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Sets of determination for solutions
of the Helmholtz equation

JARMILA RANOSOVA

Abstract. Let o > 0, A = (2a)~1/2, §7~1 be the (n — 1)-dimensional unit sphere, o be
the surface measure on S®~! and h(z) = Son-1 eMoY) do(y).
We characterize all subsets M of R™ such that

w@) _ o oula)

wCkn h(z)  =eM h(z)

for every positive solution u of the Helmholtz equation on R™. A closely related problem
of representing functions of L1(S™ 1) as sums of blocks of the form e k) /h(xy)
corresponding to points of M is also considered. The results provide a counterpart to
results for classical harmonic functions in a ball, and for parabolic functions on a slab,
see References.

Keywords: Helmholtz equation, set of determination, decomposition of L'
Classification: 35J05, 31B10

Preliminaries

In this paper the following notation is used: Small letters, such as z, y, will
denote points in R”, "~ ! the (n — 1)-dimensional unit sphere and o the surface
measure on S~ L.

Consider, for a > 0 fixed, the Helmholtz equation
Au—2au=0 onR".

Theorem A. A function u on R™ is a difference of two positive solutions of the
Helmholtz equation if and only if there is a signed measure ju,, on S™~1 such that
for all x € R™

[ 9 () < oo
Snfl

and
u(z) = / M) dpy (i),

Sn—1
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where A = (2a)" /2.
The solution w is positive if and only if p,, is a measure.

PRrROOF: This representation theorem can be proved by means of Martin boundary,
see [8]. For a different proof, see [6]. O

The solution corresponding to o will be denoted by h.

For v € R the function I, is “the Bessel function with an imaginary argument”
of the order v regular at zero. (For details see any book about Bessel functions,
for example [14, p.17].)

Then
h(z) = CAET2 ||z @=m/21 o0 (Allz]),

with C' chosen so that h(0) = wy, the area of the unit sphere in R™. (See [6,
p.261].)

For f, g two functions on R", f ~ g will mean that lim <= =1.

lall—o0 9(7)

As I,(||z])) ~ @x|z|)~2ellzl (see for example [14, pages 17 and 203]), we
have that

h(a)||z| "D/

o — OACM/2 (90712,
e T

llz[|—o0
this constant will be denoted by k.

A solution u of the Helmholtz equation will be called h-bounded if there exist
real constants ¢; and cg such that c1h(z) < u(z) < coh(z) for all z € R™,

Moreover, a solution u of the Helmholtz equation Wlll be called snnple if there
exists a o-measurable subset A of S~ such that u(x f eMz:y) do(y) for any

r € R™.

Definition. Fory € S" !, b € Rt, k € RT define the admissible region A(y,b)
to be )
{z e R ||z — |l=llyll <oll«)2}

and the truncated admissible region A*(y,b) to be
A(y,b) N {z € R™; ||zl > k}.

Let M C R™ and y € S"~1. The point y will be called a b-admissible limit
point of M if for any k € Rt the set M N A¥(y,b) is not empty. The point y
will be called an admissible limit point of M if there exists b € RT such that y is
a b-admissible limit point of M.

A function f on R" is said to converge admissibly at y if, for all b > 0, f
restricted to A(y,b) has a limit at oo.
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We will write A-lim f(z).

r—Y

The space R™ endowed with the sheaf of solutions of the Helmholtz equation
is a strong harmonic space in the sense of Bauer, see [2, p. 86].

Terms as harmonic functions, superharmonic functions and reduced functions
are related to this harmonic space and have a standard meaning.

This harmonic space satisfies conditions (1)—(10) in [13], see [13], and so mini-
mal thinness at points of S”~! is well defined and the Fatou-Naim-Doob theorem
holds. For the reader’s convenience the basic facts are presented here.

