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Continuity of the uniform rotundity

modulus relative to linear subspaces

Manuel Fernández, Isidro Palacios

Abstract. We prove the continuity of the rotundity modulus relative to linear subspaces
of normed spaces. As a consequence we reduce the study of uniform rotundity relative
to linear subspaces to the study of the same property relative to closed linear subspaces
of Banach spaces.

Keywords: uniform rotundity

Classification: 46B20

The notion of uniform rotundity in a normed space relies on the geometric
condition that the mid-point of a variable chord of the unit sphere of the space
cannot approach the sphere unless the length of the chord goes to zero.
This paper deals with a weaker type of rotundity, introduced by H. Fakhouri

[2], called uniform rotundity relative to a linear subspace. Geometrically this
differs from uniform rotundity in that it requires that the direction of the variable
chord belongs to the subspace. Specifically, the normed linear space X is said
to be uniformly rotund relative to its linear subspace Y if the uniform rotundity
modulus relative to Y

(1) δ(Y, ǫ) = inf

{
1−

∥∥∥∥
x+ y

2

∥∥∥∥ : x, y ∈ B, x − y ∈ Y, ‖x − y‖ ≥ ǫ

}

is strictly positive when 0 < ǫ ≤ 2, where B denotes the closed unit ball of X . If
Y = X , then δ(X, ǫ) is Clarkson’s uniform rotundity modulus ([1]). When Y =
〈z〉, the one-dimensional linear subspace spanned by z 6= 0, δ(Y, ǫ) = δ(→ z, ǫ) is
Garkavi’s uniform directional rotundity modulus ([5]).
Let S be the unit sphere of X and SY = S ∩ Y . Also let

S = {SY : Y is a linear subspace of X}

and h be the Hausdorff semi-metric on S:

(2) h(A, B) = max{sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B
inf
a∈A

‖a − b‖}.

We note in Lemma 1 that the uniform rotundity modulus relative to Y is
uniquely determined by the elements in S. Theorem 2 proves that δ(Y, ǫ) is
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a continuous function on the product space S × [0, 2). This result completes the
one in [2], where it is proved that for a fixed 0 ≤ ǫ < 2, δ(Y, ǫ) is an upper
semicontinuous function on S, provided that this function is strictly positive. For
one-dimensional subspaces we recover the continuity of the directional uniform
rotundity modulus, a result obtained in [7]. Another consequence is that X is
uniformly rotund relative to Y if and only if the completion of X is uniformly
rotund relative to the adherence of Y .

Continuity

The relative uniform rotundity modulus admits various equivalent definitions
which enables us to pick the most convenient for each occasion. They are collected
in the following lemma whose proof is essentially contained in [3, Lemma 1].

Lemma 1. Let Y be a non-null linear subspace of X and let 0 ≤ ǫ ≤ 2. Then
(i) δ(Y, ǫ) = inf{1− ‖x+ (ǫ/2)z‖ : x ∈ B, x+ ǫz ∈ S, z ∈ SY }.
(ii) If dimX ≥ 2, then

δ(Y, ǫ) = inf

{
1−

∥∥∥∥
x+ y

2

∥∥∥∥ : x, y ∈ S, x − y ∈ Y, ‖x − y‖ ≥ ǫ

}

= inf{1− ‖x+ (ǫ/2)z‖ : x ∈ S, x+ ǫz ∈ S, z ∈ SY }.

It is easy to verify now that Lemma 1.e.8 in [8, p. 66] also proves that δ(Y, ǫ)/ǫ
is an increasing monotonic function on 0 < ǫ ≤ 2 and that [6, p. 54] or [9, p. 23]
show that

(3) δ(Y, ǫ1)− δ(Y, ǫ2) ≤ (ǫ1 − ǫ2)/(2− ǫ2), 0 ≤ ǫ2 < ǫ1 ≤ 2.
Thus, we obtain that δ(Y, ǫ) ≤ ǫ/2 for 0 < ǫ ≤ 2 and that δ(Y, ·) is a continuous
function on 0 ≤ ǫ < 2. However, as B. Turett’s following example shows, this
function is not necessarily continuous at ǫ = 2.

Example 1 (B. Turett). Let X be the linear space of bounded real sequences
endowed with the norm

‖x‖ =
(
(1/2)‖x‖2

∞
+

∞∑

i=1

|xi|2/2i
)1/2

,

where x = (xi) and ‖x‖∞ = sup |xi|.
Let z = (1, 0, . . . ) and zn = (0, . . . , 1︸ ︷︷ ︸

n

, 0, . . . ). Define

xn =
√
2n/(2n + 1)(−z + zn), yn =

√
2n/(2n + 1)(z + zn).

Then ‖xn‖ = ‖yn‖ = 1, limn→∞ ‖xn − yn‖ = 2 and ‖(xn + yn)/2‖ > 1/
√
2.

Therefore
lim
ǫ→2

δ(→ z, ǫ) ≤ 1− (1/
√
2) < 1 = δ(→ z, 2),

where the last equality is due to X being rotund.
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Theorem 2. The function δ:S × [0, 2)→ R+ is continuous.

Proof: Fix 0 < ǫ < 2. First we prove that δ(·, ǫ) is continuous in S. Let Y and
Y ′ be linear subspaces of X . We claim that if h(SY , SY ′) ≤ η then

(4) δ(Y, ǫ/(1 + 2η)) ≤ δ(Y ′, ǫ) + (2 + ǫ/2)η.

