe the general behaviour of the inverse distributions
with respect to the power and the linear transformation of a measure µ.

Theorem 3.1. The following results hold:

(i)
˜
M
1/a
µ (t) = M̃µ(at),

(ii)
˜
G
1/a
µ (t) = G̃µ (t

a).
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Proof: It is, omitting for the sake of simplicity the indication of µ:

M̃(t) = eM
©-1 (
e−t

)
,

then

M̃1/a(t) = e−(M
1/a)

©-1
(e−t) = e−M

©-1 (
e−t

)a
= M̃(at)

and (i) is proved. Since G(t) =M(log t), t ∈ R+, then (ii) follows. �

Theorem 3.2. The following results hold:

(i) M̃aµ(t) = M̃
1/a
µ (t),

(ii) G̃aµ(t) = G̃
1/a
µ (t).

Proof:

M̃aµ(t) = e
−M©-1 (

e−t
)
= e−

M
©-1
µ (e−t)

a = M̃
1/a
µ (t),

then (i) is proved and (ii) follows. �

Observation 3.1. If X is a random variable such that P {X = 0} = p and

P {X = a} = 1 − p, a ∈ N, for the Corollary 2.1, X̃ assumes non integer values
for a 6= 1.

Let a ∈ N, a 6= 1, and G̃X̃(t) = [(1− p)t]1/a (1−pt)−1/a, for (ii) of Theorem 3.1
it results:

G̃1/a(t) = G̃ (ta) = (1− p)1/at(1− pt)−1/a =

= (1− p)1/at

∞∑

h=0

(−1)h
(
−1/a

h

)
phtah

that is the generating function of the random variable assuming the integer values

1+ah, h ∈ N, and having the same distribution of X̃. Let observe that G1/a(t) is

the 1a -th power measure of the probability distribution of the random variable X ,
according to the definition reported in [8, p. 37].
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