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Sets of determination for solutions

of the Helmholtz equation

Jarmila Ranošová

Abstract. Let α > 0, λ = (2α)−1/2, Sn−1 be the (n − 1)-dimensional unit sphere, σ be

the surface measure on Sn−1 and h(x) =
R
Sn−1 eλ〈x,y〉 dσ(y).

We characterize all subsets M of Rn such that

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for every positive solution u of the Helmholtz equation on Rn. A closely related problem
of representing functions of L1(Sn−1) as sums of blocks of the form eλ〈xk,.〉/h(xk)
corresponding to points of M is also considered. The results provide a counterpart to
results for classical harmonic functions in a ball, and for parabolic functions on a slab,
see References.
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Classification: 35J05, 31B10

Preliminaries

In this paper the following notation is used: Small letters, such as x, y, will
denote points in R

n, Sn−1 the (n− 1)-dimensional unit sphere and σ the surface
measure on Sn−1.

Consider, for α > 0 fixed, the Helmholtz equation

∆u − 2αu = 0 on R
n.

Theorem A. A function u on R
n is a difference of two positive solutions of the

Helmholtz equation if and only if there is a signed measure µu on Sn−1 such that

for all x ∈ R
n

∫

Sn−1

eλ〈x,y〉 d|µu|(y) < ∞

and

u(x) =

∫

Sn−1

eλ〈x,y〉 dµu(y),
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310 J. Ranošová

where λ = (2α)−1/2.
The solution u is positive if and only if µu is a measure.

Proof: This representation theorem can be proved by means of Martin boundary,
see [8]. For a different proof, see [6]. �

The solution corresponding to σ will be denoted by h.

For ν ∈ R the function Iν is “the Bessel function with an imaginary argument”
of the order ν regular at zero. (For details see any book about Bessel functions,
for example [14, p. 17].)

Then
h(x) = Cλ(2−n)/2‖x‖(2−n)/2I(n−2)/2(λ‖x‖),

with C chosen so that h(0) = ωn, the area of the unit sphere in R
n. (See [6,

p. 261].)

For f , g two functions on R
n, f ∼ g will mean that lim

‖x‖→∞

f(x)
g(x)
= 1.

As Iν(‖x‖) ∼ (2π‖x‖)
−1/2e‖x‖ (see for example [14, pages 17 and 203]), we

have that

lim
‖x‖→∞

h(x)‖x‖(n−1)/2

eλ‖x‖
= Cλ(2−n)/2(2π)−1/2;

this constant will be denoted by κ.

A solution u of the Helmholtz equation will be called h-bounded if there exist
real constants c1 and c2 such that c1h(x) ≦ u(x) ≦ c2h(x) for all x ∈ R

n.
Moreover, a solution u of the Helmholtz equation will be called simple if there

exists a σ-measurable subset A of Sn−1 such that u(x) =
∫

A

eλ〈x,y〉 dσ(y) for any

x ∈ R
n.

Definition. For y ∈ Sn−1, b ∈ R
+, k ∈ R

+ define the admissible region A(y, b)
to be

{x ∈ R
n; ‖x − ‖x‖y‖ < b‖x‖

1
2 }

and the truncated admissible region Ak(y, b) to be

A(y, b) ∩ {x ∈ R
n; ‖x‖ > k}.

Let M ⊂ R
n and y ∈ Sn−1. The point y will be called a b-admissible limit

point of M if for any k ∈ R
+ the set M ∩ Ak(y, b) is not empty. The point y

will be called an admissible limit point of M if there exists b ∈ R
+ such that y is

a b-admissible limit point of M .
A function f on R

n is said to converge admissibly at y if, for all b > 0, f
restricted to A(y, b) has a limit at ∞.
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We will write A-lim
x→y

f(x).

The space R
n endowed with the sheaf of solutions of the Helmholtz equation

is a strong harmonic space in the sense of Bauer, see [2, p. 86].

Terms as harmonic functions, superharmonic functions and reduced functions
are related to this harmonic space and have a standard meaning.

This harmonic space satisfies conditions (1)–(10) in [13], see [13], and so mini-
mal thinness at points of Sn−1 is well defined and the Fatou-Näım-Doob theorem
holds. For the reader’s convenience the basic facts are presented here.

Definition. Let M ⊂ R
n, v positive superharmonic function on D. The reduc-

tion of v on M is defined as

RM
v = inf{u; u ≧ v on M, u is positive superharmonic function on R

n}.

Let M ⊂ R
n and y ∈ Sn−1. The set M is minimal thin at y if

RM
eλ〈.,y〉 6= eλ〈.,y〉.

The minimal fine filter at y is filter: F(y) = {M ⊂ R
n;Rn\M is minimal thin

at y}.
A function f converging along F(y) is said to have a minimal fine limit at y.

This limit will be denoted mf-lim f(x).