Definition. Let M C R"™, v positive superharmonic function on D. The reduc-
tion of v on M is defined as

Rf)‘/[ = inf{u; v = v on M, is positive superharmonic function on R"}.
Let M C R™ and y € S"~!. The set M is minimal thin at y if
M AL,
RM ., #e )

The minimal fine filter at y is filter: F(y) = {M C R™;R™\ M is minimal thin
at y}.

A function f converging along F(y) is said to have a minimal fine limit at y.
This limit will be denoted mf-lim f(x).

Theorem B (Limit theorems). Let u be a positive solution and v be a strictly
positive solution of the Helmholtz equation defined on all R™ and pu,,, py be their
representing measures on S™ 1.

Then the following equalities hold:

. u(z) o iy,
%‘l{iﬂ ’U(l‘) N de( )

for py,-almost all points y of S™~1 (admissible convergence);

u(r) d,uu( )

for ju,-almost all points y of S"~! (the Fatou-Naim-Doob limit theorem).
PROOF: See [9, p.85] and [13]. O
Remark. For v = h, the admissible convergence follows from the minimal fine
convergence (even in a more general situation); see [9, p. 84].

Let € R, b,c,k € RT and M C R™. In this paper, the following subsets of
R™ will be of special interest:
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B(z,¢) ={z e R ||z —z|| £ ¢},
1 1

S(x,b,k) = {z € R"; ||z|| = K|z and ||z — kz| < k2b||lz|2},
Mgy = UgenS(, b, k),
S(xz,b) = S(x,b,1),
Mg = UgepS(,b),
cM = {z € R™; there exists € M such that z = c.x}.

Let z,y € R", a;y will denote the angle between x and y.

The main results

Theorem. Let M C R"™. Then the following statements are equivalent:

(i)
¢ u(x) i u(x)

vekn h(z)  weM h(@)
for all simple solutions u of the Helmholtz equation;
(if)
veRn h(z)  2eM h(z)
for all h-bounded solutions u of the Helmholtz equation;

(iii)

[ ou) ()

mf 1) e wle)
zeR™ h(z)  zeM h(x)
for all positive solutions u of the Helmholtz equation;
(iv) the set of points of S~ which are not admissible limit points of M has

g-measure zero,

(v) for any b € RT, the set of points of S~ which are not b-admissible limit
points of M has o-measure zero;

(vi) there exist b,k € RT, such that the set of points of S"~1 at which Mg
is minimal thin has o-measure zero;

vii) for any b,k € R, the set of points of S"~! at which M is minimal
(vii) y b, , p S,b,k
thin has o-measure zero;

(viii) if v is a countably finite Borel measure with supp(v) = M, then for every
f € L1(S™1) there exists ® € L1(v) such that

eMz,y)
h(zx)

dv(z)

o 0= [ 2@

for o-almost all y and

1Ly (sn—1y = inf {[[®]|1,(); (1) holds for some ® € L1(v)};
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(ix) for every f € L1(S™1), there is a sequence {x}}, x;, € M and {\,} € Iy
such that

9 B o \ 6)\<$k,y>
(2) f(y)—kzzzl km

for o-almost all y and
o0
1l L, (sn-1) = inf{z [Akl; (2) holds for some {x}} in M};
k=1

(x) if v is a countably finite Borel measure with supp(v) = M, then for every
f € L1(S™1) there exists ® € Ly (v) such that
3) fly) = f<é_1/‘1’(56)69”9””(“)5"””’y_l)||£EH("_1)/2 dv ()
RTL
for o-almost all y;

moreover for any ¢ € RT there exists a function ® satisfying (3), such that
® =0 on B(0,c), and

£l 2y (sn-1y = f{[|®]| L, (1); (3) holds for some ® € L1(v),® =0 on B(0,¢c)};

(xi) for every f € L1(S™ 1) and for any ¢ € RT, there is a sequence {x}},
zp € M, ||zk|| > ¢ and {\;} € I such that

(4) f(y) = fi_l Z Ake)‘”xk”(cosaz,y—l)Hx”(n_l)/Q
k=1

for o-almost all y; such that
£l Ly (sn-1y = Inf{> " [Akl; (4) holds for some {wy} in M\B(0,c)}.
Remark. A set satisfying the condition (i) will be called a set of determination.