Indeed, let x ∈ B, z′ ∈ SY ′ be such that x + ǫz′ ∈ S. Then there exists z ∈ SY
with ‖z − z′‖ ≤ η and we have x/(1 + 2η), (x+ ǫz)/(1 + 2η) ∈ B. Therefore

(‖x+ (ǫ/2)z′‖ − (ǫ/2)‖z′ − z‖)
1 + 2η

≤ (‖x+ (ǫ/2)z
′ − (ǫ/2)z′ + (ǫ/2)z‖)
1 + 2η

≤
∥∥∥∥

x+ (ǫ/2)z

1 + 2η

∥∥∥∥ ≤ 1− δ(Y, ǫ/(1 + 2η)).

Since ‖z − z′‖ ≤ η, it follows that

‖x+ (ǫ/2)z′‖ ≤
(
1− δ

(
Y, ǫ/(1 + 2η)

))
(1 + 2η) + (ǫ/2)η

≤ 1− δ(Y, ǫ/(1 + 2η)) + (2 + (ǫ/2))η.

Therefore

δ(Y, ǫ/(1 + 2η))− (2 + (ǫ/2))η ≤ 1− ‖x+ (ǫ/2)z′‖.

Taking the infimum over z′ ∈ SY ′ , we have (4).

Using (3) we obtain that for every µ > 0 there exists η > 0 such that

(5) ǫ(1 + 2η) < 2,
(
2 +

ǫ

2
(1 + 2η)

)
η <

µ

2
,

and

(6) δ(Y, ǫ(1 + 2η))− δ

(
Y,

ǫ

1 + 2η

)
≤

ǫ

(
(1 + 2η)− 1

1 + 2η

)

2− ǫ

1 + 2η

<
µ

2
.

Interchanging Y and Y ′, formula (4) at ǫ(1 + 2η) gives

(7) δ(Y ′, ǫ) ≤ δ
(
Y, ǫ(1 + 2η)

)
+
(
2 +

ǫ

2
(1 + 2η)

)
η.



276 M.Fernández, I. Palacios

From (4), (5), (6), and (7) we have

−µ = −µ

2
− µ

2
≤ δ

(
Y,

ǫ

1 + 2η

)
− δ
(
Y, ǫ(1 + 2η)

)
−
(
2 +

ǫ

2
(1 + 2η)

)
η

≤ δ

(
Y,

ǫ

1 + 2η

)
− δ(Y ′, ǫ)

≤ δ(Y, ǫ)− δ(Y ′, ǫ)

≤ δ(Y, ǫ)− δ

(
Y,

ǫ

1 + 2η

)
+
(
2 +

ǫ

2

)
η

≤ δ(Y, ǫ)− δ

(
Y,

ǫ

1 + 2η

)
+
(
2 +

ǫ

2
(1 + 2η)

)
η

≤ δ(Y, ǫ(1 + 2η))− δ

(
Y,

ǫ

1 + 2η

)
+
(
2 +

ǫ

2
(1 + 2η)

)
η

≤ µ

2
+

µ

2
= µ.

Therefore δ(·, ǫ) is continuous. To complete the proof note that

|δ(Y, ǫ)− δ(Y ′, ǫ′)| ≤ |δ(Y, ǫ)− δ(Y ′, ǫ)|+ |δ(Y ′, ǫ)− δ(Y ′, ǫ′)|

≤ |δ(Y, ǫ)− δ(Y ′, ǫ)|+ |ǫ − ǫ′|
2−min(ǫ, ǫ′) ,

where the last inequality is a consequence of (3). �

The following example shows that the relative uniform rotundity modulus at
ǫ = 2, δ(·, 2) may fail to be a continuous function.
We shall henceforth use δX (Y, ǫ) instead of δ(Y, ǫ) in order to emphasize in the

subscript the space in which the modulus is defined.

Example 2. Let Xi be the linear space R
2 endowed with the norm ‖(r, s)‖i =

(|r|i+|s|i)1/i, i = 2, 3, . . . , and let ℓ∞(Xi) be the space of sequences (xi) such that
xi ∈ Xi and (‖xi‖i) is bounded. This space is normed by ‖(xi)‖ = supi(‖xi‖i).
In [4] it is shown that

δℓ∞(Xi)(→ z, ǫ) = inf
i
{δXi

(→ zi, ǫ‖zi‖i)}, 0 ≤ ǫ ≤ 2 .

Let

z = ((1, 0), (1, 0), . . . ) and zn =

(
(1, 0),

(
n

n+ 1
, 0

)
,

(
n

n+ 1
, 0

)
, . . .

)
.

Then limn→∞ zn = z in ℓ∞(Xi), δℓ∞(Xi)(→ z, 2) = 1, and δℓ∞(Xi)(→ zn, 2) = 0

for every n ∈ N.
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Corollary 3. Let X̃ be the completion of X and Y the adherence of Y . Then

X is uniformly rotund relative to Y if and only if X̃ is uniformly rotund relative
to Y .

Proof: We prove that

δX (Y, ǫ) = δX (Y , ǫ) = δ eX(Y , ǫ), 0 ≤ ǫ < 2 .

The first equality is a direct consequence of Theorem 2. So we only must show
that δX(Y , ǫ) ≤ δ eX(Y , ǫ), for every 0 ≤ ǫ < 2. Let x ∈ B eX and z ∈ SY be

such that x + ǫz ∈ SX̃ , and let {xn} ⊂ BX be a sequence convergent to x. If
γn = max(1, ‖xn + ǫz‖), then xn/γn, (xn + ǫz)/γn ∈ BX , and

∥∥∥∥
xn

γn
+

ǫz

2γn

∥∥∥∥ ≤ 1− δX(Y , ǫ/γn) .

Thus the continuity of δ(Y , ·) at ǫ yields ‖x+ (ǫ/2)z‖ ≤ 1− δX (Y , ǫ). �
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