Theorem B (Limit theorems). Let u be a positive solution and v be a strictly
positive solution of the Helmholtz equation defined on all Rn and µu, µv be their

representing measures on Sn−1.

Then the following equalities hold:

A-lim
x→y

u(x)

v(x)
=

dµu

dµv
(y)

for µv-almost all points y of Sn−1 (admissible convergence);

mf-lim
x→y

u(x)

v(x)
=

dµu

dµv
(y)

for µv-almost all points y of Sn−1 (the Fatou-Näım-Doob limit theorem).

Proof: See [9, p. 85] and [13]. �

Remark. For v = h, the admissible convergence follows from the minimal fine
convergence (even in a more general situation); see [9, p. 84].

Let x ∈ R
n, b, c, k ∈ R

+ and M ⊂ R
n. In this paper, the following subsets of

R
n will be of special interest:
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B(x, c) = {z ∈ R
n; ‖z − x‖ ≦ c},

S(x, b, k) = {z ∈ R
n; ‖z‖ = k‖x‖ and ‖z − kx‖ < k

1
2 b‖x‖

1
2 },

MS,b,k = ∪x∈MS(x, b, k),
S(x, b) = S(x, b, 1),
MS,b = ∪x∈MS(x, b),
cM = {z ∈ R

n; there exists x ∈ M such that z = c.x}.

Let x, y ∈ R
n, αx,y will denote the angle between x and y.

The main results

Theorem. Let M ⊂ R
n. Then the following statements are equivalent:

(i)

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for all simple solutions u of the Helmholtz equation;

(ii)

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for all h-bounded solutions u of the Helmholtz equation;

(iii)

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for all positive solutions u of the Helmholtz equation;

(iv) the set of points of Sn−1 which are not admissible limit points of M has

σ-measure zero;

(v) for any b ∈ R
+, the set of points of Sn−1 which are not b-admissible limit

points of M has σ-measure zero;

(vi) there exist b, k ∈ R
+, such that the set of points of Sn−1 at which MS,b,k

is minimal thin has σ-measure zero;

(vii) for any b, k ∈ R
+, the set of points of Sn−1 at which MS,b,k is minimal

thin has σ-measure zero;

(viii) if ν is a countably finite Borel measure with supp(ν) =M , then for every
f ∈ L1(S

n−1) there exists Φ ∈ L1(ν) such that

(1) f(y) =

∫

Rn

Φ(x)
eλ〈x,y〉

h(x)
dν(x)

for σ-almost all y and

‖f‖L1(Sn−1) = inf {‖Φ‖L1(ν); (1) holds for some Φ ∈ L1(ν)};
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(ix) for every f ∈ L1(S
n−1), there is a sequence {xk}, xk ∈ M and {λk} ∈ l1

such that

(2) f(y) =

∞
∑

k=1

λk
eλ〈xk,y〉

h(xk)

for σ-almost all y and

‖f‖L1(Sn−1) = inf{
∞
∑

k=1

|λk|; (2) holds for some {xk} in M};

(x) if ν is a countably finite Borel measure with supp(ν) = M , then for every
f ∈ L1(S

n−1) there exists Φ ∈ L1(ν) such that

(3) f(y) = κ−1
∫

Rn

Φ(x)eλ‖x‖(cos αx,y−1)‖x‖(n−1)/2 dν(x)

for σ-almost all y;

moreover for any c ∈ R
+ there exists a function Φ satisfying (3), such that

Φ = 0 on B(0, c), and

‖f‖L1(Sn−1) = inf{‖Φ‖L1(ν); (3) holds for some Φ ∈ L1(ν),Φ = 0 on B(0, c)};

(xi) for every f ∈ L1(S
n−1) and for any c ∈ R

+, there is a sequence {xk},
xk ∈ M , ‖xk‖ > c and {λk} ∈ l1 such that

(4) f(y) = κ−1
∞
∑

k=1

λkeλ‖xk‖(cosαx,y−1)‖x‖(n−1)/2

for σ-almost all y; such that

‖f‖L1(Sn−1) = inf{
∑

|λk |; (4) holds for some {xk} in M\B(0, c)}.

Remark. A set satisfying the condition (i) will be called a set of determination.

Proof of Theorem

We will need the following theorem:

Theorem 1. Let u be a positive solution of the Helmholtz equation on R
n and

µu its representing measure on Sn−1. Then

inf
x∈Rn

u(x)

h(x)
= ess inf

y∈Sn−1

dµu

dσ
(y).
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If u is an h-bounded function then

sup
x∈Rn

u(x)

h(x)
= ess sup

y∈Sn−1

dµu

dσ
(y) and sup

x∈Rn

|u(x)|

h(x)
= ess sup

y∈Sn−1
|
dµu

dσ
(y)|.

Proof: By the Lebesgue-Radon-Nikodym theorem the existence of measures µa

and µs, such that µu = µa + µs, µa ≦ σ and µs ⊥ σ, is guaranteed.