Proof of Theorem
We will need the following theorem:

Theorem 1. Let u be a positive solution of the Helmholtz equation on R™ and
[ its representing measure on S™ 1. Then

. .ou(x) ., Ay
i il
) T ot S W)
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If w is an h-bounded function then

d d
sup ulw) _ = esssup ——= il (y) and sup [u(@) = esssup |ﬂ(y)|

zER™ h(l‘) yES” dO’ zER™ h(l‘) yeS”fl g

PROOF: By the Lebesgue-Radon-Nikodym theorem the existence of measures pq
and g, such that py = g + ps, pla < 0 and pg L o, is guaranteed.

Let fy, = d”—“ Denote ki = mf % and ko = esgmf Tu(y).
yesn!

Obviously,

u(z) = / MOV d(fu0+ 1) () = / Fu)EW) do(y) + / NEY) dpy(y)
Snfl Snfl Snfl

and, as the last term is positive,

/ Rl o) 2 ke [ X do(y) = k()

for all z € R™. This gives k1 = kso.

On the other hand u(x)—k1 h(z) is a positive solution of the Helmholtz equation
and thus p,, — k10 is a measure, so (fy, — k1)o + us is a measure. Since pg L o,
(fu — k1)o is a measure and consequently esginf1 fuly) 2 k1, or kg = k1.

yesn ™

The proof of the rest of the theorem is analogous. O

Proof of equivalence of (i), (ii), (iii), (iv) and (v).

As the implications (v)=-(iv), (ii)=(i) and (iii)=-(ii) are trivial (in the last
implication just take u — c1h instead of u), we will prove (iv)=-(iii) and (i)=(v).

Theorem 2. Let M be a subset of R™ and o-almost every point y € S"~! be
an admissible limit point of M. Then

inf M = inf M
zeR” h(z)  weM h(z)
for every positive solution u of the Helmholtz equation on R™ and
lu(@)l _ - lu(@)]

zER™ h(l‘) zeM h(ac)

for every h-bounded solution u of the Helmholtz equation on R™.

PrOOF: The assertion follows immediately from the previous theorem and the
limit theorem. O
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Lemma 1. Let b be a positive number and x € R™. Denote C(z,b) the set of all
y € S*~1 such that 2 € A(y,b). Then

T b

Ol b) =y € " Hslly =l < s

}

and there exists a positive number ¢ such that

/ A do(y) = e.h(a),
C(x,b)

whenever x € R™\{0}.
PROOF: See [9, p. 84]. O
Theorem 3. Let M C R" and b € R, If

cul) )

veRn h(z)  aeM h(z)
for all simple solutions of the Helmholtz equation, then o-almost every point
y € S 1 is a b-admissible limit point of M.
PROOF: Suppose that it is not true.

Denote the set M N {z € R™;||z|| > k} by M* and the set of all b-admissible
limit points of M by M. As My = Ngen(UyepeC(x,0)) is a Gg set, it is a
o-measurable subset of S?~1. Then its complement MI; is also measurable and
by our assumption o(M]) > 0.

Recall that for & € N and y € S"~!, A¥(y,b) denotes the truncated admissible
region A(y,b) N {z € R";|jz| > k}. Then, for every y € M, there is ky, € N
such that A (y,b) N M is empty. Denote by Dj, the set of y € M for which
AF(y,b) N M is empty.

As Dy, is a complement of U, ,+C(z,b), it is a o-measurable subset of sn—1,

Since Ug2; Di, = Ml;, the Lebesgue measure of at least one of the sets Dy, say
of Dy, is strictly positive. Denote this set by D and its complement (S"~1)\ D
by D'

It is clear that C'(z,b) C D', whenever x € ME.

