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Smooth approximation in weighted Sobolev spaces

T. Kilpeläinen

Abstract. We give necessary and sufficient conditions for the equality H = W in weighted
Sobolev spaces. We also establish a Rellich-Kondrachov compactness theorem as well as
a Lusin type approximation by Lipschitz functions in weighted Sobolev spaces.

Keywords: weighted Sobolev spaces, Poincaré inequality
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Suppose that w is a p-admissible weight, p > 1, in the sense of [7] (see I–IV
below) and µ the measure with density w, i.e. dµ(x) = w(x)dx. As in [7] we let
H1,p(Ω; µ) be the closure of C∞(Ω) in Lp(Ω; µ) × Lp(Ω; µ) in the norm

‖ϕ‖1,p,µ =
(

∫

Ω
|ϕ|p dµ

)1/p
+

(

∫

Ω
|∇ϕ|p dµ

)1/p
.

Define
W 1,p(Ω; µ) = {u ∈ L1

loc(Ω; dx) : u, Du ∈ Lp(Ω; µ)} ,

where Du ∈ L1
loc(Ω; dx) is the distributional gradient of u, i.e.

∫

Ω
u∇ϕdx = −

∫

Ω
Duϕdx

whenever ϕ ∈ C∞

0 (Ω). We equip W 1,p(Ω; µ) with the norm ‖ · ‖1,p,µ.

The space H1,p(Ω; µ) has appeared to be useful in studying partial differential
equations; see [4] and [7]. The spaces W 1,p(Ω; µ) have been studied for example
by Kufner [10]. It is easy to give examples of p-admissible weights w so that
H1,p(Ω; µ) 6⊂ W 1,p(Ω; µ); cf. [7, p. 13]. In the case when w belongs to Mucken-
houpt’s Ap-class (with the same p as is the integrability exponent in H1,p(Ω; µ))
it is known that the two definitions result in the same space of functions, i.e.
H1,p(Ω; µ) = W 1,p(Ω; µ); cf. e.g. [9]. In the unweighted case this equality is often
credited to Meyers and Serrin [13], but it appeared already in the work [2] of Deny
and Lions. Nowadays it is well known and can be found in textbooks, e.g. in [3].

In this note our aim is to give necessary and sufficient conditions for weights
guaranteeing that H = W . As byproducts we obtain a Lusin type approxi-
mation of H1,p(Rn; µ) functions by Lipschitz functions and a weighted Rellich-
Kondrachov theorem.
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1. Theorem. If W 1,p(Ω; µ) is a Banach space, then H1,p(Ω; µ) ⊂ W 1,p(Ω; µ).

Proof: This is immediate, for smooth functions in H1,p(Ω; µ) are dense in
H1,p(Ω; µ) and they also belong to W 1,p(Ω; µ). �

Remarks. If w1/(1−p) is locally integrable in Rn, we infer from Hölder’s inequa-
lity that W 1,p(Ω; µ) is a Banach space, cf. [7, p. 14] or [11, 1.5].

Clearly, it is necessary for the equality H1,p(Ω; µ) = W 1,p(Ω; µ) that
W 1,p(Ω; µ) is a Banach space, for H1,p(Ω; µ) is.

For the reader’s convenience we recall here that a locally integrable function w
is termed p-admissible if the following four conditions are fulfilled:

I 0 < w < ∞ almost everywhere in Rn and the measure µ with dµ(x) =
w(x)dx is doubling, i.e. there is a constant C > 0 such that

µ(B(x0, 2r)) ≤ Cµ(B(x0, r))

for each ball B(x0, r).
II If D is an open set and ϕi ∈ C∞(D) is a sequence of functions such

that
∫

D |ϕi|
p dµ → 0 and

∫

D |∇ϕi − v|p dµ → 0 as i → ∞, where v is a
vector-valued measurable function in Lp(D; µ), then v = 0.

III There are constants κ > 1 and C > 0 such that

(
1

µ(B)

∫

B
|ϕ|κp dµ)1/κp ≤ C r (

1

µ(B)

∫

B
|∇ϕ|p dµ)1/p

whenever B = B(x0, r) is a ball in Rn and ϕ ∈ C∞

0 (B).
IV There is a constant C > 0 such that

(2)

∫

B
|ϕ − ϕB |p dµ ≤ C rp

∫

B
|∇ϕ|p dµ

whenever B = B(x0, r) is a ball in Rn and ϕ ∈ C∞(B) is bounded. Here

ϕB =
1

µ(B)

∫

B
ϕdµ .

It has turned out that the assumptions I and IV will imply both II and III.
The uniqueness of the gradient II was observed by Semmes; see [8, Lemma 5.6].
Haj lasz and Koskela proved in [6] that the Poincaré inequality IV and the dou-
bling property I imply the Sobolev inequality III.

In this note we show that the Poincaré inequality has an essential role also in
smooth or Lipschitz approximation of functions in weighted Sobolev spaces.