Let fu =
dµu
dσ . Denote k1 = inf

x∈Rn

u(x)
h(x)

and k2 = ess inf
y∈Sn−1

fu(y).

Obviously,

u(x) =

∫

Sn−1

eλ〈x,y〉 d(fuσ+µs)(y) =

∫

Sn−1

fu(y)e
λ〈x,y〉 dσ(y)+

∫

Sn−1

eλ〈x,y〉 dµs(y)

and, as the last term is positive,

u(x) ≧

∫

Sn−1

fu(y)e
λ〈x,y〉 dσ(y) ≧ k2

∫

Sn−1

eλ〈x,y〉 dσ(y) = k2h(x)

for all x ∈ R
n. This gives k1 ≧ k2.

On the other hand u(x)−k1h(x) is a positive solution of the Helmholtz equation
and thus µu − k1σ is a measure, so (fu − k1)σ + µs is a measure. Since µs ⊥ σ,
(fu − k1)σ is a measure and consequently ess inf

y∈Sn−1
fu(y) ≧ k1, or k2 ≧ k1.

The proof of the rest of the theorem is analogous. �

Proof of equivalence of (i), (ii), (iii), (iv) and (v).

As the implications (v)⇒(iv), (ii)⇒(i) and (iii)⇒(ii) are trivial (in the last
implication just take u − c1h instead of u), we will prove (iv)⇒(iii) and (i)⇒(v).

Theorem 2. Let M be a subset of R
n and σ-almost every point y ∈ Sn−1 be

an admissible limit point of M . Then

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for every positive solution u of the Helmholtz equation on R
n and

sup
x∈Rn

|u(x)|

h(x)
= sup

x∈M

|u(x)|

h(x)

for every h-bounded solution u of the Helmholtz equation on R
n.

Proof: The assertion follows immediately from the previous theorem and the
limit theorem. �
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Lemma 1. Let b be a positive number and x ∈ R
n. Denote C(x, b) the set of all

y ∈ Sn−1 such that x ∈ A(y, b). Then

C(x, b) = {y ∈ Sn−1; ‖y −
x

‖x‖
‖ <

b
√

‖x‖
}

and there exists a positive number c such that
∫

C(x,b)

eλ〈x,y〉 dσ(y) ≧ c.h(x),

whenever x ∈ R
n\{0}.

Proof: See [9, p. 84]. �

Theorem 3. Let M ⊂ R
n and b ∈ R

+. If

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for all simple solutions of the Helmholtz equation, then σ-almost every point
y ∈ Sn−1 is a b-admissible limit point of M .

Proof: Suppose that it is not true.
Denote the set M ∩ {x ∈ R

n; ‖x‖ > k} by Mk and the set of all b-admissible
limit points of M by Mb. As Mb = ∩k∈N(∪x∈MkC(x, b)) is a Gδ set, it is a

σ-measurable subset of Sn−1. Then its complement M ′
b is also measurable and

by our assumption σ(M ′
b) > 0.

Recall that for k ∈ N and y ∈ Sn−1, Ak(y, b) denotes the truncated admissible
region A(y, b) ∩ {x ∈ R

n; ‖x‖ > k}. Then, for every y ∈ M ′
b, there is ky ∈ N

such that Aky (y, b) ∩ M is empty. Denote by Dk the set of y ∈ M ′
b for which

Ak(y, b) ∩ M is empty.

As Dk is a complement of ∪x∈MkC(x, b), it is a σ-measurable subset of Sn−1.

Since
⋃∞

k=1Dk =M ′
b, the Lebesgue measure of at least one of the sets Dk, say

of Dk0 , is strictly positive. Denote this set by D and its complement (Sn−1) \ D
by D′.
It is clear that C(x, b) ⊂ D′, whenever x ∈ Mk.

For any measurable set A ⊂ Sn−1 we define

uA(x) =

∫

A

eλ〈x,y〉 dσ(y), x ∈ R
n.

So uA is a simple solution of the Helmholtz equation. By Theorem 1 we get that

if σ(A) > 0, then sup
x∈Rn

uA(x)
h(x)

= 1 and if σ(A′) > 0, then inf
x∈Rn

uA(x)
h(x)

= 0.
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The set D has a positive measure, so the function uD′ is a simple solution of
the Helmholtz equation and

inf
x∈Rn

uD′(x)

h(x)
= 0.

But C(x, b) is a subset of D′ for every x ∈ Mk. Now from the above lemma there
exists a constant c such that

uD′(x)

h(x)
≧

uC(x,b)(x)

h(x)
≧ c

for every x ∈ Mk.
We arrive at

inf
x∈Mk

uD′(x)

h(x)
≧ c.

Now it will be shown that

inf
x∈M\Mk

uD′(x)

h(x)
> 0.