For any measurable set A € S"~1 we define

uale) = [ X9 do(y), @ e B
A
So u 4 is a simple solution of the Helmholtz equation. By Theorem 1 we get that

if 0(A) > 0, then xseulé)n u}f‘g) =1 and if o(A’) > 0, then :clenlén u};“(g) =0.
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The set D has a positive measure, so the function up is a simple solution of
the Helmholtz equation and

inf up(2)

=0.
zeR™  h(zx)

But C(x,b) is a subset of D’ for every € M*. Now from the above lemma there
exists a constant ¢ such that

up/ () o UC(w,b) (z)

> >c
h(z) =  h(z) ~
for every = € M*.

We arrive at

inf up (@) Zc.

xeMFk h(«%')

Now it will be shown that

inf up (@) >0

zeM\M* h(z)

As h is positive and continuous and B(0, k) is compact, there exists ¢; € R
such that h(z) < ¢; for all z € B(0, k).
It follows

D D’
/ e Ml go(y) = (D). Al > 6(D').e M,
Dl

Let us denote this positive constant by co.

Thus
M) 5 e
z€B(0,k) h(z) c1
Consequently,
in up () 2 min(c, 0—2) >0,
zeM h(x) c1
contradicting our assumption. ([

Proof of (vi) and (vii).

The implication (vii)=-(vi) is trivial. Now it will be proved, that (vi)=-(iii)
and (v)=-(vii).
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Theorem 4. Let n € N, b € Rt. Then there exists a positive constant c, such
that for every x € R™, for every z € S(x,b, %) and for every positive solution u of
the Helmholtz equation on R",

and for any M C R™

PROOF: For the first part, see [9, p.83]. The second part immediately follows.
O

Theorem 5. Let M C R”™ such that the set of points of S~ 1 at which M is
minimal thin is of o-measure zero.

Then
¢ u(x) i u(x)

in = in
zeR™ h(z)  zeM h(z)
for all positive solutions u of the Helmholtz equation on R™.

PRrROOF: It follows from Theorem 1 and from the Fatou-Naim-Doob limit theorem.
O

Theorem 6. Let M C R™ and b € Rt such that the set of points of S*~1 at
which Mg, 1 is minimal thin is of o-measure zero.
b 72
Then there exists a constant ¢ depending only on b and n such that
u(x) u(z)

inf > inf L
vekn h(z) = CoeM h(z)

for all positive solutions u of the Helmholtz equation on R™.

PRroo¥F: This theorem is obtained by combining Theorems 4 and 5. (I

Theorem 7. Let M C R™. Then the following statements are equivalent:

()
(U _ul)

in = in
zeR” h(z)  zeM h(z)
for all positive solutions u of the Helmholtz equation on R™;

(ii) there exists ¢ > 0 such that

¢ u(x) >,

vekn (@) = CoeM h(z)

¢ u(x)

317
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for all positive solutions u of the Helmholtz equation on R™.
PRrROOF: (i) = (ii) is clear, put ¢ = 1.

(ii) = (i) Let us suppose that there exists a set M satisfying (ii), but not (i).
Then c in (ii) belongs to (0,1).

Let u be a positive solution of the Helmholtz equation for which (i) is not true.

u(z)

—— = ca.

Denote inf —= =¢; and xlélj& hz)

Thus by our assumptions, ¢y > ¢1 = c.ca.
Let v(z) = u(x) — c1h(z) for x € R™.
Then v is a positive solution of the Helmholtz equation and

v(x) e v(@)

inf —— —¢;—c; =0 dinf 2 — ey >0
vekn B(z) ATV s M@ 29
which is a contradiction with (ii). O

Theorem 8. Let M C R"™ and b € Rt such that the set of points of S*~1 at
which Mg, 1 is minimal thin has o-measure zero.
K 72

Then
¢ u(x) i u(x)

in =
zeR" h(z)  zeM h(z)

for all positive solution u of the Helmholtz equation on R™.