First observe that it readily follows from the definition of H1,p(Ω; µ) that the
Poincaré inequality (2) holds for all ϕ ∈ H1,p(Ω; µ). In what follows we say that
the Poincaré inequality (2) holds for a function ϕ if it holds with a constant C > 0
independent of the ball B.



Smooth approximation in weighted Sobolev spaces 31

3. Theorem. Suppose that the Poincaré inequality (2) holds for all functions
from W 1,p(Rn; µ). Then W 1,p(Ω; µ) ⊂ H1,p(Ω; µ).

As the main ingredient of the proof we establish the following result which may
be of independent interest.

4. Theorem. Suppose that the Poincaré inequality (2) holds for u in
W 1,p(Rn; µ). Then u ∈ H1,p(Rn; µ) and for each ε > 0, there is a Lipschitz
function f in Rn such that

µ({x : f(x) 6= u(x)}) < ε

and
‖u − f‖1,p < ε .

Proof: By approximating u by its truncations we are free to assume that 0 ≤
u ≤ 1.

Let x and y be Lebesgue points of u with |x − y| ≤ 1. Let k0 be the integer

with 2−k0 < |x − y| ≤ 21−k0 . For k = 1, 2, . . . write

Bk = B(x, 2−k)

and

ak =

∫

Bk

u dµ .

Since x is a Lebesgue point for u, we have

|u(x) − ak0 | = lim
j→∞

|aj − ak0 | ≤

∞
∑

k=k0

|ak+1 − ak|

≤

∞
∑

k=k0

∫

Bk+1

|u − ak| dµ ≤ c

∞
∑

k=k0

(

∫

Bk

|u − ak|
p dµ

)1/p

≤ C

∞
∑

k=k0

2−k(

∫

Bk

|∇u|p dµ
)1/p

,

where Hölder’s and Poincaré’s inequalities and the doubling property of µ have
also been used. Thanks to our choice of k0, the last sum does not exceed

c|x − y|
(

M |∇u|p(x)
)1/p

,

where M stands for the weighted maximal function

Mf(x) = sup
r>0

∫

B(x,r)
f dµ .
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Similarly, we find that

|u(y) −

∫

B(y,2k0+2)
u dµ| ≤ c|x − y|

(

M |∇u|p(y)
)1/p

,

and further in a similar manner

|ak0 −

∫

B(y,2k0+2)
u dµ| ≤ c

∫

B(y,2k0+2)
|u − uB(y,2k0+2)| dµ

≤ c|x − y|
(

M |∇u|p(y)
)1/p

.

Combining these estimates we arrive at

|u(x) − u(y)| ≤ c|x − y|
(

(M |∇u|p(x))1/p + (M |∇u|p(y))1/p)

,

where c ≥ 1 is a constant, independent of x and y. So, if L is the set of the
Lebesgue points of u and λ ≥ 1, then the restriction on u to the set

Kλ = {x ∈ L : M |∇u|p(x) ≤ λp}

is Lipschitz with constant cλ. By a well known extension theorem for Lipschitz
functions (cf. [3]), there is a Lipschitz-function fλ on Rn such that Lip(fλ) = cλ
and the restriction to Kλ of fλ coincides with u. By truncating, if necessary, we
may assume that 0 ≤ fλ ≤ 1.

We claim that fλ is the function we are looking for. By a well known weak
type inequality for maximal functions [14, p. 13] we have

µ(∁Kλ) ≤
c

λp

∫

Rn

|∇u|p dµ .

Thus ∫

Rn

|u − fλ|
p dµ =

∫

∁Kλ

|u − fλ|
p dµ ≤ cµ(∁Kλ) → 0

as λ → ∞ and
∫

Rn

|∇u−∇fλ|
p dµ =

∫

∁Kλ

|∇u−∇fλ|
p dµ ≤ c

∫

∁Kλ

|∇u|p dµ + cλpµ(∁Kλ) ≤ c .

Hence {fλ}λ is bounded in H1,p(Rn; µ) (see [7, Lemmas 1.11 and 1.15]). Since
fλ → u in Lp(Rn; µ), we find that u ∈ H1,p(Rn; µ) and that ∇fλ → ∇u weakly
in Lp(Rn; µ); see [7, 1.32]. Appealing to Mazur’s theorem we find a sequence of
convex combinations of fλ’s that converges to u in H1,p(Rn; µ). These functions
are Lipschitz and coincide with u in Kλ. The theorem follows. �

Observe that in the proof of Theorem 4 we never really employed the fact that
the gradient of u is distributional. Hence we have:
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5. Theorem. Suppose that u ∈ H1,p(Rn; µ). Then for each ε > 0, there is a
Lipschitz function f in Rn such that

µ({x : f(x) 6= u(x)}) < ε

and
‖u − f‖1,p < ε .