As h is positive and continuous and B(0, k) is compact, there exists c1 ∈ R
+

such that h(x) ≦ c1 for all x ∈ B(0, k).
It follows

uD′(x) =

∫

D′

eλ〈x,y〉 dσ(y) ≧

∫

D′

e−λ‖x‖.‖y‖ dσ(y) =

∫

D′

e−λ‖x‖ dσ(y) = σ(D′).e−λ‖x‖ ≧ σ(D′).e−λk.

Let us denote this positive constant by c2.
Thus

inf
x∈B(0,k)

uD′(x)

h(x)
≧

c2
c1

.

Consequently,

inf
x∈M

uD′(x)

h(x)
≧ min(c,

c2
c1
) > 0,

contradicting our assumption. �

Proof of (vi) and (vii).

The implication (vii)⇒(vi) is trivial. Now it will be proved, that (vi)⇒(iii)
and (v)⇒(vii).
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Theorem 4. Let n ∈ N, b ∈ R
+. Then there exists a positive constant c, such

that for every x ∈ R
n, for every z ∈ S(x, b, 12 ) and for every positive solution u of

the Helmholtz equation on R
n,

u(z)

h(z)
≧ c

u(x)

h(x)
,

and for any M ⊂ R
n

inf
x∈M

S,b, 12

u(x)

h(x)
≧ c inf

x∈M

u(x)

h(x)
.

Proof: For the first part, see [9, p. 83]. The second part immediately follows.
�

Theorem 5. Let M ⊂ R
n such that the set of points of Sn−1 at which M is

minimal thin is of σ-measure zero.
Then

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for all positive solutions u of the Helmholtz equation on R
n.

Proof: It follows from Theorem 1 and from the Fatou-Näım-Doob limit theorem.
�

Theorem 6. Let M ⊂ R
n and b ∈ R

+ such that the set of points of Sn−1 at

which MS,b, 1
2
is minimal thin is of σ-measure zero.

Then there exists a constant c depending only on b and n such that

inf
x∈Rn

u(x)

h(x)
≧ c inf

x∈M

u(x)

h(x)

for all positive solutions u of the Helmholtz equation on R
n.

Proof: This theorem is obtained by combining Theorems 4 and 5. �

Theorem 7. Let M ⊂ R
n. Then the following statements are equivalent:

(i)

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for all positive solutions u of the Helmholtz equation on R
n;

(ii) there exists c > 0 such that

inf
x∈Rn

u(x)

h(x)
≧ c inf

x∈M

u(x)

h(x)
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for all positive solutions u of the Helmholtz equation on R
n.

Proof: (i) ⇒ (ii) is clear, put c = 1.
(ii) ⇒ (i) Let us suppose that there exists a set M satisfying (ii), but not (i).

Then c in (ii) belongs to (0, 1).
Let u be a positive solution of the Helmholtz equation for which (i) is not true.

Denote inf
x∈Rn

u(x)

h(x)
= c1 and inf

x∈M

u(x)

h(x)
= c2.

Thus by our assumptions, c2 > c1 ≧ c.c2.
Let v(x) = u(x)− c1h(x) for x ∈ R

n.
Then v is a positive solution of the Helmholtz equation and

inf
x∈Rn

v(x)

h(x)
= c1 − c1 = 0, and inf

x∈M

v(x)

h(x)
= c2 − c1 > 0,

which is a contradiction with (ii). �

Theorem 8. Let M ⊂ R
n and b ∈ R

+ such that the set of points of Sn−1 at

which MS,b, 1
2
is minimal thin has σ-measure zero.

Then

inf
x∈Rn

u(x)

h(x)
= inf

x∈M

u(x)

h(x)

for all positive solution u of the Helmholtz equation on R
n.

Proof: The result is obtained by combining two previous theorems. �

Theorem 9. Let M ⊂ R
n, y ∈ Sn−1 and b ∈ R

+. If y is an admissible limit
point of M , then MS,b is not minimal thin at y.

Proof: Let {xk} be a sequence of points of M converging to y admissibly — it
means that there exists b1 ∈ R

+ such that {xk} converges b1-admissibly.
Then a straightforward calculation gives that S(xk , b) ⊂ A(y, b1 + b).

Since the Helmholtz equation is invariant with respect to linear isometries of
R

n, the harmonic measure µ0 (for the notion of the harmonic measure, see [2,
p. 120]) on ∂B(0, r) corresponding to 0, is invariant with respect to isometries of
∂B(0, r) and hence it is a multiple of the surface measure σn on ∂B(0, r).

As µ0(∂B(0, r)) =
h(0)

h(r.e1)
and h(0) = ωn we have that for any σ-measurable

subset E of ∂B(0, r)

µ0(E) =
h(0)σn(E)

h(r.e1)ωnrn−1 =
σ(r−1E)

h(r.e1)
.