PRrOOF: The result is obtained by combining two previous theorems. (]

Theorem 9. Let M Cc R", y € S" ! and b € RT. If y is an admissible limit
point of M, then Mg, is not minimal thin at y.

PRrOOF: Let {z}} be a sequence of points of M converging to y admissibly — it
means that there exists by € RT such that {z;} converges b;-admissibly.

Then a straightforward calculation gives that S(zy,b) C A(y, b1 +b).

Since the Helmholtz equation is invariant with respect to linear isometries of
R"™, the harmonic measure pq (for the notion of the harmonic measure, see [2,
p-120]) on B(0,r) corresponding to 0, is invariant with respect to isometries of
0B(0,r) and hence it is a multiple of the surface measure o, on 0B(0, 7).

As 1up(0B(0,1)) = % and h(0) = wy, we have that for any o-measurable
subset F of 9B(0,r)

h(0)on(E) o(r~1E)

Ho(E) = h(r.ey)wnr™ 1 h(rep)

The proof of the theorem is finished in the same way as the proof of Proposi-
tion 2.2 in [9, p. 82]; for the reader’s convenience it is given here.
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Let us denote uy the solution of the Dirichlet problem on B(0,||zk||) with
boundary value 1 on S(zy,b) and 0 on the rest of the boundary.

Hence uy,(0) = A([lzg ) Lo (|| 71 (2, b)) ~ b D/2 g [ =MD/ 2 p(||a )2

Allz
As h(z) ~ ”gc’ﬁ?rbiﬂl‘)‘ﬂ (see Preliminaries),

Now denote v, the solution of the Dirichlet problem on B(0, ||z%]||) with bound-
ary value eM%¥) on S(z,b) and 0 on the rest of the boundary.

For any by € RT there is a positive constant ¢; such that for all z € A(y, bg)
cl_leA”x“ < eMew) < el whenever o € Ay, bg).
(Indeed, 0 < A(l|z]| = (z.9)) = Allll(1 = (2/,9)) = gAllz[l 2" = y[*> = 3A b,
where 2/ = ”fc—”)

As S(zp,b) C A(y, b1 +b), for the boundary values of uj and v holds

Cl—lekllwklluk(z) < vg(z) < creMlFrlly, (2)

for z € 9B(0, ||x||) and hence for any x € B(0, ||zx||)-
Namely this is true for 0 and so, using the above relation for ux(0), the existence
of a positive constant co such that

eyt S 0p(0) £ e

for any k € N is guaranteed.

Let S = UgenS(xg,b). The Perron-Wiener-Brelot method of solving the
Dirichlet problem shows that, for any k& € N, the inequality vy < Rf* (..yy holds on
B(0, [|zg|]). As {vi} is bounded in 0, it has by virtue of the Harnack inequality
a converging subsequence. Denoting its limit by v, it is easy to see that v is a
positive solution of the Helmholtz equation, v(0) = 02_1 and v < Rwaw. Hence

its representing measure j, < §, and thus Rfﬂ‘,y) = M) it means that S is
not minimal thin at y and hence Mg, is not minimal thin at y. (]

So far we have proved the implication (vi) = (iii) for k = % and the implication
(v)=-(vii) for k = 1. The conditions for k will be removed using the following
lemma.

Lemma 2. Let M C R", ¢ € RT, y € S»~L. The point y is an admissible limit
point of the set M if and only if y is a admissible limit point of cM.
Let © € R™ and b,k € RT. Then

S(z,b, k) = S(kz,b) = S(2ka, b %)

319
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and

Mgy, = (kM)sp = (2kM)g), 1.

PROOF: A straightforward calculation. (]

Now, it si easy to finish the proof of (vi) and (vii).

Let k € RT. Using the first part of the lemma and equivalence of (i) and (v) it
follows that M is a set of determination if and only if kM is a set of determination.