Theorem 5 in the unweighted case is due to Liu [12]; see also [3, Section 6.6.3].
See [5] for an interesting study of Sobolev spaces, where Haj lasz defines Sobolev
functions by using their Lipschitz property.

6. Remark. Taking a look at the proof of Theorem 4, we observe the following
fact that is used later: If u ∈ H1,p(Rn; µ), 0 ≤ u ≤ 1 and M > 0, there exists a
Lipschitz function v ∈ H1,p(Rn; µ) such that Lip (v) ≤ M ,

‖u − v‖p ≤
c1

M
‖∇u‖p ,

and
‖∇v‖p ≤ c2‖∇u‖p + c3 ,

where cj = cj(n, p, µ) > 0.

Proof of Theorem 3: Fix u ∈ W 1,p(Ω; µ). Let D ⊂⊂ Ω and choose a cut-off
function η ∈ C∞

0 (Ω) such that η = 1 on D. Then uη ∈ W 1,p(Rn; µ) and hence

uη ∈ H1,p(Rn; µ) by Theorem 4. Consequently, u ∈ H
1,p
loc (Ω; µ). Because both u

and ∇u are in Lp(Ω; µ), u belongs to H1,p(Ω; µ) by [7, Lemma 1.15]. �

Combining Theorems 1 and 3 we obtain:

7. Theorem. The space H1,p(Ω; µ) coincides with W 1,p(Ω; µ) if and only if
W 1,p(Ω; µ) is a Banach space and the Poincaré inequality (2) holds for functions
from W 1,p(Rn; µ).

Our argument yields a Rellich-Kondrachov theorem in weighted Sobolev spaces:

8. Theorem. Suppose that uj is a bounded sequence in H1,p(Rn; µ). Then
there is a subsequence of uj that converges pointwise a.e. and in Lq(Ω; µ) (to a

function u ∈ H1,p(Rn; µ)) whenever Ω is bounded and 1 ≤ q < κp; here κ > 1 is
the number in the Sobolev inequality III.

Before we start the proof a few remarks are due: Usually one employs the
Rellich-Kondrachov theorem when it is required to have stronger convergence
than just weak. Therefore to establish the a.e. convergence is the only hard part
of the theorem; then the Sobolev inequality takes care of the convergence in Lq.

Normally the Rellich-Kondrachov theorem is formulated for bounded sequences
of Sobolev spaces on a nice, e.g. Lipschitz, domain. What is important is that
the functions can be extended to the Sobolev space on Rn without loosing the
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boundedness in the norm. We pre-assume the boundedness in H1,p(Rn; µ) be-
cause extension properties in weighted spaces are not yet well understood (see,
however [1], where Chua proves that if µ arises from an Ap-weight, then there is a

bounded extension operator from H1,p(Ω; µ) to H1,p(Rn; µ), if Ω is for instance
a Lipschitz domain; see also [15]).

9. Corollary. Suppose that Ω is bounded and uj is a bounded sequence in

H1,p
0 (Ω; µ). Then there is a subsequence of uj that converges pointwise a.e. and

in Lq(Ω; µ) (to a function u ∈ H
1,p
0 (Ω; µ)) whenever 1 ≤ q < κp; here κ > 1 is

the number in III.

Proof of Theorem 8: Let B be a fixed ball. By appealing to standard approx-
imations by truncations and a diagonal subsequence argument we may assume
that 0 ≤ uj ≤ 1; also it suffices to select a subsequence that depends on B.

We claim that there is a subsequence of uj which is a Cauchy sequence in
Lp(Ω; µ). To this end, fix ε > 0 and choose for each j a c/ε-Lipschitz function vj

such that
‖vj − uj‖p < ε

(see Remark 6). Because 0 ≤ uj ≤ 1, we may (for ε small enough) assume that

the sequence vj is uniformly bounded in B. Since the functions vj are Lipschitz

with a fixed constant, Ascoli’s theorem gives us a uniformly on B convergent
subsequence vji

. Thus

‖ujk
− uji

‖Lp(B;µ) ≤ ‖ujk
− vjk

‖p + ‖vjk
− vji

‖Lp(B;µ) + ‖vji
− uji

‖p < 3ε

when i and k are large enough. In the other words, uji
is a Cauchy sequence in

Lp(B; µ) (and hence it has an a.e. convergent subsequence).
Now the theorem follows by interpolating: the cases where q ≤ p are trivial

and if p < q < κp, then we choose λ such that

1

q
=

λ

p
+

1 − λ

κp

and obtain

‖ujk
− uji

‖Lq(B;µ) ≤ ‖ujk
− uji

‖λ
Lp(B;µ)

‖ujk
− uji

‖
(1−λ)

Lκp(B;µ)

≤ cελ ,

for the sequence
‖ujk

− uji
‖Lκp(B;µ)

remains bounded by the Sobolev inequality III. The theorem follows. �
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