The proof of the theorem is finished in the same way as the proof of Proposi-
tion 2.2 in [9, p. 82]; for the reader’s convenience it is given here.
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Let us denote uk the solution of the Dirichlet problem on B(0, ‖xk‖) with
boundary value 1 on S(xk, b) and 0 on the rest of the boundary.

Hence uk(0) = h(‖xk‖)
−1σ(‖xk‖

−1S(xk, b)) ∼ b(n−1)/2‖xk‖
−(n−1)/2h(‖xk‖)

−1.

As h(x) ∼ κeλ‖x‖

‖x‖(n−1)/2 (see Preliminaries),

uk(0) ∼ κ b(n−1)/2e−λ‖xk‖.

Now denote vk the solution of the Dirichlet problem on B(0, ‖xk‖) with bound-

ary value eλ〈x,y〉 on S(xk, b) and 0 on the rest of the boundary.
For any b0 ∈ R

+ there is a positive constant c1 such that for all x ∈ A(y, b0)

c−11 eλ‖x‖ ≦ eλ〈x,y〉 ≦ c1e
λ‖x‖ whenever x ∈ A(y, b0).

(Indeed, 0 ≦ λ(‖x‖ − 〈x, y〉) = λ‖x‖(1 − 〈x′, y〉) = 1
2λ‖x‖ ‖x′ − y‖2 ≦ 1

2λ b20,

where x′ = x
‖x‖
.)

As S(xk, b) ⊂ A(y, b1 + b), for the boundary values of uk and vk holds

c−11 eλ‖xk‖uk(x) ≦ vk(x) ≦ c1e
λ‖xk‖uk(x)

for x ∈ ∂B(0, ‖xk‖) and hence for any x ∈ B(0, ‖xk‖).
Namely this is true for 0 and so, using the above relation for uk(0), the existence

of a positive constant c2 such that

c−12 ≦ vk(0) ≦ c2

for any k ∈ N is guaranteed.

Let S = ∪k∈NS(xk, b). The Perron-Wiener-Brelot method of solving the

Dirichlet problem shows that, for any k ∈ N, the inequality vk ≦ RS
eλ〈.,y〉 holds on

B(0, ‖xk‖). As {vk} is bounded in 0, it has by virtue of the Harnack inequality
a converging subsequence. Denoting its limit by v, it is easy to see that v is a
positive solution of the Helmholtz equation, v(0) ≧ c−12 and v ≦ RS

eλ〈.,y〉 . Hence

its representing measure µv ≦ δy and thus RS
eλ〈.,y〉 = eλ〈.,y〉, it means that S is

not minimal thin at y and hence MS,b is not minimal thin at y. �

So far we have proved the implication (vi)⇒ (iii) for k = 12 and the implication
(v)⇒(vii) for k = 1. The conditions for k will be removed using the following
lemma.

Lemma 2. Let M ⊂ R
n, c ∈ R

+, y ∈ Sn−1. The point y is an admissible limit
point of the set M if and only if y is a admissible limit point of cM .
Let x ∈ R

n and b, k ∈ R
+. Then

S(x, b, k) = S(kx, b) = S(2kx, b,
1

2
)
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and

MS,b,k = (kM)S,b = (2kM)S,b, 1
2
.

Proof: A straightforward calculation. �

Now, it si easy to finish the proof of (vi) and (vii).
Let k ∈ R

+. Using the first part of the lemma and equivalence of (i) and (v) it
follows thatM is a set of determination if and only if kM is a set of determination.
From that and from (kM)S,b =MS,b,k it immediately follows that (vii) is true

for any positive k.
From MS,b,k = (2kM)S,b, 1

2
it follows that if (vi) holds for some k then 2kM is

a set of determination, so M is a set of determination.

Proof of (viii) and (ix).

The implication (viii)⇒(ix) is trivial. (Take a countable subset of M and the
counting measure on it.) We will prove (v)⇒(viii) and (ix)⇒(ii).

Theorem 10. Let M be a subset of R
n and ν be a countably-finite measure on

R
n such that supp(ν) =M . Let

sup
x∈Rn

|u(x)|

h(x)
= sup

x∈M

|u(x)|

h(x)

for every h-bounded solution u of the Helmholtz equation on R
n.

Then, for any f in L1(S
n−1), there exists Φ in L1(ν) such that

(1) f =

∫

Rn

Φ(x)
eλ〈x,.〉

h(x)
dν(x)

σ-almost everywhere and

‖f‖L1(Sn−1) = inf {‖Φ‖L1(ν); (1) holds for some Φ ∈ L1(ν)}.

We will need the following version of the closed range theorem (see [12, p. 97]).
Let X and Y be Banach spaces, T a bounded linear mapping of X into Y. If there
exists a constant c > 0 such that ‖T ∗y∗‖ ≧ c‖y∗‖ for all y∗ ∈ Y∗ then TX = Y.
In our situation, X = L1(ν), Y = L1(S

n−1) and for Φ ∈ L1(ν) we define

TνΦ =

∫

Sn−1

Φ(x)
eλ〈x,.〉

h(x)
dν(x).