From that and from (kM)g = Mgy j, it immediately follows that (vii) is true
for any positive k.

From Mgy, = (QkM)S,b,% it follows that if (vi) holds for some k then 2kM is

a set of determination, so M is a set of determination.
Proof of (viii) and (ix).

The implication (viii)=-(ix) is trivial. (Take a countable subset of M and the
counting measure on it.) We will prove (v)=-(viii) and (ix)=>(ii).

Theorem 10. Let M be a subset of R™ and v be a countably-finite measure on

R"™ such that supp(v) = M. Let

|u(z)] |u(2)]

su = Ssu
welin 1(@)  ens h(x)

for every h-bounded solution u of the Helmholtz equation on R™.
Then, for any f in L1(S™1), there exists ® in L1(v) such that

e

ANez,.)
(1) f= / B(a) S o)
R?’L

o-almost everywhere and

£l 2y (sn—1) = inf {|[[1, ()5 (1) holds for some & € Ly(v)}.

We will need the following version of the closed range theorem (see [12, p.97]).
Let X and Y be Banach spaces, T' a bounded linear mapping of X into ). If there
exists a constant ¢ > 0 such that |T*y*|| = c||y*| for all y* € Y* then TX = Y.
In our situation, X = Ly(v), ¥ = L1(S""!) and for ® € Ly(v) we define

eMas.)

7,8 - / B(a) S o)

Sn—1
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Lemma 3. The mapping T}, is a bounded linear mapping of L1 (v) into L1(S™1),
|Ty|| = 1; T} is the bounded mapping Loo(S™ 1) into Loo(v) such that

! / MEWg(y) do(y).

Ty9(x) = )
gn—1

PrOOF: Using the Fubini theorem we arrive at

Mz,y)
h(z)

e

17,81, (01, = / T, 8| do = / | / B(z)
Sn—1 Sn—1 Rn

eMz,y) eMz,y)
([ wen Sy avendot = [( [ 0G0 det) dvta) -

Sn—1 Rn Rn gn—1

() ’, _ [ o) B
R[ hz) ( / MY do(y)) du () —R/n hz) h(z) dv(z) = |21, (1)-

Sn—1

dv(z)|do(y) =

So the first part of Lemma is proved.

Let g € Loo(S™ 1) and ® € L1(v). Using again the Fubini theorem we have

#1500l = [ aTwdr= [ o) [ o) G5 dv@) doty) -
Sn—1 Sn—1 R
[ 50 [ st dstavte) =g [ gt dnt)
Rn Sn—1 Sgn—1
O

Proof of Theorem. We shall prove the existence of a constant ¢ > 0 such that
1709l Loy 2 cllgllpo(sn—1y for all g € Loo(S™ 1) and the first part of the
theorem will be proved.

The function h.(T};g) is an h-bounded solution of the Helmholtz equation on
R™. Then, by hypothesis,

sup |(T;9)(z)| = sup |(T;9)(@)| = l9ll L. (sn-1)-
rxeM zeR™

Since T}5g is a continuous function on R™ and supp(v) = M,
1790 Lo vy = sup (T9)(2)].
xeM

Consequently,
17791 Lo (v) = 1190l Lo (57-1)-
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So we can take ¢ = 1. The first part of Theorem is proved.

To prove the other part define the space
Z=1L1(v)/ kerT,.

For z € Z and ® € z put Sz =1T,®.

Then S is an invertible bounded linear mapping of Z into L1(S™™!) and so
its adjoint S* is an invertible bounded linear mapping of Lo (S™ 1) into Z* (see
12, p.94)).