Sets of determination for solutions of the Helmholtz equation 321

Lemma 3. The mapping Tν is a bounded linear mapping of L1(ν) into L1(S
n−1),

‖Tν‖ = 1; T
∗
ν is the bounded mapping L∞(S

n−1) into L∞(ν) such that

T ∗
ν g(x) =

1

h(x)

∫

Sn−1

eλ〈x,y〉g(y) dσ(y).

Proof: Using the Fubini theorem we arrive at

‖TνΦ‖L1(Sn−1) =

∫

Sn−1

|TνΦ| dσ =

∫

Sn−1

|

∫

Rn

Φ(x)
eλ〈x,y〉

h(x)
dν(x)| dσ(y) ≦

∫

Sn−1

(

∫

Rn

|Φ(x)|
eλ〈x,y〉

h(x)
dν(x)) dσ(y) =

∫

Rn

(

∫

Sn−1

|Φ(x)|
eλ〈x,y〉

h(x)
dσ(y)) dν(x) =

∫

Rn

|Φ(x)|

h(x)
(

∫

Sn−1

eλ〈x,y〉 dσ(y)) dν(x) =

∫

Rn

|Φ(x)|

h(x)
h(x) dν(x) = ‖Φ‖L1(ν).

So the first part of Lemma is proved.

Let g ∈ L∞(S
n−1) and Φ ∈ L1(ν). Using again the Fubini theorem we have

[Φ, T ∗
ν g] = [TνΦ, g] =

∫

Sn−1

g.TνΦ dσ =

∫

Sn−1

g(y)(

∫

Rn

Φ(x)
eλ〈x,y〉

h(x)
dν(x)) dσ(y) =

∫

Rn

Φ(x)

h(x)
(

∫

Sn−1

g(y)eλ〈x,y〉 dσ(y)) dν(x) = [Φ,
1

h

∫

Sn−1

eλ〈.,y〉g(y) dσ(y)].

�

Proof of Theorem. We shall prove the existence of a constant c > 0 such that
‖T ∗

ν g‖L∞(ν) ≧ c‖g‖L∞(Sn−1) for all g ∈ L∞(S
n−1) and the first part of the

theorem will be proved.
The function h.(T ∗

ν g) is an h-bounded solution of the Helmholtz equation on
R

n. Then, by hypothesis,

sup
x∈M

|(T ∗
ν g)(x)| = sup

x∈Rn
|(T ∗

ν g)(x)| = ‖g‖L∞(Sn−1).

Since T ∗
ν g is a continuous function on R

n and supp(ν) =M ,

‖T ∗
ν g‖L∞(ν) = sup

x∈M
|(T ∗

ν g)(x)|.

Consequently,
‖T ∗

ν g‖L∞(ν) = ‖g‖L∞(Sn−1).
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So we can take c = 1. The first part of Theorem is proved.

To prove the other part define the space

Z = L1(ν)/ kerTν .

For z ∈ Z and Φ ∈ z put Sz = TνΦ.
Then S is an invertible bounded linear mapping of Z into L1(S

n−1) and so
its adjoint S∗ is an invertible bounded linear mapping of L∞(S

n−1) into Z∗ (see
[12, p. 94]).
Let z ∈ Z, Φ ∈ z and g ∈ L∞(S

n−1). Then we have

(S∗g)(z) = [Sz, g] = [TνΦ, g] = [Φ, T ∗
ν g].

If ε > 0, there exists Φ0 ∈ L1(ν) with ‖Φ0‖L1(ν) = 1 and

|[Φ0, T
∗
ν g]| > ‖T ∗

ν g‖L∞(ν) − ε.

Let z0 denote the coset of Φ0 in Z. Then

|(S∗g)(z0)| > ‖T ∗
ν g‖L∞(ν) − ε

and
‖z0‖Z ≦ ‖Φ0‖L1(ν) = 1.

Therefore, the norm of the functional S∗g satisfies

‖S∗g‖Z∗ > ‖T ∗
ν g‖L∞(ν) − ε = ‖g‖L∞(Sn−1) − ε.

Since ε was arbitrary, we proved that

‖S∗g‖Z∗ ≧ ‖g‖L∞(Sn−1)

for any g ∈ L∞(S
n−1), and so, using the fact that the norm of any operator

is the same as the norm of its adjoint (see [1, p. 93]) and the obvious fact that
(S∗)−1 = (S−1)∗, we have

‖S−1‖ = ‖(S∗)−1‖ ≦ 1.

Fix f ∈ L1(S
n−1) and put z = S−1f . Then

‖z‖Z ≦ ‖f‖L1(Sn−1),

that is
inf{‖Φ‖L1(ν);TνΦ = f} ≦ ‖f‖L1(Sn−1).

By Lemma we have

‖f‖L1(Sn−1) = ‖TνΦ‖L1(Sn−1) ≦ ‖Tν‖.‖Φ‖L1(ν) = ‖Φ‖L1(ν).

So the opposite inequality holds as well. �
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Theorem 11. Let ν be a countably finite measure on R
n and supp(ν) = M .

Assume that for every function f ∈ L1(S
n−1) there exists Φ in L1(R

n) such that

(1) f =

∫

Rn

Φ(x)
eλ〈x,.〉

h(x)
dν(x)

σ-almost everywhere and

‖f‖L1(Sn−1) = inf {‖Φ‖L1(ν); (1) holds for some Φ in L1(ν)}.

Then

sup
x∈Rn

u(x)

h(x)
= sup

x∈M

u(x)

h(x)

for any h-bounded positive solution u of the Helmholtz equation on R
n.

Proof: Put c = sup
x∈M

u(x)
h(x)
. We have c < ∞.

Let ε > 0. If we fix x0 ∈ R
n, then eλ〈x0,.〉 ∈ L1(S

n−1) and ‖eλ〈x0,.〉‖L1(Sn−1) =

h(x0). By our assumptions there is a function Φ ∈ L1(ν) such that

eλ〈x0,.〉 =

∫

Rn

Φ(x)
eλ〈x,.〉

h(x)
dν(x) ≦

∫

Rn

|Φ(x)|
eλ〈x,.〉

h(x)
dν(x)

and
‖Φ‖L1(ν) < h(x0) + ε.

As u is an h-bounded positive solution of the Helmholtz equation, we can
integrate the first inequality with respect to fudσ. Using the Fubini theorem and
the fact that u ≦ ch on supp(ν), we have

u(x0) =

∫

Sn−1

eλ〈x0,y〉fu(y) dσ(y) ≦

∫

Sn−1

(

∫

Rn

|Φ(x)|eλ〈x,y〉 dν(x))fu(y) dσ(y) =

∫

Rn

|Φ(x)|(

∫

Sn−1

eλ〈x,y〉fu(y) dσ(y)) dν(x) =

∫

Sn−1

|Φ(x)|u(x) dν(x) ≦

∫

Sn−1

c.|Φ(x)| dν(x) = c‖Φ‖L1(ν) ≦ c(h(x0) + ε).

Since x0 and ε were arbitrary, we have sup
x∈Rn

u(x)
h(x)

= c. �

Of course, the following special form of Theorem 11 holds:
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Theorem 12. Let M be a subset of R
n. Assume that for every function f ∈

L1(S
n−1) there exist {λk}

∞
k=1 ∈ l1 and a sequence {xk}

∞
k=1 of points in M such

that

(2) f =
∞
∑

k=1

λk
eλ〈xk,.〉

h(xk)

σ−almost everywhere and

‖f‖L1(Sn−1) = inf {

∞
∑

k=1

|λk|; (2) holds for some {xk} in M}.

Then

sup
x∈Rn

u(x)

h(x)
= sup

x∈M

u(x)

h(x)

for any bounded positive solution u of the Helmholtz equation.

Proof of the conditions (x) and (xi).

We will prove the equivalence of (viii) and (x). The equivalence of (ix) and
(xi) is just a special form of it.

Proof of (viii)⇒(x)

Let us denote

K1(x, y) =
eλ〈x,y〉

h(x)
and K2(x, y) =

eλ〈x,y〉‖x‖(n−1)/2

κeλ‖x‖
.

Then we have

‖K1(x, .)‖L1(Sn−1) =

∫

Sn−1

|
eλ〈x,y〉

h(x)
| dσ(y) = 1

and

‖K1(x, .)− K2(x, .)‖L1(Sn−1) =

∫

Sn−1

|
eλ〈x,y〉

h(x)
−

eλ〈x,y〉‖x‖(n−1)/2

κeλ‖x‖
| dσ(y) =

∫

Sn−1

eλ〈x,y〉|
1

h(x)
−

‖x‖(n−1)/2

κeλ‖x‖
| dσ(y) =

|
1

h(x)
−

‖x‖(n−1)/2

κeλ‖x‖
|

∫

Sn−1

eλ〈x,y〉 dσ(y) = |1−
h(x)‖x‖(n−1)/2

κeλ‖x‖
|,
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from the asymptotic behaviour of the function h (see Preliminaries) it follows,
that to every positive ε, there exists a positive number cε such that

‖K1(x, .)− K2(x, .)‖L1(Sn−1) < ε

and
‖K2(x, .)‖L1(Sn−1) < 1 + ε,

whenever ‖x‖ > cε.