Let 2 € Z,® € z and g € Loo(S™1). Then we have

(579)(2) = [S2,9] = [T, ®, 9] = [®, T} g].
If € > 0, there exists ®9 € Ly (v) with ||®ol|f,,(,) =1 and
(@0, T79)l > 1T 9/l Lo (v) — €
Let 2o denote the coset of ®g in Z. Then
1(5%9)(z0)| > 1179l Lo ) — €

and
I20llz = [I®ollz, ) = 1-

Therefore, the norm of the functional S*g satisfies
15%gllze > 17790 o) = € = Nl9ll Lo (5m-1) — &
Since € was arbitrary, we proved that
1579l z+ Z 9]l oo (571

for any g € LOO(S"_l), and so, using the fact that the norm of any operator
is the same as the norm of its adjoint (see [1, p.93]) and the obvious fact that
(8*)~1 = (S71)*, we have

IS~H =1I(s") M = 1.
Fix f € L1(S" 1) and put z = S~1f. Then
12z = 1f 1l Ly (sm-1)

that is
inf{|| (|, () Tv® = f} < [ fllL, (sn-1)-

By Lemma we have

1Ly (sn-1)y = I Tv @l 1y (sn-1) S TV lI®N Ly ) = [l (1)
So the opposite inequality holds as well. (|
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Theorem 11. Let v be a countably finite measure on R" and supp(v) = M.
Assume that for every function f € L1(S™™!) there exists ® in L1 (R™) such that

Max
(1) f= B(z)<
/

o-almost everywhere and

dv(z)

£l 2 (sn—1) = inf {|®[|1, (5 (1) holds for some ® in L1(v)}.

Then (@) (@)
u(x u(x
Sup ——= = sup ——~
zeRr M(@)  zer h(z)
for any h-bounded positive solution u of the Helmholtz equation on R™.

ProOOF: Put ¢ = sup hE g We have ¢ < co.
zeM

Let ¢ > 0. If we fix 29 € R, then eM¥0-) € L1(S"~1) and HeMxO")HLl(an) =
h(xo). By our assumptions there is a function ® € L;(v) such that

M) eMz
AMaor) _ / B(o) Gy (o) < / @(z)
Rn

RTL

dv(z)

and
@M, () < h(zo) +e.

As u is an h-bounded positive solution of the Helmholtz equation, we can
integrate the ﬁrst inequality with respect to fydo. Using the Fubini theorem and
the fact that u < ch on supp(v), we have

u(ao) = / MNeod) 1, () do(y) < / ( / 1B()| M) do(2)) fu(y) do(y) =

Sn—1 Sn—1 Rn
[ 12) / N, (y) doy / 2(a)fu(z) dv(z) <
R
/ e 8(a)| div(a) = clB]1,0) < elllao) +2).
Sn—1
Since xg and € were arbitrary, we have sup % =c. (|

r€eR™

Of course, the following special form of Theorem 11 holds:
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Theorem 12. Let M be a subset of R™. Assume that for every function f €
L1(S™1) there exist {172, € 11 and a sequence {x},}72 | of points in M such

that

@) B i)\ Mk,
/= 2 R ()

o—almost everywhere and

[ fllLy(sn-1) = inf { Z [Akl; (2) holds for some {z}} in M}.
Then (@) (@)
u(zw u(zw
sup ——=% = sup ——=
vein h(@)  sedr h(a)

for any bounded positive solution u of the Helmholtz equation.

Proof of the conditions (x) and (xi).

We will prove the equivalence of (viii) and (x).
(xi) is just a special form of it.

Proof of (viii)=-(x)

Let us denote

The equivalence of (ix) and

K eMay) 4 K (@9) || || (n—1)/2
1(w,y) = h(:l?) an 2(.%',3/) = el
Then we have
e)‘<x7y>
1K sy = [ 15y lao) = 1

Sn—1

and

Mzy) ||| (—1)/2

eMay)
1K2(e) = Kale asgsn = [ Gy — o) =
Snfl
(n-1)/2

AMz,y) 1 _”IH _
/ R T e 1) =
Snfl
1 a0/ 2,y) h()||z] (" 1)/2
@ T ke / do(y) =1 = — b
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from the asymptotic behaviour of the function h (see Preliminaries) it follows,
that to every positive ¢, there exists a positive number ¢, such that

||K1($C, ) - K2(=T, ~)||L1(Sn—1) <e€
and
| Ka(z, -)”Ll(sn—l) <1+e¢,
whenever ||z] > c.