Let f ∈ L1(S
n−1) and c > 1. Then there exists Φ0 ∈ L1(ν), such that

f =

∫

Rn

Φ0(x)K1(x, .) dν(x), and ‖f‖L1(Sn−1) ≦ ‖Φ0‖L1(ν) ≦ c‖f‖L1(Sn−1),

and moreover, as (viii) is equivalent to (v) and (v) holds for M , if and only if it
holds for M\B(0, cε), Φ0 can be chosen to be zero on B(0, cε).

Put f0 = f . Now, functions fk ∈ L1(S
n−1) and Φk ∈ L1(ν) for any k =

1, 2, . . . , will be defined.

fk+1 = fk−

∫

Rn

Φk(x)K2(x, .) dν(x), for k = 0, 1, . . . ;

Φk+1 is, for k = 0, 1, . . . , a function for which

fk+1 =

∫

Rn

Φk+1(x)K1(x, .) dν(x),

‖fk+1‖L1(Sn−1) ≦ ‖Φk+1‖L1(ν) ≦ c‖fk+1‖L1(Sn−1)

and Φk+1 is zero on B(0, cε).

We have f0 ∈ L1(S
n−1) and Φ0 ∈ L1(ν) and above relations are satisfied.

Suppose, it is true for 0, 1, . . . , k, and prove it for k + 1:

‖fk+1‖L1(Sn−1) = ‖fk −

∫

Rn

Φk(x)K2(x, .) dν(x)‖L1(Sn−1) =

‖

∫

Rn

Φk(x)K1(x, y) dν(x) −

∫

Rn

Φk(x)K2(x, y) dν(x)‖L1(Sn−1) ≦

∫

Sn−1

∫

Rn

|Φk(x)(K1(x, y)− K2(x, y))| dν(x) dσ(y)



326 J. Ranošová

using Fubini theorem

=

∫

Rn

|Φk(x)|

∫

Sn−1

|K1(x, y)− K2(x, y)| dσ(y) ≦ ε‖Φk‖L1(ν).

So fk+1 ∈ L1(S
n−1) and by this fact and (v) and (viii) the existence of a func-

tion Φk+1 with required properties is guaranteed.

Combining the above estimates for ‖Φk‖L1(ν) and ‖fk+1‖Sn−1 we obtain

‖fk+1‖Sn−1 ≦ cε‖fk‖L1(Sn−1) for all k = 0, 1, 2, . . . ,

and from that

‖fk‖Sn−1 ≦ (cε)k‖f0‖L1(Sn−1) for all k = 1, 2, . . . .

Put Φ =
∞
∑

k=0
Φk. From the previous estimates it follows

‖Φ‖L1(ν) ≦

∞
∑

k=0

‖Φk‖L1(ν) ≦

∞
∑

k=0

c‖fk‖L1(Sn−1) ≦

c‖f0‖L1(Sn−1) +

∞
∑

k=1

(cε)k‖f0‖L1(Sn−1) = (c+
cε

1− cε
)‖f0‖L1(Sn−1).

The constant (c+ cε
1−cε ) can be chosen arbitrarily close to 1.

We have proved that Φ ∈ L1(ν) and the required relation between ‖f‖L1(Sn−1)

and ‖Φ‖L1(ν), and we have proved as well that
∑∞

k=1 |Φk| ∈ L1(ν).

As Φk = 0 on B(0, cε) for any k = 0, 1, . . . , the same is true for Φ (what was
to be proved) and

∑∞
k=1 |Φk|.

From these facts and the fact that ‖K2(x, .)‖L1(Sn−1) < 1+ε whenever ‖x‖ > cε

we get (using the Fubini theorem) that

∫

Rn

(
∞
∑

k=0

|Φk(x)|)K2(x, .) dν(x) ∈ L1(S
n−1).

From here it follows that for σ-almost all y

∞
∑

k=0

|Φk(.)|K2(., y) ∈ L1(ν).
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Using the Lebesgue Dominated Convergence Theorem with the above sum as
dominating function we arrive to
∫

Rn

Φ(x)K2(x, y) dν(x) =

∫

Rn

(

∞
∑

k=0

Φk(x)).K2(x, y) dν(x) =

∞
∑

k=0

∫

Rn

Φk(x)K2(x, y) dν(x) =
∞
∑

k=0

(fk(y)− fk+1(y)) = f0(y) = f(y)

for σ-almost all y ∈ Sn−1.

So

f =

∫

Rn

Φ(x)K2(x, .) dν(x)

and the proof is finished. �

The implication (x)⇒(viii) can be proved in the same way.

Remark

Similar problems have been recently investigated for classical harmonic func-
tions on a ball in [3], [4], [5], [7] and for more general domains in [1], and for
parabolic functions on a slab in [10] and [11]. In the present paper methods of
proofs adopted in [7] and [5] turned out to be useful.
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[8] Korányi A., A survey of harmonic functions on symmetric spaces, Proc. Symposia Pure
Math. XXV, part 1 (1979), 323 –344.
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