Let f € L1(S" 1) and ¢ > 1. Then there exists &9 € L1(v), such that

f= /‘I’o(w)Kl(wa-)dV(w)a and  |[fllzysn-1) = [ollL, ) = ellfllLy(sn-1)s
R”

and moreover, as (viii) is equivalent to (v) and (v) holds for M, if and only if it
holds for M\ B(0, cs), ®¢ can be chosen to be zero on B(0, c¢).

Put fo = f. Now, functions f,, € L1(S""!) and &, € Li(v) for any k =
1,2,..., will be defined.

firt = fo= [ B Ka(e.) dv(o), for k=0,1,...;
Rn

®pq is, for k=0,1,..., a function for which

frir = / o1 () K1 (,.) di (@),

R?’L
| fre+1llnysn-1y S 1 ®kv1llzy(v) S el fetalln, (sn-1)
and @1 is zero on B(0, cc).

We have fo € L1(S"!) and ®; € L1(v) and above relations are satisfied.
Suppose, it is true for 0,1,..., k, and prove it for k£ + 1:

I fe+1llLy(sn1y = Ilfx — /@k(x)Kg(x, ) dv ()|, (sn-1y =
Rn

n / By, () K (1, ) do () — / By () Ko (2, y) dv (@) |y (5m-1)
R» R

/ B (2) (K1 (2, ) — Koz, ))| do(z) do(y)
Sn—1[Rn
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using Fubini theorem

= [1oc@l [ 1K) ~ Kol doty) < @y,

R" Sn—1

S0 fr41 € L1(S™1) and by this fact and (v) and (viii) the existence of a func-
tion ®; 1 with required properties is guaranteed.

Combining the above estimates for ||| 1, (,) and || fx41[[gn-1 We obtain
| fer1llgn-1 < CEkaHLl(S”*l) forall k=0,1,2,...,

and from that

ka”srbfl § (Cs)kaOHLl(S"*U for all k = 1,2, N

[e.e)
Put ® = ) ®;. From the previous estimates it follows
k=0

1212y ) £ DIkl 2oy D ellfillzy sn-1) <
k=0 k=0

el follzagsn-1y + D) I ollzyse1) = (e + 1)l follzy(sn-1)
k=1

The constant (c + =) can be chosen arbitrarily close to 1.
We have proved that ® € L1 () and the required relation between || f| 7, (gn-1)

and [ @[/, (), and we have proved as well that » ;2 [®4| € L1(v).
As @, = 0 on B(0,c¢.) for any k = 0,1,..., the same is true for ® (what was

to be proved) and Y 2 [®g|.
From these facts and the fact that [ Ka(, )|, (sn-1) < 1+€ whenever [|z[| > c.

we get (using the Fubini theorem) that

[ @@ el ) dvia) € Li(s™),

Rn k;:O

From here it follows that for o-almost all y

D 12k Ka(y) € Li(v).
k=0
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Using the Lebesgue Dominated Convergence Theorem with the above sum as
dominating function we arrive to

[ 2@ Katw.ydvia) = [ (3 @u(w)-Kal.g) dv(a) =

R” R k=0
> [ e s dvla) = Y (fel) = fia) = fo(w) = £)
k=0 gn k=0

for o-almost all y € S™1.

So
f= /@(m)Kg(:C, ) dv(x)
R’!L
and the proof is finished. O

The implication (x)=-(viii) can be proved in the same way.

Remark

Similar problems have been recently investigated for classical harmonic func-
tions on a ball in [3], [4], [5], [7] and for more general domains in [1], and for
parabolic functions on a slab in [10] and [11]. In the present paper methods of
proofs adopted in [7] and [5] turned out to be useful.
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